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ARTICLE INFO ABSTRACT

Communicated by B. Malomed This work aims to construct dual similarity transformations and explore integrable reductions of matrix modified
MSC: Korteweg—de Vries (mKdV) models. Starting from the zero-curvature formulation, the study employs similarity
37K1' 0 transformations as the principal tool. Four representative scenarios of reduced Ablowitz—-Kaup-Newell-Segur
35058 matrix spectral problems are analyzed, providing concrete examples of reduced matrix mKdV integrable models
37K40 derived through dual similarity transformations.
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1. Introduction

The construction of integrable models often begins with the formulation of Lax pairs [1,2], where the spectral matrices are derived from matrix Lie
algebras [3,4]. These Lax pairs give rise to infinitely many commuting symmetries and conservation laws, which are closely linked to underlying bi-
Hamiltonian structures [5,6]. Furthermore, the inverse scattering transform provides a powerful method for solving the associated Cauchy problems
[7,8].

The matrix Ablowitz—Kaup-Newell-Segur (AKNS) spectral problems offer a universal framework for generating a wide class of integrable models,
including the nonlinear Schrodinger (NLS) equation and the modified Korteweg—de Vries (mKdV) equation. Similarity transformations have been
extensively used to derive reduced integrable models [9-11], including nonlocal models involving reflection points [12]. In particular, applying a pair
of similarity transformations leads to a novel class of reduced integrable models [13]. The main challenge lies in carefully balancing the reductions
imposed on the potentials by the two transformations to preserve the invariance of the zero-curvature equations [14]. A complete classification of
such lower-order integrable models associated with the matrix AKNS spectral problems has identified three types of nonlocal NLS equations and two
types of nonlocal mKdV equations [15].

Moreover, various powerful methods have been developed to study reduced integrable models, especially for constructing soliton solutions. The
inverse scattering transform continues to be an effective approach for solving the Cauchy problems of nonlocal integrable models [16,17]. Classical
techniques such as the Hirota bilinear method, Backlund transformations, Darboux transformations, and the Riemann-Hilbert method have also
proven to be highly effective. Moreover, several innovative mathematical frameworks have been introduced to explore nonlocal reduced integrable
models (see, e.g., [15], [18-23]).

In this work, we aim to develop dual similarity transformations and reduced integrable mKdV models, based on the matrix AKNS spectral
problems. We begin by formulating two consistent similarity transformations and then apply them to matrix spectral problems to derive reduced
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integrable models. In Section 2, we lay the groundwork for the subsequent analysis by revisiting the matrix AKNS spectral problems and their
associated integrable mKdV models, and we propose a general framework for implementing pairs of similarity transformations and constructing
reduced mKdV integrable models. In Section 3, we explore four application scenarios within this generating scheme, each employing distinct sets of
dual similarity transformations. These examples of mKdV integrable models illustrate the richness and diversity of reduced matrix AKNS integrable
models. The final section provides a summary of our results, along with concluding remarks.

2. Reduced mKdV integrable models via dual similarity transformations
2.1. On the matrix AKNS integrable hierarchies: a revisit

Let m and n be two natural numbers. In the AKNS framework, the vector dependent variable u = u(p, q) consists of two matrix potentials, defined
as follows:

P =000 =P mxns 4= 41 = (Gicj)pxm- 21
For each r > 0, we introduce a pair of standard matrix AKNS spectral problems:
—ip, =U¢, —ig =V"gp, (2.2)

where the Lax pairs are given by

U=U(@uA)=i\+ P, (2.3)
and

v =y, =1+ o, (2.4)
with

[ o1, 0 ] 0
A=| " ,P= "y (2.5)
0 al, q O

and

(2.6)

r T r—1
o= pl, O ’ Q[r]=zﬂs
0 o, | <

Here, I, denotes the identity matrix of size k, A stands for the spectral parameter, a;,a, and f,, f, are two pairs of distinct arbitrary constants. In
addition, Q!% is taken as the zero matrix of order (m + n). To solve the stationary zero-curvature equation

alr=s1 plr=s]
clr=s1 glr=sl |~

W, =ilU, W], 2.7)

we start with the initial data W% = Q, and consider the following Laurent series expansion:

R _ | alst bl
W:ZA syl :Zw g | (2.8)
s>0

520
which yields a unique solution in form of a Laurent series. Such series expansion palys a crucial role in constructing hierarchies of integrable models
(see, e.g., [24,25]).
The zero-curvature equations:

U -vi i, viii=o, r>o, (2.9)

guarantee the compatibility of the two matrix spectral problems in (2.2). Given the specific forms of U and V1"l in (2.3) and (2.4), these equations
generate the matrix AKNS hierarchy of integrable models:

P = a1, q; = —iac"™1 >0, (2.10)

where a = a; — @,. The simplest case, with m = n =1, recovers the classical AKNS integrable hierarchy with scalar potentials p and g [26]. Each
system in the matrix AKNS integrable hierarchy admits a bi-Hamiltonian structure, along with infinitely many symmetries and conserved quantities
(see, e.g., [27-29]).

When r =25+ 1, s > 1, the above matrix AKNS integrable hierarchy (2.10) reduces to the matrix mKdV integrable hierarchy. In particular, for
s =1, we obtain the first nonlinear integrable model - the matrix mKdV integrable model:

p p
P == 3 P 304D +3054p). 6= =~ 5 (G + 30504 + 3404, (2.11)

where § = f; — §,. The corresponding Lax matrix V13! is given by

VBl =230+ gzzp - %/um,,,(}ﬂ +iP,) - %(i[P, P+ P +2P%), (2.12)
where I, , = diag(/,,, —I,,). These equations serve as our basic objects for the subsequent analysis. We point out that many other significant examples

of higher-order matrix AKNS integrable models can similarly be derived (see, e.g., [30]).
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2.2. Dual similarity transformations

We focus on the case where

1

m=n, o) =—0, == ﬁl=—ﬁ2=—§, (2.13)

2
which results in two square potential matrices, p and g. To introduce dual similarity transformations, we start by taking two constant, invertible and
square matrices of order n, denoted A, and A,, and two constant, invertible and symmetric square matrices of order n, denoted X, and Z,. We then
define two invertible constant square matrices of order 2n as follows, as done in [14,31,33]:

_[o 4 _[= o
A‘[A2 0]’2‘[0 22]' (2.14)

Since both A and X satisfy the following similarity properties

AAA = —3SAS T =—A, AQA =305 1 == —Q, (2.15)

where A and Q are defined as in (2.5) and (2.6), and assuming that A7 stands for the matrix transpose of a matrix A, we propose the following dual
similarity transformations:

AUWA =—UT)=-UW))T, UMW ==UT (=) =—U=)T, (2.16)

whose constant terms correspond to the identities in (2.15). It will be shown later that the original zero-curvature equations of the mKdV models
remain invariant under each of these dual similarity transformations.
Obviously, the dual similarity transformations lead to the following relations for the potential matrix P:

APAT' =—pT sps-l=_pT, (2.17)

These transformations give rise to the following pairs of constraints for the two matrix potentials p and g:

P ==ApAT", g7 =—AqAT", (2.18)

and

Pl =-%q%7", " =-Xpx", (2.19)

respectively. Since X is symmetric, the two constraints in each of (2.19) are compatible. To make compatible constraints in (2.18), we impose the
following sufficient condition:

AT =351, (2.20)

under which the two constraints in (2.18) imply each other.

Therefore, under the symmetric condition of X and the condition given in (2.20), the dual similarity transformations in (2.16) together generate
the reduced AKNS matrix spectral problems:
. % Al, p
—ip,=U¢, U= . , (2.21)
-2 'pls, —5 M,

where p must satisfy the first constraint in (2.18), i.e., p” = —A, pAl‘l, or equivalently, the other reduced AKNS matrix spectral problems:

n _Zl_quZZ
—ip,=U¢, U= . , (2.22)
q _EAIM

1
=4l
2

where g must satisfy the second constraint in (2.18), i.e., g7 = —A, qA;l.
2.3. Reduced matrix mKdV integrable models
Note that we have prescribed the initial data:
whol == 27" | , (2.23)
for the Laurent series solution W. Under the similarity transformations given in (2.16), and by the uniqueness of solutions to the stationary zero-

curvature equation, the solution W, determined by (2.8), satisfies

AWMNA ==WT D) =-WW), swz™ =wT()=W =T, (2.24)

since the solutions in each pair share the same initial values:

AWMA ™ e == WD) | 1o ==, EWDZ e =W (=) e = Q. (2.25)
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Therefore, for all s > 0, we have:

AVRSHI AT = _p oI ) = _(/Rs+1 )T
(2.26)
sy Izt = —y BT gy = — (2T
which leads to the following invariance property:
A(U, _ VX[2S+1] +i[U, V[2S+1]])(A)A—] — _((Ut _ VX[ZS+1] +i[U, V[2S+I]])(/1))T’ (2.27)
and similarly,
(U, - vIEH 4o, BT )T = —(U, - VBT 4o, vt )T (2.28)
Consequently, the matrix AKNS integrable models given in (2.10) with r =2s + 1 reduce to the following integrable mKdV models:
p, = 2ip!>+?] |q=_zglﬂl ,s>0, (2.29)
where p satisfies the first constraint in (2.18), or equivalently,
g, = =2ic!>+?) lpmxo1grs,> 520, (2.30)
where g satisfies the second constraint in (2.18). In our formulation, the symmetric condition on X and the constraint in (2.20) are essential.
Moreover, the matrix spectral problems, consisting of (2.21) and
o pl2s+l
_[¢, — V[ s+ ]|q=—2;‘pTE|¢’ s>0, (2.31)
provide Lax pairs for the reduced integrable mKdV hierarchy (2.29). Alternatively, the matrix spectral problems, consisting of (2.22) and
=iy =V 11y, 8, 520, (2.32)

provide Lax pairs for the reduced integrable mKdV hierarchy (2.30).

As a direct consequence of the Lax operator algebras (see, e.g., [34]), these reduced integrable models possess infinitely many commuting
symmetries. It is worth noting that since A, A, and X, are arbitrary, choosing specific forms for these matrices enables the construction of a variety
of integrable mKdV models. These models serve as explicit examples of reduced matrix AKNS systems. However, for r = 2s, s > 0, the similarity
properties observed in (2.26) no longer hold, and thus such reductions are not applicable in this case.

3. Representative scenarios
In this section, we explore four distinct scenarios by selecting four sets of dual similarity transformations. Each scenario provides illustrative

examples of reduced matrix AKNS spectral problems and their associated mKdV integrable models. We focus on the cases where m = n =2 and
m = n =3, with the spectral matrix given by

L9y 2 P
U=U@u)=| 2 l , 3.1
——Al,
[ 7 Tt
or
Lar 3P
U=U@,A)=| 2 ) (3.2)
q —=Al
L 2 i
where the potential p satisfied the first constraint in (2.18) and q is determined by either the first or the second constraint in (2.19).
Example 3.1. We begin by introducing a set of dual similarity transformations. Specifically, we consider the following pairs of matrices:
616,
0 ¢ 0 -6 0 o o
A, = 1 A, = 2 1. Y = 1 3, = 1 . .
! [52 53]’ 2 [—51 —53]’ ! [0'1 0] 72 816, 2865 | 3-3)
o1 o1

where §,,6,,0; and o, are arbitrary nonzero constants, while 6 is arbitrary but not necessarily nonzero. Under these choices, the dual similarity
transformations in (2.16) yield the expressions for p and g:

p3 b
p= 83py + 6103 | oo
D2
| 6y
62(81p3 = 63py)  01(8yp) —283p3)
562 56,62
,e 12 2 ]2 2 (3.5)
o1P2 o1h3
6152 6152
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Consequently, the corresponding reduced matrix mKdV integrable model system, with u = (p, p,, p3)7, is given by

60>
1
Pri=Plxxx t 55 [8,(8201P2 + 81P3)P1x + 63(82p1 — 83P3)P3Pa x + (2818591 — 83y — 26,63p3)P3P3 x|
1%
60’12 )
P2y =DPoxxx t 552 [(521’1132 —03pyP3 + 61030y + 251P2P3P3,x]’ (3.6)
1%
60'12 )
P3s=DP3xxx t 55 (6202931 x + (821 = 83P3)P3P2x + (821 P2 — 283P2p3 + 6113)P3 4|,
1%
where the constants 6;,6,,0; and o, are arbitrary but nonzero, while 5 is arbitrary and may vanish.
By talking
6p==p, 6p=—1,6=0,=0,=1, (3.7)

the system simplifies to the following mKdV integrable model system:

Pis=DPlxx +60(P102 + PP1x — P(P1 + P3)D3P2x + (2P — PPy +2P3)P3D3 ],
Pat = Paxxx + 6L(0(p1 + P3Py + P3)P2x + 2233 ) (3.8)
P3¢ = P3xxx + 610D2D3P1 s + P + P3)P3 P2 + (PP1 P2 + 2pP2p3 + D3 ),

where p=+1.

Example 3.2. Next, we formulate the second scenario and select the following specific pairs of matrices:

2
U
6, 6 -6 0 o O c o
A= 3],A:[ ! ];2:[1 ],z: ! S (3.9)
! [0 [ 27| -8 6, ! 0 o 2 5,6, 07 &2
o] o 03

where 6,,6,,0;, and o, are arbitrary nonzero constants, while §; is arbitrary but not necessarily nonzero. In this manner, the dual similarity
transformations in (2.16) generate the expressions for p and g:

141 p3
P=| & 03 R (3.10)
i 62173 62121 P>

and

[ 01[(830) +6205)p, — 816300031 05 {(82850) + 630)p) + 6,[628305p, — (820, + 620)p31}

5262 5283
9= L 2s2 |2 311
010,(61p3 — 63p;) 05[03p1 + 61(62p5 — 63p3)]
i 8,8, 5,83

It is now straightforward to observe that the corresponding reduced matrix mKdV integrable model system, with u = (p;, p,,p3)7, is given by:

6
Py =Pixxx T 25 {6301 +6502)*pT + 6,6502(8,8;p,02 — 36701 p3 — 26502p3)p; + 8102(8301 p3 + 5309p3 — 6285022)P3] P
19
—6105(83p1 — 81p3)[(8501 + 8305)p; + 6105(82p2 — 53P3)| P3 x }»

3
P2t =Prxxxt 75t {53 [(55‘71 + 5?“2)P1 +6165(6,p) — 531’3)] (6302p7 = 6,01P3)P1 «
1%
+0,[63(8501 +86562)pT +6163(38,8302p, — 36501 p3 — 2630,p3)p1 +57(28502p5 — 362830202p3 + 26561 p3 + 830003)| pa (3.12)
—[(8201 +626)p; +6102(5,p5 — 83p3)] [626301 Py + 8(8302p5 — 26,01 P3)| P3 < )
3
P3;=DP3xxx t 25 {[(650 + 8502)p; + 8,05(82p5 — 83p3)] (82013 — 836202)p)

—05(83p1 — 61p3)[(8301 + 8202)p; + 6,05(8205 — 83p3)| pa + [6201 (8361 + 520,)p7
+6,030,(630,p7 — 36,0, p3)p; + 5%62(252611)% —030,p7p3 + 520'2p§)]p3,x},

where 6;,6,,0; and o, are arbitrary nonzero constants, and 5 is arbitrary, though not necessarily nonzero.
When taking

§,=6,=6;=—1,0,=0,=1, (3.13)

the system further reduces to the following mKdV integrable model system:
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PLi =Pl +6[477 + p1(Py = 5p3) — (P2 — 2P3)P3| Py — 62py + P2 — P3)(P1 — P3)P3 -
Pat =P + 3[20% + 205+ 3(p1 — P3)P2 — 5113 + 33| Pax + 3Py + 2 — p3)[(P2 — P3Py — (P + P2 — 2P3)D3 ] (3.19)
Pas = Paxx + 31207 + 102 + P53 — Bp1 + P2)p3 + 293 P — 3(2p1 + Py — p3)|(P2 = P3)P1c + (P — P3P

Example 3.3. Now, we examine the third scenario by selecting the following specific pairs of matrices:

62

o o L

0]
6, 0 63 6, 0 0 0 0 o 52

A=[{0 & 0], A=l0 6 O0[:%=0 o 0| %= =2 0 ; (3.15)

0 O 51 63 0 51 0'1 0 0 0-2

& o 2015

o] o]

where 6;,6,,0, and o, are arbitrary nonzero constants, while 5 is totally arbitrary. Once these matrices have been set, the dual similarity transfor-
mations described in (2.16) lead to the explicit expressions for p and g:

0 12} P
_51172 0 P
p=| 5, S (3.16)
_ _Sp3 63 S3py
o 6 5 4
_5301201 _0'10'2(253p2+52p3) _‘7]21’1
3 2 2
53 526, 5
0102(63p2 +6,p3) 603D
) et A 0 -
9= 2 2 (3.17)
5,62 52
oipy 010202 0
6]2 016 |

Then, it is direct to see that the corresponding reduced matrix mKdV integrable model system, with u = (p;, p,, p;)", takes the following form:

30 2 2
Py =Pixxxt 7252 {2[5261171 +0610,0,(83p2 + 52P3)]P1,x
1%

+6,05p, [(253192 +6,03)P2x + 52P2P3,x] }

_ 361 1o o 2
P2y =DPrxxx T 75 (8501} +45,6300p5 +3616,02p2P3)P2
19
+6,02(8,61p1 Py x + 8162P2p3 )]

(3.18)

304 2
D3t =P3xxxt —5262 {p3 [520'1p1p1,x +6,0,(263p, + 521)3)1)2,)(]
19
+(6301p] +281630,p3 +3816,0,P2P3)P3.1 }»

where 6;,6,,0, and o, are arbitrary nonzero constants, while §; is completely arbitrary.
When choosing

5] :52:—53:1, (o3 :62:1, (3-19)
we obtain the simplified mKdV integrable model system:

Pl =Pixxx T 6[17% = P2(py — P3Py x — 3Py [(2172 = P3Py — P2P3,x]’
Pas = Daxx 3107 = P2(4py = 31y + 302(P1 Py + P2P30)- (3.20)
P2t = D3 + 3007 = P2(2py = 3p)Ips . + 303 101 + (3 = 2P2)Pa -

Example 3.4. Finally, we investigate the fourth scenario by introducing the following specific matrix pairs:

)
5 0 & 5 0 0 6, 0 0 e 0
A=|0 6 0f Aa=[0 5 0f[z=l0 06 0[%=0 2 o I (3.21)
0 0 & 5 0 8 0 0 o 55, % 2
o nta

where once again, we define 6,6, and o;, 1 <i <3, as arbitrary nonzero constants. After setting these matrices, the dual similarity transformations
described in (2.16) yield the explicit expressions for p and g:
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0 2 P
_51P2 0 »
p=| & R (3.22)
_ _GmtopsG3m
i P 5 5
[ 83010301 028101 + 85030, +6,830503 0103P1 ]
& 83, 82
o0 0,03(63p, + 0
g=| -2 ;l’z 0 203( 31922 2P3) ‘ (3.23)
52 5162
_0103P, _ 0205(8302 + 62p3) 0
2 2
L 51 5152 i

Thus, it is clear that the corresponding reduced matrix mKdV integrable model system, with u = (p;, p,, p3)7, takes the following form:
3
8262

172
+30,p1 (85101 + 8303)P2ps x + 626303P3P2 x + 6205(530, + 6203)P3 4] }»

PLi=Plxxx — =54 [262010397 + 0,(6701 P2 + 82035 + 28,8303 03 + 520303)| Py

3
P2 = Py~ oo {[8303(01 0% + 0213) + 20, (570, + 8303)p3 + 38,8,0203p2p3| P x
< 51 0y (3.24)

+6,03p3(8,01p1P1 x + 626203 + 83P2)P3 x| }»
3 2 2 2 2 _\.2 2 2
P3i = Prx = 55 {[8501050; + 02(870) + 6503)p; +36,630503p2p3 +26,0203p3| 3.«
192
+D3 [55‘7153P1P1,x + 52(5%511’2 + 5%"3172 + 525353P3)P2,x] },

where 6;,6,,01,0,,03 are arbitrary nonzero constants, while 65 is arbitrary but not necessarily nonzero.
When choosing

op==6,=03=1, 00 =—0p=03=1, (3.25)
we obtain the simplified mKdV integrable model system:

PLi = Pilxx — 32D} = 205 +2pap3 — PP + 31 [(2P2 — P3)P2x — (P2 — P3)D3.4) -
P2t =DPoxxx — 3(1’% - 417% +3pyps — P%)Pz,x —=3p, [P1P1,x +(py — P3)P3,x] ) (3.26)
P3¢ = P3oex = 30T =203 +3pap3 = 200)p3 x — 303 [P171x + (93 = 2922 |-

We note that it is straightforward to compute the Lax matrix V13, defined in (2.12), for each of the four scenarios. This matrix provides the
temporal part of the Lax pairs for the resulting reduced mKdV integrable models. Furthermore, we can derive the entire integrable hierarchies, given
by (2.29) (or (2.30)), along with their Lax pairs, determined by (2.21) and (2.31) (or (2.22) and (2.32)).

4. Concluding remarks

This letter investigates various types of dual similarity transformations and applies them to matrix AKNS spectral problems to derive reduced
matrix mKdV integrable models. Four specific scenarios of such reduced integrable mKdV models are presented, along with their corresponding
reduced matrix AKNS spectral problems, which give rise to integrable hierarchies. The main emphasis of this study is the formulation of appropriate
dual similarity transformations that yield novel mKdV integrable models, thereby extending the applicability of the zero-curvature framework
developed in previous works (see, e.g., [31-33]). One may also consider using the trace identity [6] to establish Hamiltonian structures for the
presented mKdV integrable models.

The examples presented in this study demonstrate the versatility and depth of reduced Lax pairs in constructing integrable models. By applying
various dual similarity transformations to the zero-curvature equations, a broad spectrum of integrable reductions can be achieved (see, e.g., [35-38]).
The choice of diagonal and off-diagonal block matrices in these transformations plays a pivotal role in shaping the structure of the resulting systems.
Moreover, such transformations contribute to the ongoing development of integrable models associated with higher-order matrix spectral problems,
as discussed in [39-45]. Comparative analysis of these models with other integrable systems may provide valuable insights into the underlying
algebraic and geometric structures.

An equally compelling direction for future research involves the investigation of rich solution phenomena, such as rogue waves, lump solutions,
and soliton waves (see, e.g., [46-55]). Approaches such as the inverse scattering method and the Riemann-Hilbert approach offer promising tools
for deriving these nonlinear wave solutions. In particular, the use of Darboux transformations significantly expands the possibilities for exploring
fascinating nonlinear wave phenomena, with significant potential applications in applied mathematics and engineering sciences.

In conclusion, this research establishes a robust framework for the formulation and comprehensive analysis of integrable models. The integrable
models developed herein provide fresh perspectives on the classification of multi-component integrable systems within the Lax pair framework, with
the expectation that they will contribute meaningfully to future applications in both the physical and engineering sciences.
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