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Abstract. The aim of this paper is to generate a kind of integrable hierarchies
of four-component evolution equations with Hamiltonian structures, from a kind of
reduced Ablowitz-Kaup-Newell-Segur (AKNS) matrix spectral problems. The zero
curvature formulation is the basic tool and the trace identity is the key to establishing
Hamiltonian structures. Two examples of Hamiltonian equations in the resulting inte-
grable hierarchies are added to the category of coupled integrable nonlinear Schrödinger
equations and coupled integable modified Korteweg-de Vries equations.
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1. INTRODUCTION

The zero curvature formulation is a powerful approach for constructing inte-
grable equations in soliton theory [1, 2]. It allows us to express a system of partial
differential equations (PDEs) in terms of a compatibility condition between two ma-
trices, known as the zero curvature condition. By imposing this condition, we can
obtain various integrable properties for the equations under consideration.

To construct integrable equations using the zero curvature formulation, we pro-
ceed as follows: The starting point is to formulate an appropriate matrix spatial spec-
tral problem, whose spectral matrix reads

M=M(u,λ) = u1e1(λ)+ · · ·+uqeq(λ)+e0(λ), (1)

where λ is the spectral parameter, u = (u1, · · · ,uq)T is the dependent variable, and
e1, · · · ,eq are linear independent elements and e0 is a pseudo-regular element in a
loop algebra g̃. The pseudo-regular conditions

Kerade0 ⊕ Imade0 = g̃, and Kerade0 is commutative

guarantee that there exists a Laurent series solution Y =
∑

s≥0λ
−sY [s] to the sta-

tionary zero curvature equation:

Yx = i[M,Y]. (2)
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Hamiltonian structures of associated integrable equations can be established through
the trace identity [3]:

δ

δu

∫
tr
(
Y ∂M

∂λ

)
dx= λ−γ ∂

∂λ
λγ tr

(
Y ∂M

∂u

)
, (3)

where γ is a constant, independent of λ, and δ
δu is the variational derivative with

respect to u.
An integrable hierarchy can then be presented through zero curvature equa-

tions:

Mt−N [r]
x + i[M,N r]] = 0, r ≥ 0, (4)

where N [r], r ≥ 0, are generated from the solution Z. These equations are the com-
patibility conditions between the spatial and temporal matrix spectral problems:

−iϕx =Mϕ, −iϕt =N [r]ϕ, r ≥ 0. (5)

Many integrable hierarchies are computed in this way, associated with the special li-
near algebras (see, e.g., [4–8]), and the special orthogonal algebras (see, e.g., [9–11]).
Bi-Hamiltonian structures can be often furnished, which immediately exhibit the Li-
ouville integrability of the associated zero curvature equations [3, 12]. There are
many integrable hierarchies with two components, p and q. Such famous integrable
hierarchies contain the Ablowitz-Kaup-Newell-Segur hierarchy [4], the Heisenberg
hierarchy [13], the Kaup-Newell hierarchy [14] and the Wadati-Konno-Ichikawa hie-
rarchy [15], which are associated with the following spectral matrices:

M(u,λ) =

[
λ p
q −λ

]
,

[
λv λp
λq −λv

]
,

[
λ2 λp
λq −λ2

]
,

[
λ λp
λq −λ

]
,

where pq+v2 =1, respectively. In theoretical physics, one often uses u2+v2+w2 =
1 upon setting p= u+ iw and q = u− iw.

This paper aims to present integrable hierarchies of Hamiltonian evolution
equations with four components. The zero curvature formulation is the tool to gene-
rate integrable hierarchies and the trace identity is the key to establishing Hamilto-
nian structures for the resulting integrable hierarchies. Two illustrative examples are
a sort of coupled integrable nonlinear Schrödinger equations and coupled integrable
modified Korteweg-de Vries equations. The last section is devoted to a conclusion
and some concluding remarks.
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2. LAX PAIRS AND AN INTEGRABLE HIERARCHY

We begin with a 4×4 matrix spectral problem of the form:

−iϕx =Mϕ=M(u,λ)ϕ, M=


α1λ p1 p2 p1
q1 α2λ 0 0
q2 0 α2λ 0
q1 0 0 α2λ

 , (6)

where α1,α2 ∈ C are two distinct constants, λ is the spectral parameter and u is the
four-dimensional potential

u= u(x,t) = (p1,p2, q1, q2)
T . (7)

This spectral problem is a specific reduction of the Ablowitz-Kaup-Newell-Segur
(AKNS) spectral problem with two vector potentials (see, e.g., [4, 16, 17] for details).
We would like to show that such a reduced matrix spectral problem can be added to
the category of matrix spectral problems that yield integrable hierarchies.

To derive an associated integrable hierarchy, let us first solve the stationary zero
curvature equation (2) by assuming that a solution takes a Laurent series form:

Y =


a b1 b2 b1
c1 d1,1 d1,2 d1,1
c2 d2,1 d2,2 d2,1
c1 d1,1 d1,2 d1,1

=
∑
s≥0

λ−sY [s], (8)

with Y [s]] being determined by

Y [s] =


a[s] b

[s]
1 b

[s]
2 b

[s]
1

c
[s]
1 d

[s]
1,1 d

[s]
1,2 d

[s]
1,1

c
[s]
2 d

[s]
2,1 d

[s]
2,2 d

[s]
2,1

c
[s]
1 d

[s]
1,1 d

[s]
1,2 d

[s]
1,1

 , s≥ 0. (9)

It is direct to see that the corresponding stationary zero curvature equation requires
the initial conditions on Y [0]:

a[0]x = 0, b
[0]
j = c

[0]
j = 0, (d

[0]
k,l)x = 0, 1≤ j,k, l ≤ 2, (10)

and yields the recursion relations for defining Y [s], s≥ 1:

b
[s+1]
j =

1

α
(−ib

[s]
j,x+pja

[s]−2p1d
[s]
1,j −p2d

[s]
2,j), 1≤ j ≤ 2, (11)

c
[s+1]
j =

1

α
(ic

[s]
j,x+ qja

[s]−2q1d
[s]
j,1− q2d

[s]
j,2), 1≤ j ≤ 2, (12)

(d
[s+1]
k,l )x = i(qkb

[s+1]
l −plc

[s+1]
k ), 1≤ k, l ≤ 2, (13)
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and
a[s+1]
x = i(−2q1b

[s+1]
1 − q2b

[s+1]
2 +2p1c

[s+1]
1 +p2c

[s+1]
2 ), (14)

where s≥ 0. Based on (10), let us further take the initial values,

a[0] = β, d
[0]
k,l = 0, 1≤ k, l ≤ 2, (15)

where β ∈ C is an arbitrary constant, and choose the constant of integration as zero,

a[s]|u=0 = 0, d
[s]
k,l|u=0 = 0, 1≤ k, l ≤ 2, s≥ 1, (16)

so that we can determine all required differential polynomials a[s], b[s]j , c
[s]
j ,d

[s]
k,l, 1≤

j,k, l ≤ 2, s≥ 1, uniquely. In this way, we can work out that

b
[1]
j =

β

α
pj , c

[1]
j =

β

α
qj , a

[1] = 0, d
[1]
k,l = 0, 1≤ j,k, l ≤ 2; b

[2]
j =− β

α2 ipj,x, c
[2]
j = β

α2 iqj,x, 1≤ j ≤ 2,

a[2] =− β
α2 (2p1q1+p2q2), d

[2]
k,l =

β
α2 plqk, 1≤ k, l ≤ 2; b

[3]
1 =− β

α3 (p1,xx+2p1p2q2+4p21q1),

b
[3]
2 =− β

α3 (p2,xx+2p22q2+4p1p2q1), c
[3]
1 =− β

α3 (q1,xx+2p2q1q2+4p1q
2
1),

c
[3]
2 =− β

α3 (q2,xx+2p2q
2
2 +4p1q1q2), a[3] = β

α3 i(2p1,xq1+p2,xq2−2p1q1,x−p2q2,x),

d
[3]
k,l =

β
α3 i(plqk,x− qkpl,x), 1≤ k, l ≤ 2;

and  b
[4]
1 = β

α4 i(p1,xxx+3p1p2,xq2+12p1p1,xq1+3p1,xp2q2),

b
[4]
2 = β

α4 i(p2,xxx+6p1p2,xq1+6p1,xp2q1+6p2p2,xq2), c
[4]
1 =− β

α4 i(q1,xxx+12p1q1q1,x+3p2q1q2,x+3p2q1,xq2),

c
[4]
2 =− β

α4 i(q2,xxx+6p1q1,xq2+6p1q1q2,x+6p2q2q2,x),
a[4] = β

α4

[
2p1,xxq1+2p1q1,xx+p2,xxq2+p2q2,xx

−2p1,xq1,x−p2,xq2,x+3(2p1q1+p2q2)
2
]
,

d
[4]
k,l =− β

α4 (6p1q1plqk+3p2q2plqk+pl,xxqk+plqk,xx−pl,xqk,x), 1≤ k, l ≤ 2;

which will be used to present examples of integrable Hamiltonian equations below.
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We take advantage of the zero curvature formulation, and a direct computation
shows that the following temporal matrix spectral problems

−iϕt =N [r]ϕ=N [r](u,λ)ϕ, N [r] = (λrY)+ =
r∑

s=0

λsY [r−s], r ≥ 0, (17)

are appropriate other parts of Lax pairs so that the compatibility conditions of the
resulting Lax pairs, i.e., the zero curvature equations in (4), present a four-component
integrable hierarchy:

utr =K [r] = (αib
[r+1]
1 ,αib

[r+1]
2 ,−αic

[r+1]
1 ,−αic

[r+1]
2 )T , r ≥ 0, (18)

or more specifically,

p1,tr =αib
[r+1]
1 , p2,tr =αib

[r+1]
2 , q1,tr =−αic

[r+1]
1 , q2,tr =−αic

[r+1]
2 , r≥ 0. (19)

Based on the previous expressions of b[s]1 , b
[s]
2 , c

[s]
1 and c

[s]
2 , s ≥ 1, we immedi-

ately obtain the first two examples of integrable nonlinear evolution equations. The
first one is the integrable coupled nonlinear Schrödinger equations:

ip1,t2 =
β
α2 (p1,xx+2p1p2q2+4p21q1),

ip1,t2 =
β
α2 (p2,xx+2p22q2+4p1p2q1),

iq1,t2 =− β
α2 (q1,xx+2p2q1q2+4p1q

2
1),

iq2,t2 =− β
α2 (q2,xx+4p1q1q2+2p2q

2
2),

(20)

and the second is the integrable coupled modified Korteweg-de Vries equations:

p1,t3 =− β
α3 (p1,xxx+3p1p2,xq2+12p1p1,xq1+3p1,xp2q2),

p2,t3 =− β
α3 (p2,xxx+6p1p2,xq1+6p1,xp2q1+6p2p2,xq2),

q1,t3 =− β
α3 (q1,xxx+12p1q1q1,x+3p2q1,xq2+3p2q1q2,x),

q2,t3 =− β
α3 (q2,xxx+6p1q1,xq2+6p1q1q2,x+6p2q2q2,x).

(21)

Those two examples enrich the category of integrable multi-component nonlinear
Schrödinger equations and integrable multi-component modified Korteweg-de Vries
equations (see, e.g., [18–20]).

3. HAMILTONIAN STRUCTURES

In order to establish Hamiltonian structures for the presented integrable hierar-
chy (19), we apply the trace identity (3) associated with the matrix spectral problem
(6). Using the solution Y determined by (8), we can derive

tr
(
Y ∂M

∂λ

)
= α1a+α2(2d1,1+d2,2), tr

(
Y ∂M

∂u

)
= (2c1, c2,2b1, b2)

T ,
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and thus, we arrive at

δ

δu

∫
[α1a

[s+1]+α2(2d
[s]
1,1+d

[s]
2,2)]λ

−s−1 dx= λ−γ ∂

∂λ
λγ−s(2c

[s]
1 , c

[s]
2 ,2b

[s]
1 , b

[s]
2 )T ,

where s≥ 0. Checking the case with s= 2, we see γ = 0. Consequently, we obtain

δ

δu
H[s] = (2c

[s+1]
1 , c

[s+1]
2 ,2b

[s+1]
1 , b

[s+1]
2 )T , s≥ 0, (22)

where the Hamiltonian functionals are defined by

H[s] =

∫
H [s] dx, H [s] =−

α1a
[s+2]+α2(2d

[s+2]
1,1 +d

[s+2]
2,2 )

s+1
, s≥ 0, (23)

of which the first three Hamiltonian functional are

H[0] =

∫
β

α
(2p1q1+p2q2)dx, (24)

H[1] =

∫
β

2α2
i
[
2(p1q1,x−p1,xq1)+(p2q2,x−p2,xq2)

]
dx, (25)

and

H[2] =

∫
β

3α3

[
−2p1,xxq1−p2,xxq2−2p1q1,xx−p2q2,xx

+2p1,xq1,x+p2,xq2,x−3(2p1q1+p2q2)
2
]
dx.

(26)

Those identities allow us to present the Hamiltonian structures for the obtained
integrable hierarchy (19):

utr =K [r] = J
δH[r]

δu
, J =


0

1
2αi 0
0 αi

−1
2αi 0
0 −αi

0

 , r ≥ 0, (27)

where J is skew-symmetric and thus Hamiltonian, and the Hamiltonian functionals
H[r], r ≥ 0, are determined by (23). It is known that the Hamiltonian structures
exhibit a connection from a conserved functional H to a symmetry S by S = J δH

δu .
A direct computation shows that we can have an isospectral Lax operator alge-

bra (see [21, 22] for details):

[[N [s1],N [s2]]] =N [s1]′(u)[K [s2]]−N [s2]′(u)[K [s1]]+ [N [s1],N [s2]]

=
∂

∂ϵ

[
N [s1](u+ ϵK [s2])−N [s2](u+ ϵK [s1])

]∣∣
ϵ=0

+[N [s1],N [s2]] = 0, s1,s2 ≥ 0,

(28)
which is a consequence of the isospectral zero curvature equations [22]. This Lax
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operator algebra guarantees the Abelain algebra of infinitely many symmetries {K [s]}∞s=0:

[[K [s1],K [s2]]] =K [s1]′(u)[K [s2]]−K [s2]′(u)[K [s1]]

=
∂

∂ϵ

[
K [s1](u+ ϵK [s2])−K [s2](u+ ϵK [s1])

]∣∣
ϵ=0

= 0, s1,s2 ≥ 0. (29)

It further follows from the Hamiltonian structures that the conserved functionals
{H[s]}∞s=0 form an Abelian algebra:

{H[s1],H[s2]}J =

∫ (δH[s1]

δu

)T
J
δH[s2]

δu
dx= 0, s1,s2 ≥ 0. (30)

This implies that each equation in the resulting hierarchy (19) is Liouville integrable,
or more precisely, each possesses infinitely many commuting conserved densities
{H[s]}∞s=0 and symmetries {K [s]}∞s=0. Furthermore, a combination of J with a re-
cursion operator Φ [23], generated from the recursion relation K [s+1] =ΦK [s], leads
to bi-Hamiltonian structures [12] for the hierarchy.

4. HIGHER-ORDER LAX PAIRS AND INTEGRABLE HIERARCHIES

Let m≥ 1 be an arbitrarily given natural number. We can consider a generali-
zation of the matrix spatial spectral problem (6):

−iϕx =Mϕ, M=


α1λ p1 p2 p1

q1 α2Imλ 0 0
q2 0 α2λ 0
q1 0 0 Imα2λ


(2m+2)×(2m+2)

, (31)

where Im is the m-th order identity matrix, and

p1 = (p1, · · · ,p1︸ ︷︷ ︸
m

), q1 = (q1, · · · , q1︸ ︷︷ ︸
m

)T . (32)

Similarly, a Laurent series solution to the corresponding stationary zero curvature
equation could be taken as

Y =


a b1 b2 b1

c1 d1,1Em,m d1,2Em,1 d1,1Em,m

c2 d2,1E1,m d2,2 d2,1E1,m

c1 d1,1Em,m d1,2Em,1 d1,1Em,m


(2m+2)×(2m+2)

=
∑
s≥0

λ−sY [s],

(33)
where Ek,l is the k× l matrix of ones, b1 and c1 are given by

b1 = (b1, · · · , b1︸ ︷︷ ︸
m

), c1 = (c1, · · · , c1︸ ︷︷ ︸
m

)T , (34)
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and a,bj , cj and dk,l are assumed to be of Laurent series form

a=
∑
s≥0

λ−sa[s], bj =
∑
s≥0

λ−sb
[s]
j , cj =

∑
s≥0

λ−sc
[s]
j , dk,l =

∑
s≥0

λ−sd
[s]
k,l, (35)

in which 1≤ j,k, l ≤ 2.
In this general case, we have
δ

δu

∫ [
α1a+α2(2md1,1]+d2,2)

]
dx= λ−γ ∂

∂λ
λγ(2mc1, c2,2mb1, b2)

T .

Consequently, the associated integrable equations and their Hamiltonian structures
read

utr =K [r] =ΦrK [0] = (αib
[r+1]
1 ,αib

[r+1]
2 ,−αic

[r+1]
1 ,−αic

[r+1]
2 )T = J

δH[r]

δu
, r≥ 0,

(36)
where the Hamiltonian operator J is defined by

J =

 0
1
2mαi 0
0 αi

− 1
2mαi 0
0 −αi

0

 , (37)

and the Hamiltonian functionals are determined by

H[r] =−
∫

α1a
[r+2]+α2(2md

[s+2]
1,1 +d

[s+2]
2,2 )

r+1
, r ≥ 0. (38)

Each equation in every hierarchy in (36) is Liouville integrable, and actually pos-
sesses infinitely many commuting conserved densities and symmetries, as shown in
(29) and (30).

When taking the initial values in (15), and the Lax operators, N [s], s≥ 0, as in
(17), we can have the first two integrable nonlinear equations in the hierarchy (36):

ip1,t2 =
β
α2 (p1,xx+4mp21q1+2p1p2q2),

ip1,t2 =
β
α2 (p2,xx+2p22q2+4mp1p2q1),

iq1,t2 =− β
α2 (q1,xx+4mp1q

2
1)+2p2q1q2,

iq2,t2 =− β
α2 (q2,xx+2p2q

2
2 +4mp1q1q2),

(39)

and 

p1,t3 =− β
α3 (p1,xxx+12mp1p1,xq1+3(p1p2)xq2),

p2,t3 =− β
α3 (p2,xxx+6m(p1p2)xq1+6p2p2,xq2),

q1,t3 =− β
α3 (q1,xxx+12mp1q1q1,x+3p2(q1q2)x),

q2,t3 =− β
α3 (q2,xxx+6mp1(q1q2)X +6p2q2q2,x).

(40)
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5. CONCLUDING REMARKS

A set of integrable Hamiltonian hierarchies with four components has been
constructed, based on a class of special matrix spectral problems, through the zero
curvature formulation. The resulting integrable equations possess Hamiltonian struc-
tures, furnished via applications of the trace identity to the underlying matrix spatial
spectral problems.

Other generalizations could be formulated by taking more copies of p1 as did
for p2. Also, we can naturally have more components in matrix spatial spectral prob-
lems to generate integrable Hamiltonian equations with six or more components.

It would be interesting to find soliton solutions to the obtained integrable Hamil-
tonian equations. The Darboux transformation [24], the Riemann-Hilbert technique
[25] and the Zakharov-Shabat dressing method [26] should be helpful. It is worth
pointing out that if the underlying algebra is taken to be gl(∞), then we can have
a τ -function theory, which generates soliton type solutions in a natural way. Other
interesting solutions (see, e.g., [27–29]) can be generated by taking group reduc-
tions. Nonlocal integrable counterparts could also be formulated under similarity
transformations of spectral matrices (see, e.g., [31, 32] for details). Any theories of
soliton solutions in nonlocal cases (see, e.g., [33–35] for novel nonlocal nonlinear
Schrödinger equations) are very helpful in recognizing characteristics of nonlinear
waves.
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