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Abstract

The paper aims to analyze the commutative property of reciprocal transformations
and dimensional deformations using conservation laws. First, a geometric proof of
the commutative property of reciprocal transformations is presented, based on the
coordinate-free property of the exponential map. Second, it is shown that the deforma-
tion algorithm does not always keep the commutative property. [lluminating examples
are provided.
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1 Introduction

Integrable equations possess infinitely many symmetries [1], and the corresponding
Lax pairs of matrix spectral problems guarantee the commutativity of those symmetries
under the Lie bracket of evolutionary vector fields [2]. Symmetries generate diverse
solution manifolds, and can be used to show a kind of integrable characteristics,
based on the Liouville-Arnold theorem [3, 4]. The complete integrability can be
explored through verifying if squared eigenfunctions of matrix spectral problems form
a complete set of basis vectors in a normed space [5].
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It is known that reciprocal transformations [6]—an interesting topic in soliton
theory—transform integrable equations by changes of coordinates [7], which yield
auto-Bécklund transformations [8]. Recently, similar to reciprocal transformations,
Lou et al. [9] proposed a deformation algorithm to deform given integrable equations
from lower dimensions to higher dimensions, and they observed a phenomenon that
the deformed equations could commute, while the original equations do. Such an
interesting phenomenon occurs in all (1+1)-dimensional integrable equations in the
literature [9].

This paper aims to present a proof of the commutative property of reciprocal trans-
formations by a geometric means. The key idea is to transform the property into the
coordinate-free property of the exponential map. Analysis is also given for the defor-
mation algorithm, which shows that the commutative property might not be kept after
making dimensional deformations. Illuminating examples are provided.

2 The Commutative Property of Reciprocal Transformations
2.1 Reciprocal Transformations

Let x be a vector of space variables, ¢, the time variable, and u, a vector of dependent
variables. We consider a partial differential equation

E(x,t,u"™) =0, .1

where E is assumed to be sufficiently differentiable with respect to the indicated
variables, m € N, and u denotes the set of partial derivatives of u up to order m
with respect to x and ¢, as in the study of symmetries of evolution equations [10].

In what follows, we consider the (1+1)-dimensional case, and assume that the vector
E has the same dimension as the vector u so that E can define a characteristic of an
evolutionary vector field.

A reciprocal transformation is defined through using a conservation law. So, let us
have a conservation law of (2.1):

(PE): = (JE)x, pE = pE(x, t,u™), Jg = Jp(x, 1, u™), (2.2)

where pr and Jg are assumed to be sufficiently differentiable with respect to the
indicated variables, too. A reciprocal transformation from (x, ¢) to (x', ) is defined

by

o _ 10 0 _Jpo @ 03
ax  ppax’’ at  ppox’  at '

where

1
ro_ /A /(m))_
= X,t,u =7
PE pE( OF (x,t,u(m))
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JE (x, t, u(m))

J/ — J/ (x/, t/, u/(m)) == 7
£ £ PE (X, t, u(’”))

2.4)

with u’"™ denoting the set of partial derivatives of u up to order m with respect to x’
and ¢’. The original conservation law becomes a new conservation law:

(o) = (Jp)x, (2.5)

in the new coordinates, and obviously, the new reciprocal transformation using this
new conservation law is exactly the inverse transformation of the above reciprocal
transformation, since we have

N 1 AN Jé JE
(,OE)EZP_,ZPE, (JE)EZp_,:p_EPEZJE- (2.6)
E E

The above reciprocal transformation (2.3) is equivalent to
dx' = pgdx + Jgdt, di’ = ds, 2.7)

whose compatibility condition is exactly the conservation law (2.2). The transformed
equation of (2.1) is defined by

E (x, :, u<m>) —E (x’, 7, u“””) —0. 2.8)
Note that the original equations do not need to be of evolutionary type.

2.2 The Commutative Property

Let us consider another partial differential equation
F (v 0u) =0, 2.9)

where F is assumed to be sufficiently differentiable with respect to the indicated
variables and has the same dimension as u as well, n € N, and u®™ is defined as
before. Associated with a conservation law of it:

(i) = Ur)es pr = pr (v, 0,u®) T = Jp (xo1,u®), @210)

where pr and Jr are also assumed to be sufficiently differentiable with respect to
the indicated variables, a reciprocal transformation from (x, £) to (x”, t”) is similarly
given by

0 1 9 0 Jp 9 0
—=——, —=-"F£ 4+ —, (2.11)
ox  ppdx” 0t  ppox” ot/
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where

1
pF (x,t,um)’
Jr (x, t, u(”))
pF (x,t,u™)’

p% = pr (x//’ l‘”, u//(n)) —

T = Jr (x”, a u”<")) = (2.12)

where 1" denotes the set of partial derivatives of u up to order n with respect to
x” and t”. The transformed equation of (2.9) reads

F’ (x, :, u(")> —F (x”, a u”(”)) =0 (2.13)

Let v be a generalized vector field on a jet space, and exp be the exponential map,
i.e.,

i exp(ev)w = v| (2.14)
de

u=exp(ev)w’
for all w and small ¢ (see, e.g., [10] for details). For example, if v = u,, then
(exp(ev)w)(x,t) = w(x +¢&,1).

Noting the above definition of the transformed equations and the coordinate-free
property of the exponential map on a jet space, we have

exp (8E’(x, t, u(’”))) = exp (sE(x’, t, u’(’"))> = exp (8E(x, t, u(’"))) ,
exp (SF/(L t, M(n))) = exp (8F(x”, 1", MW”)) = exp (sF(x, t, u(”))) ,

where ¢ is a small parameter. Therefore, if the original Egs. (2.1) and (2.9) commute
under the Lie bracket of evolutionary vector fields:

d
[E, F]:= E[E(u—l—eF) — Fu+¢E)]|,_, =0, (2.15)
i.e., we have

exp <8E(x, t, u(m))> exp <8F(x, t, u(”)))
= exp ((SF(x, t, u("))> exp <8E()C, t, u(m))> ,
then we see that

exp (EE/()C, t, u('"))> exp ((SF’(x, t u(”)))

— exp (SF/(x, :, u<”>)) exp (EE/(x, :, u<’">)) , (2.16)
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where ¢ and § are small parameters.

This exactly means that the two evolutionary vector fields with the transformed
characteristics £’ and F’ commute in the local coordinates (x, ¢, u™ax{m.n}) namely,
we have

[E', F']= %[E’(u +¢eF") = F'(u+¢EN]|,_, =0, (2.17)

and thus, the evolutionary vector field with the transformed characteristic F’ in (2.13)
(or E’ in (2.8)) is a symmetry of the transformed Eq. (2.8) (or (2.13)).
We summarize the above result as the following theorem.

Theorem 2.1 If two partial differential Eqs. (2.1) and (2.9) commute, i.e., the com-
mutative property (2.15) holds, then two transformed Egs. (2.8) and (2.13) defined
through the reciprocal transformation commute, too, i.e., the commutative property
(2.17) holds.

Example 2.1 Consider a pair of equations, each of which is the nonlinear transport
equation

E=F =u; —uu, =0, (2.18)

as an example. Associated with two conservation laws of it:

pE =u, Jp = luz' pOF = 1u2 Jp = —u’ (2.19)
b 2 9 2 9 3 9 .

the corresponding two commuting transformed equations are
E'=u;— K =0, K=u, — Juu, (2.20)
and

2 2
F =u —S=0, S:;ux—}—guux, (2.21)

respectively. The commutativity between those two deformed equations can also be
proved directly by checking that [K, ST = 0.

Additionally, we point out that there are shock wave solutions to the two transformed
equations.

3 Dimensional Deformations and Related Commutativity
3.1 A Formulation of the Deformation Algorithm
We would like to formulate a general procedure for deforming partial differential

equations, based on conservation laws, from lower dimensions to higher dimensions

[9].
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Let us consider the partial differential Eq. (2.1). The starting point is to take a set
of conservation laws of (2.1):

pi.E)t = (Ji.E)x, Pi.E=pie(x,t,u), JiE
= Ji g, tou,uy) = Jig(x,t,u™), 1 <i <k, (3.1

where p; g and J; g are assumed to be sufficiently differentiable with respect to the
indicated variables, k € N, and u™ is defined as before. Let us set

y=()’h)’k)7 y/z(yiﬂvy],{)v (32)
and introduce a deformation from (x, ¢, y) to (x’, ¢/, ¥) by
I B I I . R B
— =4 lp— —=—+ J op— — = —, 33
ax  ox ;p’»’fay,- or ot ; CEgy ay oy O
where for 1 <i <k, one has
/ — A _ !4
pi,E - pi’E(x’t’ y’ I/t) - pi,E(x ’t 9”)7
Ji/,E = Ji/)E(x, Loy, Uty Uy) = Ji/’E(x, t,y, u™) (3.4)

=Ji et uy) = Ji gt u'™),

with ™ denoting the set of partial derivatives of u up to order m with respect to x, ¢
and y, and 1’ the set of partial derivatives of u up to order m with respect to x’ and
t'. This is equivalent to

dyi = dy; + pj gdx' + J] gdt’, dx = dx', dt = dt’, (3.5)
where I < i < k. Obviously, [ 7%, 2] = 0 if and only if
(Phe), = (g), . 15i <k (3.6)

The dimensionally deformed equation of (2.1) is defined by
E’' (x, 1y, u(m)> =E (x’, t, u/(’")) =0. 3.7)

This determines a subvariety of the new mth jet space with the variables x, ¢, y, u.
The above deformation algorithm goes from lower dimensions of (x, ¢) to higher
dimensions of (x, ¢, y), and the change of the spatial dimension depends on the number
of conservation laws. Clearly, the original equation need not be of evolutionary type.
The algorithm itself is easy to implement in practical applications, since the adopted
conserved densities depend only on u, but there is no guarantee in the algorithm,
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which generates new coordinates. The existence of new coordinates in (3.5) needs
a dimensional reduction, since one generally does not have that [3 d iy ] = 0 and
[aiy{, %] =0, 1 <i < k; and such a reduction makes the deformed equation to go

back to the original dimension.

3.2 On the Commutativity of the Deformation Algorithm

Let us assume that the second Eq. (2.9) possesses another set of conservation laws:

(0j,F)e = (Jj,F)x, pj,F = pj Fr(x,t,u), Jj F
= Jjr(x, touuy) = Jj p(x,t,u™), 1< j <1, (3.8)

where p; r and J; r are assumed to be sufficiently differentiable with respect to the
indicated variables as well, I € N, and u is defined as before. Similarly, let us set

= (Zlv"'zl)a Z// = (Z/]/a"' 7Z;/)7 (39)
and make a deformation from (x, f, z) to (x”, ", 7”') by
i

3 9 L, 3
ax” ~ ox +j2:;:0j,F8Zj’ 3[” - +Z j. Faz 7 = 9z’ (3.10)

where for 1 < j </, one has

,0;/1:—,0] rlx,t,z,u) = pj F& ),

T =T p 1,z ug,ug) = J7 p(x,1,2,u™) G3.11)
= Jir(" 0w u) = T p 7 1w ™),
with 1™ denoting the set of partial derivatives of u up to order n with respect to x,
and z, and 1" denoting the set of partial derivatives of u up to order n with respect
to x” and ¢”. This deformation is equivalent to
dz; = dz’j’ + p}”Fdx” + ijdet/’, dx =dx", dt =dt”, (3.12)
where 1 < j <. The dimensionally deformed equation of (2.9) is determined by

F'(x,t,z,u®™) = F(x", 1", u"™) = 0, (3.13)

which determines another subvariety of the new nth jet space with the variables
(x,1,2).
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Note that in the above two deformation processes, the coordinates of y;, 1 <i <k,
and zj, 1 < j <, could have a common subset, i.e., it could happen that {y;|1 <
i<kinf{z;|l <j <1} #0.

We assume again that the two original Eqgs. (2.1) and (2.9) commute, i.e., we
have (2.15). Therefore, the exponential map of the evolutionary vector field with
the characteristic £ (or F) transforms solutions of the Eq. (2.9) (or (2.1)) to other
solutions.

We would like to show that the deformation algorithm might not keep the com-
mutative property of the original equations. That is to say, the deformation algorithm
might not deform symmetries of the original equation to symmetries of the deformed
equation, i.e., we might not have the commutative property (2.17), which can be seen
from the following example.

Example 3.1 Let us first consider the pair of equations, both of which are the nonlinear
transport Eq. (2.18), again. Based on each of the two conservation laws in (2.19), we
have the corresponding two deformed equations

1
E' =u, — K, K:uux—i—zuzuy, (3.14)
and
1
F' =u, -8, S:uux+gu3uy. (3.15)

Obviously, they are commuting. Equivalently, K and S commute.
Let us second consider a pair of equations, both of which are the KdV equation:
E=F =u; —6uu, —uyy, =0. (3.16)
This KdV equation possesses the following two conservation laws:
PE; = JEx. pE =1, Jp =3u" + 1y,
and

2 32
PF: =JFx, pr =u", Jp =4u” —uy + 2uityy.

Based on those two conservation laws, we have that
0 0 0 0 0 5 0

o ox ey ae o Y ay

)

where we take z = y. Then by a Maple computation, we can see that the corresponding
two deformed equations are

E' =u; + (3u2 + Uy )y — OUU — Uy
3 2
=u; — (W tyyy +3u uytyy + 3ustyuyy + 3unuyy

+ 3u2uxyy + 3u2uy + 3uyuxy + Suttycy + O6uly + tyyx) =0, (3.17)
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and

F o=y + (4’ — w4 2uurn iy — Gungr — gy
=u; — (uﬁuyy/V + 6145uyuyy + 3u4u3 + 3u4uxyy
+ 6ul Uty + 6uu U + 6uluyuyy + 2ulu
xUyy xUy yUxy y

+ 3u2uxxy + 3u§uy + Ounyuyy + 6uny +uyxyy) =0, (3.18)

and they do not commute, i.e., we have
/ / d / / / I
[E',F'l= —[E'(u+¢eF)— F'(u+eE)]|,_, #0. (3.19)
de &=

We also summarize the above result as the following theorem.

Theorem 3.1 The deformation algorithm above does not keep the commutative prop-
erty, i.e., two transformed Eqs. (3.7) and (3.13) defined through the deformation
algorithm might not commute, even if the commutative property (2.15) holds.

4 Concluding Remarks

The commutative property of reciprocal transformations and dimensional deforma-
tions was analyzed. A proof for the commutative property in the case of reciprocal
transformations was given by a geometric means, whose key is to use the exponential
map to express the commutativity of evolutionary vector fields. [lluminating examples
were made for the nonlinear transport equation and the KdV equation.

It would be very interesting to explore similar theories for nonlocal integrable equa-
tions (see, e.g., [11-14]). It would also be important to search for exact nonlinear wave
solutions, including lump solutions [15, 16], complexitons [17] and rogue waves [18,
19], to new model equations generated by reciprocal transformations and dimensional
deformations (see, e.g., [8, 9]). Particularly, are there any shock wave solutions to the
(2+1)-dimensional equations (3.14) and (3.15)?
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