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Abstract
The aim of this paper is to construct the general solution to a nonlocal linear differen-
tial equation of first-order, either homogeneous or inhomogeneous, together with its
stability analysis. The success lies in decomposing functions into their even and odd
parts, which presents an innovative approach to nonlocal equations. Our analysis also
exhibits an unusual solution phenomenon occurring in nonlocal models.

Keywords Nonlocal differential equation · Inhomogeneous equation · General
solution
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1 Introduction

Nonlocal differential equations have many applications in the physical sciences and
engineering [1, 2]. One typical example of nonlocal dynamics is pantographmodeling,
which has a long history in pantograph mechanics and pantograph transport [3]. In
1821, ProfessorWilliamWallace invented the eidograph to improve upon the practical
utility of the pantograph [4]. Unsupervised machine learning in artificial intelligence
deals with a nonlocal superposition [5]. As a property of the universe that is indepen-
dent of our description of nature, the notion of non-locality in quantummechanics was
introduced in the context of the EPR controversy on the phenomenon of entanglement
between quantum systems [6].

B Wen-Xiu Ma
mawx@cas.usf.edu

1 Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang, China

2 Department of Mathematics, King Abdulaziz University, 21589 Jeddah, Saudi Arabia

3 Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700,
USA

4 Material Science Innovation and Modelling, Department of Mathematical Sciences, North-West
University, Mafikeng Campus, 2735 Mmabatho, South Africa

0123456789().: V,-vol 

http://crossmark.crossref.org/dialog/?doi=10.1007/s12346-024-01036-6&domain=pdf


  177 Page 2 of 11 W.-X. Ma

One class of nonlocal equations consists of delay differential equations (DDEs) [7,
8]. DDE models have been introduced to analyze ultradian oscillations of insulin and
glucose [9, 10], and to describe physiological control systems regarding dynamical
respiratory and hematopoietic diseases [11]. DDEs contain discrete delay equations,
for example,

x ′(t) = f (t, x(t), x(t − a)), (1.1)

where a > 0 (see, e.g., [12]), and pantograph equations, for example,

x ′(t) = f (t, x(t), x(λt)), (1.2)

where 0 < λ < 1 (see, e.g., [13]). Throughout our discussion, t stands for the
independent variable, x denotes the dependent variable, and f is a given function.

Motivated by recent studies on nonlocal integrable partial differential equations
(see, e.g., [14, 15]), we would like to consider another class of nonlocal differential
equations, which involve the value of the dependent variable at the inverse of the inde-
pendent variable with respect to a group operation. Two examples of such equations
of first-order are

x ′(t) = f (t, x(t), x(−t)), (1.3)

and
x ′(t) = f (t, x(t), x(t−1)). (1.4)

In this article, we would like to solve the nonlocal linear differential equation of
first-order:

x ′(t) = λx(t) + μx(−t) + f (t), t ∈ R, (1.5)

where λ and μ are arbitrary real constants and f is assumed to be continuous. Obvi-
ously, this equation possesses the standard superposition principle. Therefore, we will
solve the homogeneous equation first and then construct a particular solution to the
inhomogeneous counterpart. The novelty is to decompose a function into its even
and odd parts so that the nonlocal equation is transformed into a local one to solve.
Our general solution will also show that an unusual phenomenon in existence and the
uniqueness of solutions occurs in the nonlocal case. The conclusion is given in the last
section.

2 General Solution to the Homogeneous Equation

We first solve the homogeneous nonlocal differential equation

x ′(t) = λx(t) + μx(−t), t ∈ R, (2.1)

where λ and μ are arbitrary real constants. Let us take the decomposition

x(t) = y(t) + z(t), (2.2)
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where y is even and z is odd. Then, by combining even and odd functions in the
resulting equation, the homogeneous nonlocal Eq. (2.1) becomes

{
y′(t) = (λ − μ)z(t),
z′(t) = (λ + μ)y(t).

(2.3)

This is local. The advantage of decomposing a function into its even and odd parts is
that a nonlocal equation is transformed into a local system. Obviously, y and z solve
the same second-order differential equation:

y′′(t) = (λ2 − μ2)y(t), (2.4)

and
z′′(t) = (λ2 − μ2)z(t). (2.5)

Below, we present the general solution to the homogeneous nonlocal Eq. (2.1) in
each of the following four cases.

Case 1: λ + μ = 0: In this case, by (2.3), we have the odd part z = 0, and thus
y′ = 0, which yields the even part y = c1, where c1 is an arbitrary constant. This
gives the general solution

x(t) = c1. (2.6)

Case 2: λ − μ = 0: In this case, again by (2.3), we have the even part y = c1,
and thus z′ = 2λc1, which leads to the odd part z = 2λc1t, where c1 is an arbitrary
constant. This implies the general solution

x(t) = c1(2λt + 1). (2.7)

Case 3: λ2 − μ2 > 0: Let us introduce

ν =
√

λ2 − μ2. (2.8)

Then by (2.4),

y(t) = c1e
νt + c2e

−νt ,

where c1 and c2 are arbitrary constants. Since y is even, we obtain

y(t) = c1e
νt + c1e

−νt = 1

2
c1 cosh(νt),

and further by (2.3), we have

z(t) = ν

2(λ − μ)
c1 sinh(νt).
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Accordingly, we obtain the general solution

x(t) = 1

2
c1

[
cosh(νt) + ν

λ − μ
sinh(νt)

]
, (2.9)

where ν is defined by (2.8).
Case 4: λ2 − μ2 < 0: Similarly, we introduce

ν =
√

μ2 − λ2. (2.10)

Again by (2.4),

y(t) = c1 cos(νt) + c2 sin(νt),

where c1 and c2 are arbitrary constants. Since y is even, we get

y(t) = c1 cos(νt),

and further by (2.3), we have

z(t) = − ν

λ − μ
c1 sin(νt).

Finally, we obtain the general solution

x(t) = c1

[
cos(νt) − ν

λ − μ
sin(νt)

]
, (2.11)

where ν is defined by (2.10).
To summarize, the general solution to the homogeneous nonlocal differential

Eq. (2.1) is given by (2.6), (2.7), (2.9) or (2.11), depending on the four cases of
the two coefficients. It contains one arbitrary constant, and thus, the dimension of the
solution space of the nonlocal differential Eq. (2.1) is one.

3 Particular Solution to the Inhomogeneous Counterpart

Clearly, the inhomogeneous nonlocal Eq. (1.5) possesses the superposition principle:

x = xg + xp, (3.1)

where xg is the general solution to its homogeneous counterpart and xp is a partic-
ular solution. Thus, we only need to find a particular solution to the inhomogeneous
Eq. (1.5).

Similarly, we express
f (t) = g(t) + h(t), (3.2)
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where g is even and h is odd. Then, the inhomogeneous Eq. (1.5) becomes

{
y′(t) = (λ − μ)z(t) + h(t),
z′(t) = (λ + μ)y(t) + g(t),

(3.3)

which is local. It further follows that y and z solve the second-order inhomogeneous
differential equations:

y′′(t) = (λ2 − μ2)y(t) + ξ(t), ξ(t) = (λ − μ)g(t) + h′(t), (3.4)

and
z′′(t) = (λ2 − μ2)z(t) + η(t), η(t) = (λ + μ)h(t) + g′(t), (3.5)

where f is assumed to be differentiable.
In what follows, we will construct a particular solution by solving the above local

inhomogeneous linear system (3.3) in each of the four cases.
Case 1 - λ + μ = 0: Since z′ = g, we have

z p =
∫ t

0
g(s)ds,

and then by (3.3), we can get

yp = 2λ
∫ t

0

∫ s

0
g(r)drds +

∫ t

0
h(s)ds.

Therefore, a particular solution to (1.5) can be taken as

xp = yp + z p = 2λ
∫ t

0

∫ s

0
g(r)drds +

∫ t

0
f (s)ds, (3.6)

where g is the even part of f .
Case 2 - λ − μ = 0: Since y′ = h, we can have

yp =
∫ t

0
h(s)ds,

and again by (3.3), we obtain

z p = 2λ
∫ t

0

∫ s

0
h(r)drds +

∫ t

0
g(s)ds.

Thus, a particular solution to (1.5) can be given by

xp = yp + z p = 2λ
∫ t

0

∫ s

0
h(r)drds +

∫ t

0
f (s)ds, (3.7)
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where h is the odd part of f .
Case 3 - λ2 − μ2 > 0: By solving the local linear system (2.3), we find its

fundamental matrix solution:

U1(t, t0) =
⎡
⎣ cosh(ν(t − t0))

λ−μ
ν

sinh(ν(t − t0))

ν

λ − μ
sinh(ν(t − t0)) cosh(ν(t − t0))

⎤
⎦ , (3.8)

where ν is defined by (2.8). By the variation of parameters, we obtain a particular
solution to the inhomogeneous system (3.3):

(yp, z p)
T =

∫ t

0
U1(t, s)(h(s), g(s))T ds. (3.9)

This generates a particular solution to the inhomogeneous Eq. (1.5):

xp = yp + z p = λ − μ

ν

∫ t

0
sinh(ν(t − s))g(s)ds

+ ν

λ − μ

∫ t

0
sinh(ν(t − s))h(s)ds +

∫ t

0
cosh(ν(t − s)) f (s)ds. (3.10)

Further, we can express this particular solution in terms of f :

xp = λ

ν

∫ t

0
sinh(ν(t − s)) f (s)ds−μ

ν

∫ t

0
sinh(ν(t − s)) f (−s)ds +

∫ t

0
cosh(ν(t − s)) f (s)ds,

(3.11)
where ν is defined by (2.8).

Case 4 - λ2 − μ2 < 0: Similarly solving the local linear system (2.3) yields its
fundamental matrix solution:

U2(t, t0) =
⎡
⎢⎣ cos(ν(t − t0))

λ − μ

ν
sin(ν(t − t0))

− ν

λ − μ
sin(ν(t − t0)) cos(ν(t − t0))

⎤
⎥⎦ , (3.12)

where ν is defined by (2.10). Again by the variation of parameters, we get a particular
solution to the inhomogeneous system (3.3):

(yp, z p)
T =

∫ t

0
U2(t, s)(h(s), g(s))T ds. (3.13)

This yields a particular solution to the inhomogeneous Eq. (1.5):

xp = yp + z p = λ − μ

ν

∫ t

0
sin(ν(t − s))g(s)ds

− ν

λ − μ

∫ t

0
sin(ν(t − s))h(s)ds +

∫ t

0
cos(ν(t − s)) f (s)ds. (3.14)
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Finally, we can formulate this particular solution in terms of f :

xp = λ

ν

∫ t

0
sin(v(t−s)) f (s)ds−μ

ν

∫ t

0
sin(v(t−s)) f (−s)ds+

∫ t

0
cos(v(t−s)) f (s)ds,

(3.15)
where ν is defined by (2.10).

To conclude, a particular solution to the inhomogeneous nonlocal differential
Eq. (1.5) can be determined by (3.6), (3.7), (3.11) or (3.15), depending on the four
particular situations of the two coefficients.

4 Particular Solution by Solving the Second-Order Equation

Let us now construct a particular solution to the inhomogeneous nonlocal Eq. (1.5),
where λ2 �= μ2, by solving the second-order inhomogeneous Eq. (3.4).

Let us first consider the case of λ2−μ2 > 0. In this case, note that the homegeneous
counterpart (2.4) has two linearly independent solutions y1 = eνt and y2 = e−νt , and
their Wronskian is

W (y1(t), y2(t)) = −2ν.

Therefore, by the variation of parameters, we can work out a particular solution to the
inhomogeneous Eq. (3.4):

yp = −y1(t)
∫ t

0

y2(s)ξ(s)

W (y1(s), y2(s))
ds + y2(t)

∫ t

0

y1(s)ξ(s)

W (y1(s), y2(s))
ds

= 1

ν

∫ t

0
sinh(ν(t − s))ξ(s)ds. (4.1)

Then by (3.3), we get

z p = 1

λ − μ
(y′

p − h) = 1

λ − μ

[∫ t

0
cosh(ν(t − s))ξ(s)ds − h

]
. (4.2)

Consequently, we obtain a particular solution

xp = yp + z p = 1

ν

∫ t

0
sinh(ν(t− s))ξ(s)ds+ 1

λ − μ

[∫ t

0
cosh(ν(t − s))ξ(s)ds−h

]
.

(4.3)
By virtue of the expression of ξ in (3.4), a direct computation can show that this
engenders the particular solution in (3.10), and further, the solution is formulated as
(3.11), in terms of f .

Let us second consider the case of λ2 −μ2 < 0. In this case, similarly note that the
homegeneous counterpart (2.4) has two linearly independent solutions y1 = sin(νt)
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and y2 = cos(νt), and their Wronskian is

W (y1(t), y2(t)) = −ν.

Thus, by the variation of parameters, we can work out a particular solution to the
inhomogeneous Eq. (3.4):

yp = 1

ν

∫ t

0
sin(ν(t − s))ξ(s)ds, (4.4)

and again by (3.3), we have

z p = 1

λ − μ
(y′

p − h) = 1

λ − μ

[∫ t

0
cos(ν(t − s))ξ(s)ds − h

]
. (4.5)

Consequently, we arrive at a particular solution,

xp = yp + z p = 1

ν

∫ t

0
sin(ν(t − s))ξ(s)ds + 1

λ − μ

[∫ t

0
cos(ν(t − s))ξ(s)ds − h

]
.

(4.6)
By using the expression of ξ in (3.4) now, this is simplified into the particular solution
in (3.14), and further, the one in (3.15), expressed in terms of f .

Note that the second-order inhomogeneous equation needs the differentiability of
f , but the final particular solution only needs the continuity of f .

5 Stability of Solutions

Obviously, the Lyapunov stability properties of a solution to the inhomogeneous non-
local Eq. (1.5) are the same as the ones of the zero equilibrium of the corresponding
homogeneous counterpart (2.1). Therefore, we only analyze the Lyapunov stability
properties of the zero equilibrium below.

Case 1: λ + μ = 0. In this case, the general solution is given by (2.6). Clearly, the
solution x(t, t0, x0) with x(t0) = x0 ∈ R is defined by x(t, t0, x0) = x0, and thus, the
zero equilibrium is uniformly stable for t0 ≥ 0 but not asymptotically stable.

Case 2: λ − μ = 0 but λ �= 0. The sub-case of λ = 0 is already discussed in
Case 1. Under this condition, the general solution is given by (2.7). The solution is
not bounded when c1 �= 0, and thus, the zero equilibrium is unstable.

Case 3: λ2 − μ2 > 0. In this case, the general solution is given by (2.9). The
solution is not bounded when c1 �= 0, and thus, the zero equilibrium is unstable.

Case 4: λ2 − μ2 < 0. In this case, the general solution is given by (2.11). On one
hand, the solution is bounded, but if c1 �= 0, it never goes to zero when t → ∞. On
the other hand, note that the solution x(t, t0, x0) with x(t0) = x0 ∈ R is determined
by

x(t, t0, x0) = x0
cos(νt) − ν

λ−μ
sin(νt)

cos(νt0) − ν
λ−μ

sin(νt0)
, (5.1)
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for t0 ∈ [0, t1], on which

cos(νt) − ν

λ − μ
sin(νt) > 0. (5.2)

Then, we can easily see that the zero equilibrium is uniformly stable for t0 ∈ [0, t1]
but not asymptotically stable. This is different from the uniform stability in the local
case, for which there is no restriction on t0.

6 An Unusual Solution Phenomenon

Let us illustrate the existence and uniqueness of solutions to Cauchy problems for the
nonlocal Eq. (2.1).

In view of the general solution in (2.7), we can easily see that the Cauchy problem
on R: {

x ′(t) = −x(t) − x(−t),
x( 12 ) = x0 �= 0,

(6.1)

has no solution, but the Cauchy problem on R:

{
x ′(t) = −x(t) − x(−t),
x( 12 ) = 0,

(6.2)

has infinitely many solutions

x(t) = c1(−2t + 1), (6.3)

where c1 is an arbitrary constant.
Noting that the nonlocal Eq. (2.1) has constant coefficients, the corresponding vec-

tor field function, f (x1, x2) = λx1 + μx2, is smooth in R2. But its Cauchy problems
have some specific solution situations pointed out above, and thus, the existence and
uniqueness theorem does not hold in all cases of its coefficients. This is very differ-
ent from local differential equations, and many solution techniques in the local case
(see, e.g., [16–24]) are useful but cannot be directly applied to nonlocal differential
equations. The nonlocality does bring difficulties in determining the existence and
uniqueness of solutions, and we need to apply innovative thinking to gain insight
into the difficulties and to find innovative approaches to establishing local and global
well-posedness results for nonlocal differential equations.

7 Concluding Remarks

Wehave presented the general solution to a nonlocal linear differential equation of first-
order in (1.5), together with stability analysis and unusual existence and uniqueness
results. The general solution involves an arbitrary constant, and thus, the dimension
of the solution space of the corresponding homogeneous equation is one. The key to
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success is to use the decomposition of functions into their even and odd parts to remove
the nonlocality. Such an idea could be applied to other similar nonlocal differential
equations.

There is another similar type of nonlocal linear differential equation of first-order:

x ′(t) = λx(t) + μx(t−1) + f (t), t > 0,

where λ and μ are arbitrary real constants, and f is continuous. The coordinate t−1 is
the inverse of t with respect to the multiplication, while the coordinate −t in (1.5) is
the inverse of t with respect to the addition. The above nonlocal equation seems much
harder to solve. We expect that there will be some effective way to present its general
solution.

Recently, various nonlocal integrable partial differential equations have been for-
mulated, through conducting one group reduction (see, e.g., [15]) and two group
reductions (see, e.g., [25, 26]) of matrix spectral problems. Soliton solutions have
been generated for nonlocal nonlinear Schrödinger equations (see, e.g., [26–28]) and
nonlocal modified Korteweg-de Vries equations (see, e.g., [25, 29]) by the Riemann-
Hilbert technique. We point out that the same idea of decomposing functions into their
even and odd parts can be used to transform those nonlocal integrable equations into
local equations to study.
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