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This work aims to construct dual similarity transformations and explore integrable reductions of matrix modified 
Korteweg–de Vries (mKdV) models. Starting from the zero-curvature formulation, the study employs similarity 
transformations as the principal tool. Four representative scenarios of reduced Ablowitz–Kaup--Newell--Segur 
matrix spectral problems are analyzed, providing concrete examples of reduced matrix mKdV integrable models 
derived through dual similarity transformations.

1. Introduction

The construction of integrable models often begins with the formulation of Lax pairs [1,2], where the spectral matrices are derived from matrix Lie 
algebras [3,4]. These Lax pairs give rise to infinitely many commuting symmetries and conservation laws, which are closely linked to underlying bi

Hamiltonian structures [5,6]. Furthermore, the inverse scattering transform provides a powerful method for solving the associated Cauchy problems 
[7,8].

The matrix Ablowitz–Kaup--Newell--Segur (AKNS) spectral problems offer a universal framework for generating a wide class of integrable models, 
including the nonlinear Schrödinger (NLS) equation and the modified Korteweg–de Vries (mKdV) equation. Similarity transformations have been 
extensively used to derive reduced integrable models [9--11], including nonlocal models involving reflection points [12]. In particular, applying a pair 
of similarity transformations leads to a novel class of reduced integrable models [13]. The main challenge lies in carefully balancing the reductions 
imposed on the potentials by the two transformations to preserve the invariance of the zero-curvature equations [14]. A complete classification of 
such lower-order integrable models associated with the matrix AKNS spectral problems has identified three types of nonlocal NLS equations and two 
types of nonlocal mKdV equations [15].

Moreover, various powerful methods have been developed to study reduced integrable models, especially for constructing soliton solutions. The 
inverse scattering transform continues to be an effective approach for solving the Cauchy problems of nonlocal integrable models [16,17]. Classical 
techniques such as the Hirota bilinear method, Bäcklund transformations, Darboux transformations, and the Riemann–Hilbert method have also 
proven to be highly effective. Moreover, several innovative mathematical frameworks have been introduced to explore nonlocal reduced integrable 
models (see, e.g., [15], [18--23]).

In this work, we aim to develop dual similarity transformations and reduced integrable mKdV models, based on the matrix AKNS spectral 
problems. We begin by formulating two consistent similarity transformations and then apply them to matrix spectral problems to derive reduced 
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integrable models. In Section 2, we lay the groundwork for the subsequent analysis by revisiting the matrix AKNS spectral problems and their 
associated integrable mKdV models, and we propose a general framework for implementing pairs of similarity transformations and constructing 
reduced mKdV integrable models. In Section 3, we explore four application scenarios within this generating scheme, each employing distinct sets of 
dual similarity transformations. These examples of mKdV integrable models illustrate the richness and diversity of reduced matrix AKNS integrable 
models. The final section provides a summary of our results, along with concluding remarks.

2. Reduced mKdV integrable models via dual similarity transformations

2.1. On the matrix AKNS integrable hierarchies: a revisit

Let 𝑚 and 𝑛 be two natural numbers. In the AKNS framework, the vector dependent variable 𝑢 = 𝑢(𝑝, 𝑞) consists of two matrix potentials, defined 
as follows:

𝑝 = 𝑝(𝑥, 𝑡) = (𝑝𝑗𝑘)𝑚×𝑛, 𝑞 = 𝑞(𝑥, 𝑡) = (𝑞𝑘𝑗 )𝑛×𝑚. (2.1)

For each 𝑟 ≥ 0, we introduce a pair of standard matrix AKNS spectral problems:

−𝑖𝜙𝑥 =𝑈𝜙, −𝑖𝜙𝑡 = 𝑉 [𝑟]𝜙, (2.2)

where the Lax pairs are given by

𝑈 =𝑈 (𝑢, 𝜆) = 𝜆Λ+ 𝑃 , (2.3)

and

𝑉 [𝑟] = 𝑉 [𝑟](𝑢, 𝜆) = 𝜆𝑟Ω+𝑄[𝑟], (2.4)

with

Λ =

[
𝛼1𝐼𝑚 0
0 𝛼2𝐼𝑛

]
, 𝑃 =

[
0 𝑝

𝑞 0

]
, (2.5)

and

Ω=

[
𝛽1𝐼𝑚 0
0 𝛽2𝐼𝑛

]
, 𝑄[𝑟] =

𝑟−1 ∑
𝑠=0 

𝜆𝑠

[
𝑎[𝑟−𝑠] 𝑏[𝑟−𝑠]

𝑐[𝑟−𝑠] 𝑑[𝑟−𝑠]

]
. (2.6)

Here, 𝐼𝑘 denotes the identity matrix of size 𝑘, 𝜆 stands for the spectral parameter, 𝛼1, 𝛼2 and 𝛽1, 𝛽2 are two pairs of distinct arbitrary constants. In 
addition, 𝑄[0] is taken as the zero matrix of order (𝑚+ 𝑛). To solve the stationary zero-curvature equation

𝑊𝑥 = 𝑖[𝑈,𝑊 ], (2.7)

we start with the initial data 𝑊 [0] = Ω, and consider the following Laurent series expansion:

𝑊 =
∑
𝑠≥0 

𝜆−𝑠𝑊 [𝑠] =
∑
𝑠≥0 

𝜆−𝑠

[
𝑎[𝑠] 𝑏[𝑠]

𝑐[𝑠] 𝑑[𝑠]

]
, (2.8)

which yields a unique solution in form of a Laurent series. Such series expansion palys a crucial role in constructing hierarchies of integrable models 
(see, e.g., [24,25]).

The zero-curvature equations:

𝑈𝑡 − 𝑉 [𝑟]
𝑥

+ 𝑖[𝑈,𝑉 [𝑟]] = 0, 𝑟 ≥ 0, (2.9)

guarantee the compatibility of the two matrix spectral problems in (2.2). Given the specific forms of 𝑈 and 𝑉 [𝑟] in (2.3) and (2.4), these equations 
generate the matrix AKNS hierarchy of integrable models:

𝑝𝑡 = 𝑖𝛼𝑏[𝑟+1], 𝑞𝑡 = −𝑖𝛼𝑐[𝑟+1], 𝑟 ≥ 0, (2.10)

where 𝛼 = 𝛼1 − 𝛼2. The simplest case, with 𝑚 = 𝑛 = 1, recovers the classical AKNS integrable hierarchy with scalar potentials 𝑝 and 𝑞 [26]. Each 
system in the matrix AKNS integrable hierarchy admits a bi-Hamiltonian structure, along with infinitely many symmetries and conserved quantities 
(see, e.g., [27--29]).

When 𝑟 = 2𝑠 + 1, 𝑠 ≥ 1, the above matrix AKNS integrable hierarchy (2.10) reduces to the matrix mKdV integrable hierarchy. In particular, for 
𝑠 = 1, we obtain the first nonlinear integrable model -- the matrix mKdV integrable model:

𝑝𝑡 = − 𝛽

𝛼3
(𝑝𝑥𝑥𝑥 + 3𝑝𝑞𝑝𝑥 + 3𝑝𝑥𝑞𝑝), 𝑞𝑡 = − 𝛽

𝛼3
(𝑞𝑥𝑥𝑥 + 3𝑞𝑥𝑝𝑞 + 3𝑞𝑝𝑞𝑥), (2.11)

where 𝛽 = 𝛽1 − 𝛽2. The corresponding Lax matrix 𝑉 [3] is given by

𝑉 [3] = 𝜆3Ω + 𝛽

𝛼
𝜆2𝑃 − 𝛽

𝛼2
𝜆𝐼𝑚,𝑛(𝑃 2 + 𝑖𝑃𝑥) −

𝛽

𝛼3
(𝑖[𝑃 ,𝑃𝑥] + 𝑃𝑥𝑥 + 2𝑃 3), (2.12)

where 𝐼𝑚,𝑛 = diag(𝐼𝑚,−𝐼𝑛). These equations serve as our basic objects for the subsequent analysis. We point out that many other significant examples 
of higher-order matrix AKNS integrable models can similarly be derived (see, e.g., [30]).
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2.2. Dual similarity transformations

We focus on the case where

𝑚 = 𝑛, 𝛼1 = −𝛼2 =
1
2
, 𝛽1 = −𝛽2 = −1

2
, (2.13)

which results in two square potential matrices, 𝑝 and 𝑞. To introduce dual similarity transformations, we start by taking two constant, invertible and 
square matrices of order 𝑛, denoted Δ1 and Δ2, and two constant, invertible and symmetric square matrices of order 𝑛, denoted Σ1 and Σ2. We then 
define two invertible constant square matrices of order 2𝑛 as follows, as done in [14,31,33]:

Δ=
[

0 Δ1
Δ2 0

]
, Σ =

[
Σ1 0
0 Σ2

]
. (2.14)

Since both Δ and Σ satisfy the following similarity properties

ΔΛΔ−1 = −ΣΛΣ−1 = −Λ, ΔΩΔ−1 = −ΣΩΣ−1 == −Ω, (2.15)

where Λ and Ω are defined as in (2.5) and (2.6), and assuming that 𝐴𝑇 stands for the matrix transpose of a matrix 𝐴, we propose the following dual 
similarity transformations:

Δ𝑈 (𝜆)Δ−1 = −𝑈𝑇 (𝜆) = −(𝑈 (𝜆))𝑇 , Σ𝑈 (𝜆)Σ−1 = −𝑈𝑇 (−𝜆) = −(𝑈 (−𝜆))𝑇 , (2.16)

whose constant terms correspond to the identities in (2.15). It will be shown later that the original zero-curvature equations of the mKdV models 
remain invariant under each of these dual similarity transformations.

Obviously, the dual similarity transformations lead to the following relations for the potential matrix 𝑃 :

Δ𝑃Δ−1 = −𝑃𝑇 , Σ𝑃Σ−1 = −𝑃𝑇 . (2.17)

These transformations give rise to the following pairs of constraints for the two matrix potentials 𝑝 and 𝑞:

𝑝𝑇 = −Δ2𝑝Δ−1
1 , 𝑞𝑇 = −Δ1𝑞Δ−1

2 , (2.18)

and

𝑝𝑇 = −Σ2𝑞Σ−1
1 , 𝑞𝑇 = −Σ1𝑝Σ−1

2 , (2.19)

respectively. Since Σ is symmetric, the two constraints in each of (2.19) are compatible. To make compatible constraints in (2.18), we impose the 
following sufficient condition:

Δ−1
1 Σ1 = Σ−1

2 Δ2, (2.20)

under which the two constraints in (2.18) imply each other.

Therefore, under the symmetric condition of Σ and the condition given in (2.20), the dual similarity transformations in (2.16) together generate 
the reduced AKNS matrix spectral problems:

−𝑖𝜙𝑥 =𝑈𝜙, 𝑈 =
⎡⎢⎢⎢⎣

1
2
𝜆𝐼𝑛 𝑝

−Σ−1
2 𝑝𝑇Σ1 −1

2
𝜆𝐼𝑛

⎤⎥⎥⎥⎦ , (2.21)

where 𝑝 must satisfy the first constraint in (2.18), i.e., 𝑝𝑇 = −Δ2𝑝Δ−1
1 , or equivalently, the other reduced AKNS matrix spectral problems:

−𝑖𝜙𝑥 =𝑈𝜙, 𝑈 =
⎡⎢⎢⎢⎣
1
2
𝜆𝐼𝑛 −Σ−1

1 𝑞𝑇Σ2

𝑞 −1
2
𝜆𝐼𝑛

⎤⎥⎥⎥⎦ , (2.22)

where 𝑞 must satisfy the second constraint in (2.18), i.e., 𝑞𝑇 = −Δ1𝑞Δ−1
2 .

2.3. Reduced matrix mKdV integrable models

Note that we have prescribed the initial data:

𝑊 [0] = Ω =
⎡⎢⎢⎣
−1
2
𝐼𝑛 0

0 1
2
𝐼𝑛

⎤⎥⎥⎦ , (2.23)

for the Laurent series solution 𝑊 . Under the similarity transformations given in (2.16), and by the uniqueness of solutions to the stationary zero

curvature equation, the solution 𝑊 , determined by (2.8), satisfies

Δ𝑊 (𝜆)Δ−1 = −𝑊 𝑇 (𝜆) = −(𝑊 (𝜆))𝑇 , Σ𝑊 (𝜆)Σ−1 =𝑊 𝑇 (−𝜆) = (𝑊 (−𝜆))𝑇 , (2.24)

since the solutions in each pair share the same initial values:

Δ𝑊 (𝜆)Δ−1|𝜆=∞ = −(𝑊 (𝜆))𝑇 |𝜆=∞ = −Ω, Σ𝑊 (𝜆)Σ−1|𝜆=∞ = (𝑊 (−𝜆))𝑇 |𝜆=∞ =Ω. (2.25)
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Therefore, for all 𝑠 ≥ 0, we have:{
Δ𝑉 [2𝑠+1](𝜆)Δ−1 = −𝑉 [2𝑠+1]𝑇 (𝜆) = −(𝑉 [2𝑠+1](𝜆))𝑇 ,
Σ𝑉 [2𝑠+1](𝜆)Σ−1 = −𝑉 [2𝑠+1]𝑇 (−𝜆) = −(𝑉 [2𝑠+1](−𝜆))𝑇 ,

(2.26)

which leads to the following invariance property:

Δ(𝑈𝑡 − 𝑉 [2𝑠+1]
𝑥

+ 𝑖[𝑈,𝑉 [2𝑠+1]])(𝜆)Δ−1 = −((𝑈𝑡 − 𝑉 [2𝑠+1]
𝑥

+ 𝑖[𝑈,𝑉 [2𝑠+1]])(𝜆))𝑇 , (2.27)

and similarly,

Σ(𝑈𝑡 − 𝑉 [2𝑠+1]
𝑥

+ 𝑖[𝑈,𝑉 [2𝑠+1]])(𝜆)Σ−1 = −((𝑈𝑡 − 𝑉 [2𝑠+1]
𝑥

+ 𝑖[𝑈,𝑉 [2𝑠+1]])(−𝜆))𝑇 . (2.28)

Consequently, the matrix AKNS integrable models given in (2.10) with 𝑟 = 2𝑠+ 1 reduce to the following integrable mKdV models:

𝑝𝑡 = 2𝑖𝑏[2𝑠+2]|
𝑞=−Σ−12 𝑝𝑇 Σ1

, 𝑠 ≥ 0, (2.29)

where 𝑝 satisfies the first constraint in (2.18), or equivalently,

𝑞𝑡 = −2𝑖𝑐[2𝑠+2]|
𝑝=−Σ−11 𝑞𝑇 Σ2

, 𝑠 ≥ 0, (2.30)

where 𝑞 satisfies the second constraint in (2.18). In our formulation, the symmetric condition on Σ and the constraint in (2.20) are essential.

Moreover, the matrix spectral problems, consisting of (2.21) and

−𝑖𝜙𝑡 = 𝑉 [2𝑠+1]|
𝑞=−Σ−12 𝑝𝑇 Σ1

𝜙, 𝑠 ≥ 0, (2.31)

provide Lax pairs for the reduced integrable mKdV hierarchy (2.29). Alternatively, the matrix spectral problems, consisting of (2.22) and

−𝑖𝜙𝑡 = 𝑉 [2𝑠+1]|
𝑝=−Σ−11 𝑞𝑇 Σ2

𝜙, 𝑠 ≥ 0, (2.32)

provide Lax pairs for the reduced integrable mKdV hierarchy (2.30).

As a direct consequence of the Lax operator algebras (see, e.g., [34]), these reduced integrable models possess infinitely many commuting 
symmetries. It is worth noting that since Δ1,Δ2 and Σ1 are arbitrary, choosing specific forms for these matrices enables the construction of a variety 
of integrable mKdV models. These models serve as explicit examples of reduced matrix AKNS systems. However, for 𝑟 = 2𝑠, 𝑠 ≥ 0, the similarity 
properties observed in (2.26) no longer hold, and thus such reductions are not applicable in this case.

3. Representative scenarios

In this section, we explore four distinct scenarios by selecting four sets of dual similarity transformations. Each scenario provides illustrative 
examples of reduced matrix AKNS spectral problems and their associated mKdV integrable models. We focus on the cases where 𝑚 = 𝑛 = 2 and 
𝑚 = 𝑛 = 3, with the spectral matrix given by

𝑈 =𝑈 (𝑢, 𝜆) =
⎡⎢⎢⎣
1
2
𝜆𝐼2 𝑝

𝑞 −1
2
𝜆𝐼2

⎤⎥⎥⎦ , (3.1)

or

𝑈 =𝑈 (𝑢, 𝜆) =
⎡⎢⎢⎣
1
2
𝜆𝐼3 𝑝

𝑞 −1
2
𝜆𝐼3

⎤⎥⎥⎦ , (3.2)

where the potential 𝑝 satisfied the first constraint in (2.18) and 𝑞 is determined by either the first or the second constraint in (2.19).

Example 3.1. We begin by introducing a set of dual similarity transformations. Specifically, we consider the following pairs of matrices:

Δ1 =
[
0 𝛿1
𝛿2 𝛿3

]
, Δ2 =

[
0 −𝛿2

−𝛿1 −𝛿3

]
; Σ1 =

[
0 𝜎1
𝜎1 0

]
, Σ2 =

⎡⎢⎢⎢⎣
0 −

𝛿1𝛿2
𝜎1

−
𝛿1𝛿2
𝜎1

−
2𝛿1𝛿3
𝜎1

⎤⎥⎥⎥⎦ ; (3.3)

where 𝛿1, 𝛿2, 𝜎1 and 𝜎2 are arbitrary nonzero constants, while 𝛿3 is arbitrary but not necessarily nonzero. Under these choices, the dual similarity 
transformations in (2.16) yield the expressions for 𝑝 and 𝑞:

𝑝 =
⎡⎢⎢⎣
𝑝3 𝑝1

𝑝2
𝛿3𝑝2 + 𝛿1𝑝3

𝛿2

⎤⎥⎥⎦ , (3.4)

𝑞 =

⎡⎢⎢⎢⎢⎢⎣

𝜎21 (𝛿1𝑝3 − 𝛿3𝑝2)

𝛿1𝛿
2
2

𝜎21 (𝛿2𝑝1 − 2𝛿3𝑝3)

𝛿1𝛿
2
2

𝜎21𝑝2

𝛿1𝛿2

𝜎21𝑝3

𝛿1𝛿2

⎤⎥⎥⎥⎥⎥⎦
. (3.5)
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Consequently, the corresponding reduced matrix mKdV integrable model system, with 𝑢 = (𝑝1, 𝑝2, 𝑝3)𝑇 , is given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑝1,𝑡 = 𝑝1,𝑥𝑥𝑥 +
6𝜎21
𝛿1𝛿

3
2

[
𝛿2(𝛿2𝑝1𝑝2 + 𝛿1𝑝

2
3)𝑝1,𝑥 + 𝛿3(𝛿2𝑝1 − 𝛿3𝑝3)𝑝3𝑝2,𝑥 + (2𝛿1𝛿2𝑝1 − 𝛿23𝑝2 − 2𝛿1𝛿3𝑝3)𝑝3𝑝3,𝑥

]
,

𝑝2,𝑡 = 𝑝2,𝑥𝑥𝑥 +
6𝜎21
𝛿1𝛿

2
2

[
(𝛿2𝑝1𝑝2 − 𝛿3𝑝2𝑝3 + 𝛿1𝑝

2
3)𝑝2,𝑥 + 2𝛿1𝑝2𝑝3𝑝3,𝑥

]
,

𝑝3,𝑡 = 𝑝3,𝑥𝑥𝑥 +
6𝜎21
𝛿1𝛿

2
2

[
𝛿2𝑝2𝑝3𝑝1,𝑥 + (𝛿2𝑝1 − 𝛿3𝑝3)𝑝3𝑝2,𝑥 + (𝛿2𝑝1𝑝2 − 2𝛿3𝑝2𝑝3 + 𝛿1𝑝

2
3)𝑝3,𝑥

]
,

(3.6)

where the constants 𝛿1, 𝛿2, 𝜎1 and 𝜎2 are arbitrary but nonzero, while 𝛿3 is arbitrary and may vanish.

By talking

𝛿1 = −𝜌, 𝛿2 = −1, 𝛿3 = 𝜎1 = 𝜎2 = 1, (3.7)

the system simplifies to the following mKdV integrable model system:

⎧⎪⎨⎪⎩
𝑝1,𝑡 = 𝑝1,𝑥𝑥𝑥 + 6[(𝜌𝑝1𝑝2 + 𝑝23)𝑝1,𝑥 − 𝜌(𝑝1 + 𝑝3)𝑝3𝑝2,𝑥 + (2𝑝1 − 𝜌𝑝2 + 2𝑝3)𝑝3𝑝3,𝑥],
𝑝2,𝑡 = 𝑝2,𝑥𝑥𝑥 + 6[(𝜌(𝑝1 + 𝑝3)𝑝2 + 𝑝23)𝑝2,𝑥 + 2𝑝2𝑝3𝑝3,𝑥],
𝑝3,𝑡 = 𝑝3,𝑥𝑥𝑥 + 6[𝜌𝑝2𝑝3𝑝1,𝑥 + 𝜌(𝑝1 + 𝑝3)𝑝3𝑝2,𝑥 + (𝜌𝑝1𝑝2 + 2𝜌𝑝2𝑝3 + 𝑝23)𝑝3,𝑥],

(3.8)

where 𝜌 = ±1.

Example 3.2. Next, we formulate the second scenario and select the following specific pairs of matrices:

Δ1 =
[
𝛿1 𝛿3
0 𝛿2

]
, Δ2 =

[
−𝛿1 0
−𝛿3 −𝛿2

]
; Σ1 =

[
𝜎1 0
0 𝜎2

]
, Σ2 =

⎡⎢⎢⎢⎢⎣
−
𝛿21
𝜎1

−
𝛿1𝛿3
𝜎1

−
𝛿1𝛿3
𝜎1

−
𝛿23
𝜎1

−
𝛿22
𝜎2

⎤⎥⎥⎥⎥⎦
; (3.9)

where 𝛿1, 𝛿2, 𝜎1, and 𝜎2 are arbitrary nonzero constants, while 𝛿3 is arbitrary but not necessarily nonzero. In this manner, the dual similarity 
transformations in (2.16) generate the expressions for 𝑝 and 𝑞:

𝑝 =
⎡⎢⎢⎣

𝑝1 𝑝3
𝛿1
𝛿2

𝑝3 −
𝛿3
𝛿2

𝑝1 𝑝2

⎤⎥⎥⎦ , (3.10)

and

𝑞 =

⎡⎢⎢⎢⎢⎢⎣

𝜎1[(𝛿22𝜎1 + 𝛿23𝜎2)𝑝1 − 𝛿1𝛿3𝜎2𝑝3]

𝛿21𝛿
2
2

−
𝜎2

{
(𝛿22𝛿3𝜎1 + 𝛿33𝜎2)𝑝1 + 𝛿1[𝛿2𝛿3𝜎2𝑝2 − (𝛿22𝜎1 + 𝛿23𝜎2)𝑝3]

}
𝛿21𝛿

3
2

𝜎1𝜎2(𝛿1𝑝3 − 𝛿3𝑝1)
𝛿1𝛿

2
2

𝜎22 [𝛿
2
3𝑝1 + 𝛿1(𝛿2𝑝2 − 𝛿3𝑝3)]

𝛿1𝛿
3
2

⎤⎥⎥⎥⎥⎥⎦
. (3.11)

It is now straightforward to observe that the corresponding reduced matrix mKdV integrable model system, with 𝑢 = (𝑝1, 𝑝2, 𝑝3)𝑇 , is given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑝1,𝑡 = 𝑝1,𝑥𝑥𝑥 +
6 

𝛿21𝛿
4
2

{[
(𝛿22𝜎1 + 𝛿23𝜎2)

2𝑝21 + 𝛿1𝛿3𝜎2(𝛿2𝛿3𝑝2𝜎2 − 3𝛿22𝜎1𝑝3 − 2𝛿23𝜎2𝑝3)𝑝1 + 𝛿21𝜎2(𝛿
2
2𝜎1𝑝3 + 𝛿23𝜎2𝑝3 − 𝛿2𝛿3𝜎2𝑝2)𝑝3

]
𝑝1,𝑥

−𝛿1𝜎2(𝛿3𝑝1 − 𝛿1𝑝3)
[
(𝛿22𝜎1 + 𝛿23𝜎2)𝑝1 + 𝛿1𝜎2(𝛿2𝑝2 − 𝛿3𝑝3)

]
𝑝3,𝑥

}
,

𝑝2,𝑡 = 𝑝2,𝑥𝑥𝑥 +
3 

𝛿21𝛿
4
2

{
𝛿3
[
(𝛿22𝜎1 + 𝛿23𝜎2)𝑝1 + 𝛿1𝜎2(𝛿2𝑝2 − 𝛿3𝑝3)

]
(𝛿3𝜎2𝑝2 − 𝛿2𝜎1𝑝3)𝑝1,𝑥

+𝜎2
[
𝛿23(𝛿

2
2𝜎1 + 𝛿23𝜎2)𝑝

2
1 + 𝛿1𝛿3(3𝛿2𝛿3𝜎2𝑝2 − 3𝛿22𝜎1𝑝3 − 2𝛿23𝜎2𝑝3)𝑝1+𝛿

2
1(2𝛿

2
2𝜎2𝑝

2
2 − 3𝛿2𝛿3𝜎2𝑝2𝑝3 + 2𝛿22𝜎1𝑝

2
3 + 𝛿23𝜎2𝑝

2
3)
]
𝑝2,𝑥

−
[
(𝛿22𝜎1 + 𝛿23𝜎2)𝑝1 + 𝛿1𝜎2(𝛿2𝑝2 − 𝛿3𝑝3)

][
𝛿2𝛿3𝜎1𝑝1 + 𝛿1(𝛿3𝜎2𝑝2 − 2𝛿2𝜎1𝑝3)

]
𝑝3,𝑥

}
,

𝑝3,𝑡 = 𝑝3,𝑥𝑥𝑥 +
3 

𝛿21𝛿
3
2

{[
(𝛿22𝜎1 + 𝛿23𝜎2)𝑝1 + 𝛿1𝜎2(𝛿2𝑝2 − 𝛿3𝑝3)

]
(𝛿2𝜎1𝑝3 − 𝛿3𝜎2𝑝2)𝑝1,𝑥

−𝜎2(𝛿3𝑝1 − 𝛿1𝑝3)
[
(𝛿22𝜎1 + 𝛿23𝜎2)𝑝1 + 𝛿1𝜎2(𝛿2𝑝2 − 𝛿3𝑝3)

]
𝑝2,𝑥 +

[
𝛿2𝜎1(𝛿22𝜎1 + 𝛿23𝜎2)𝑝

2
1

+𝛿1𝛿3𝜎2(𝛿3𝜎2𝑝2 − 3𝛿2𝜎1𝑝3)𝑝1 + 𝛿21𝜎2(2𝛿2𝜎1𝑝
2
3 − 𝛿3𝜎2𝑝2𝑝3 + 𝛿2𝜎2𝑝

2
2)
]
𝑝3,𝑥

}
,

(3.12)

where 𝛿1, 𝛿2, 𝜎1 and 𝜎2 are arbitrary nonzero constants, and 𝛿3 is arbitrary, though not necessarily nonzero.

When taking

𝛿1 = 𝛿2 = 𝛿3 = −1, 𝜎1 = 𝜎2 = 1, (3.13)

the system further reduces to the following mKdV integrable model system:
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⎧⎪⎨⎪⎩
𝑝1,𝑡 = 𝑝1,𝑥𝑥𝑥 + 6

[
4𝑝21 + 𝑝1(𝑝2 − 5𝑝3) − (𝑝2 − 2𝑝3)𝑝3

]
𝑝1,𝑥 − 6(2𝑝1 + 𝑝2 − 𝑝3)(𝑝1 − 𝑝3)𝑝3,𝑥,

𝑝2,𝑡 = 𝑝2,𝑥𝑥𝑥 + 3
[
2𝑝21 + 2𝑝22 + 3(𝑝1 − 𝑝3)𝑝2 − 5𝑝1𝑝3 + 3𝑝23

]
𝑝2,𝑥 + 3(2𝑝1 + 𝑝2 − 𝑝3)

[
(𝑝2 − 𝑝3)𝑝1,𝑥 − (𝑝1 + 𝑝2 − 2𝑝3)𝑝3,𝑥

]
,

𝑝3,𝑡 = 𝑝3,𝑥𝑥𝑥 + 3
[
2𝑝21 + 𝑝1𝑝2 + 𝑝22 − (3𝑝1 + 𝑝2)𝑝3 + 2𝑝23

]
𝑝3,𝑥 − 3(2𝑝1 + 𝑝2 − 𝑝3)

[
(𝑝2 − 𝑝3)𝑝1,𝑥 + (𝑝1 − 𝑝3)𝑝2,𝑥

]
.

(3.14)

Example 3.3. Now, we examine the third scenario by selecting the following specific pairs of matrices:

Δ1 =
⎡⎢⎢⎣
𝛿1 0 𝛿3
0 𝛿2 0
0 0 𝛿1

⎤⎥⎥⎦ , Δ2 =
⎡⎢⎢⎣
𝛿1 0 0
0 𝛿2 0
𝛿3 0 𝛿1

⎤⎥⎥⎦ ; Σ1 =
⎡⎢⎢⎣
0 0 𝜎1
0 𝜎2 0
𝜎1 0 0

⎤⎥⎥⎦ , Σ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
𝛿21
𝜎1

0
𝛿22
𝜎2

0

𝛿21
𝜎1

0
2𝛿1𝛿3
𝜎1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
; (3.15)

where 𝛿1, 𝛿2, 𝜎1 and 𝜎2 are arbitrary nonzero constants, while 𝛿3 is totally arbitrary. Once these matrices have been set, the dual similarity transfor

mations described in (2.16) lead to the explicit expressions for 𝑝 and 𝑞:

𝑝 =

⎡⎢⎢⎢⎢⎢⎣

0 𝑝2 𝑝1

−
𝛿1𝑝2
𝛿2

0 𝑝3

−𝑝1 −
𝛿2𝑝3
𝛿1

−
𝛿3𝑝2
𝛿1

−
𝛿3𝑝1
𝛿1

⎤⎥⎥⎥⎥⎥⎦
, (3.16)

𝑞 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
𝛿3𝜎

2
1𝑝1

𝛿31

−
𝜎1𝜎2(2𝛿3𝑝2 + 𝛿2𝑝3)

𝛿21𝛿2
−
𝜎21𝑝1

𝛿21
𝜎1𝜎2(𝛿3𝑝2 + 𝛿2𝑝3)

𝛿1𝛿
2
2

0 −
𝜎1𝜎2𝑝2

𝛿22
𝜎21𝑝1

𝛿21

𝜎1𝜎2𝑝2
𝛿1𝛿2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.17)

Then, it is direct to see that the corresponding reduced matrix mKdV integrable model system, with 𝑢 = (𝑝1, 𝑝2, 𝑝3)𝑇 , takes the following form:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑝1,𝑡 = 𝑝1,𝑥𝑥𝑥 +
3𝜎1
𝛿21𝛿

2
2

{
2
[
𝛿22𝜎1𝑝

2
1 + 𝛿1𝜎2𝑝2(𝛿3𝑝2 + 𝛿2𝑝3)

]
𝑝1,𝑥

+𝛿1𝜎2𝑝1
[
(2𝛿3𝑝2 + 𝛿2𝑝3)𝑝2,𝑥 + 𝛿2𝑝2𝑝3,𝑥

]}
,

𝑝2,𝑡 = 𝑝2,𝑥𝑥𝑥 +
3𝜎1
𝛿21𝛿

2
2

[
(𝛿22𝜎1𝑝

2
1 + 4𝛿1𝛿3𝜎2𝑝22 + 3𝛿1𝛿2𝜎2𝑝2𝑝3)𝑝2,𝑥

+𝛿2𝑝2(𝛿2𝜎1𝑝1𝑝1,𝑥 + 𝛿1𝜎2𝑝2𝑝3,𝑥)
]
,

𝑝3,𝑡 = 𝑝3,𝑥𝑥𝑥 +
3𝜎1
𝛿21𝛿

2
2

{
𝑝3
[
𝛿22𝜎1𝑝1𝑝1,𝑥 + 𝛿1𝜎2(2𝛿3𝑝2 + 𝛿2𝑝3)𝑝2,𝑥

]
+(𝛿22𝜎1𝑝

2
1 + 2𝛿1𝛿3𝜎2𝑝22 + 3𝛿1𝛿2𝜎2𝑝2𝑝3)𝑝3,𝑥

}
,

(3.18)

where 𝛿1, 𝛿2, 𝜎1 and 𝜎2 are arbitrary nonzero constants, while 𝛿3 is completely arbitrary.

When choosing

𝛿1 = 𝛿2 = −𝛿3 = 1, 𝜎1 = 𝜎2 = 1, (3.19)

we obtain the simplified mKdV integrable model system:

⎧⎪⎨⎪⎩
𝑝1,𝑡 = 𝑝1,𝑥𝑥𝑥 + 6[𝑝21 − 𝑝2(𝑝2 − 𝑝3)]𝑝1,𝑥 − 3𝑝1

[
(2𝑝2 − 𝑝3)𝑝2,𝑥 − 𝑝2𝑝3,𝑥

]
,

𝑝2,𝑡 = 𝑝2,𝑥𝑥𝑥 + 3[𝑝21 − 𝑝2(4𝑝2 − 3𝑝3)]𝑝2,𝑥 + 3𝑝2(𝑝1𝑝1,𝑥 + 𝑝2𝑝3,𝑥),
𝑝3,𝑡 = 𝑝3,𝑥𝑥𝑥 + 3[𝑝21 − 𝑝2(2𝑝2 − 3𝑝3)]𝑝3,𝑥 + 3𝑝3

[
𝑝1𝑝1,𝑥 + (𝑝3 − 2𝑝2)𝑝2,𝑥

]
.

(3.20)

Example 3.4. Finally, we investigate the fourth scenario by introducing the following specific matrix pairs:

Δ1 =
⎡⎢⎢⎣
𝛿1 0 𝛿3
0 𝛿2 0
0 0 𝛿1

⎤⎥⎥⎦ , Δ2 =
⎡⎢⎢⎣
𝛿1 0 0
0 𝛿2 0
𝛿3 0 𝛿1

⎤⎥⎥⎦ ; Σ1 =
⎡⎢⎢⎣
𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

⎤⎥⎥⎦ , Σ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝛿21
𝜎1

0
𝛿1𝛿3
𝜎1

0
𝛿22
𝜎2

0

𝛿1𝛿3
𝜎1

0
𝛿21
𝜎3

+
𝛿23
𝜎1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
; (3.21)

where once again, we define 𝛿1, 𝛿2 and 𝜎𝑖, 1 ≤ 𝑖 ≤ 3, as arbitrary nonzero constants. After setting these matrices, the dual similarity transformations 
described in (2.16) yield the explicit expressions for 𝑝 and 𝑞:
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𝑝 =

⎡⎢⎢⎢⎢⎢⎣

0 𝑝2 𝑝1

−
𝛿1𝑝2
𝛿2

0 𝑝3

−𝑝1 −
𝛿3𝑝2 + 𝛿2𝑝3

𝛿1
−
𝛿3𝑝1
𝛿1

⎤⎥⎥⎥⎥⎥⎦
, (3.22)

𝑞 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛿3𝜎1𝜎3𝑝1

𝛿31

𝜎2(𝛿21𝜎1 + 𝛿23𝜎3)𝑝2 + 𝛿2𝛿3𝜎2𝜎3

𝛿31𝛿2

𝜎1𝜎3𝑝1

𝛿21

−
𝜎1𝜎2𝑝2

𝛿22

0
𝜎2𝜎3(𝛿3𝑝2 + 𝛿2𝑝3)

𝛿1𝛿
2
2

−
𝜎1𝜎3𝑝1

𝛿21

−
𝜎2𝜎3(𝛿3𝑝2 + 𝛿2𝑝3)

𝛿21𝛿2
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.23)

Thus, it is clear that the corresponding reduced matrix mKdV integrable model system, with 𝑢 = (𝑝1, 𝑝2, 𝑝3)𝑇 , takes the following form:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑝1,𝑡 = 𝑝1,𝑥𝑥𝑥 −
3 

𝛿21𝛿
2
2

{[
2𝛿22𝜎1𝜎3𝑝

2
1 + 𝜎2(𝛿21𝜎1𝑝

2
2 + 𝛿23𝜎3𝑝

2
2 + 2𝛿2𝛿3𝜎3𝑝2𝑝3 + 𝛿22𝜎3𝑝

2
3)
]
𝑝1,𝑥

+3𝜎2𝑝1
[
(𝛿21𝜎1 + 𝛿23𝜎3)𝑝2𝑝2,𝑥 + 𝛿2𝛿3𝜎3𝑝3𝑝2,𝑥 + 𝛿2𝜎3(𝛿3𝑝2 + 𝛿2𝑝3)𝑝3,𝑥

]}
,

𝑝2,𝑡 = 𝑝2,𝑥𝑥𝑥 −
3 

𝛿21𝛿2

{[
𝛿22𝜎3(𝜎1𝑝

2
1 + 𝜎2𝑝

2
3) + 2𝜎2(𝛿21𝜎1 + 𝛿23𝜎3)𝑝

2
2 + 3𝛿2𝛿3𝜎2𝜎3𝑝2𝑝3

]
𝑝2,𝑥

+𝛿2𝜎3𝑝2
[
𝛿2𝜎1𝑝1𝑝1,𝑥 + 𝜎2(𝛿2𝑝3 + 𝛿3𝑝2)𝑝3,𝑥

]}
,

𝑝3,𝑡 = 𝑝3,𝑥𝑥𝑥 −
3 

𝛿21𝛿2

{[
𝛿22𝜎1𝜎3𝑝

2
1 + 𝜎2(𝛿21𝜎1 + 𝛿23𝜎3)𝑝

2
2 + 3𝛿2𝛿3𝜎2𝜎3𝑝2𝑝3 + 2𝛿22𝜎2𝜎3𝑝

2
3
]
𝑝3,𝑥

+𝑝3
[
𝛿22𝜎1𝜎3𝑝1𝑝1,𝑥 + 𝜎2(𝛿21𝜎1𝑝2 + 𝛿23𝜎3𝑝2 + 𝛿2𝛿3𝜎3𝑝3)𝑝2,𝑥

]}
,

(3.24)

where 𝛿1, 𝛿2, 𝜎1, 𝜎2, 𝜎3 are arbitrary nonzero constants, while 𝛿3 is arbitrary but not necessarily nonzero.

When choosing

𝛿1 = −𝛿2 = 𝛿3 = 1, 𝜎1 = −𝜎2 = 𝜎3 = 1, (3.25)

we obtain the simplified mKdV integrable model system:

⎧⎪⎨⎪⎩
𝑝1,𝑡 = 𝑝1,𝑥𝑥𝑥 − 3(2𝑝21 − 2𝑝22 + 2𝑝2𝑝3 − 𝑝23)𝑝1,𝑥 + 3𝑝1

[
(2𝑝2 − 𝑝3)𝑝2,𝑥 − (𝑝2 − 𝑝3)𝑝3,𝑥

]
,

𝑝2,𝑡 = 𝑝2,𝑥𝑥𝑥 − 3(𝑝21 − 4𝑝22 + 3𝑝2𝑝3 − 𝑝23)𝑝2,𝑥 − 3𝑝2
[
𝑝1𝑝1,𝑥 + (𝑝2 − 𝑝3)𝑝3,𝑥

]
,

𝑝3,𝑡 = 𝑝3,𝑥𝑥𝑥 − 3(𝑝21 − 2𝑝22 + 3𝑝2𝑝3 − 2𝑝23)𝑝3,𝑥 − 3𝑝3
[
𝑝1𝑝1,𝑥 + (𝑝3 − 2𝑝2)𝑝2,𝑥

]
.

(3.26)

We note that it is straightforward to compute the Lax matrix 𝑉 [3], defined in (2.12), for each of the four scenarios. This matrix provides the 
temporal part of the Lax pairs for the resulting reduced mKdV integrable models. Furthermore, we can derive the entire integrable hierarchies, given 
by (2.29) (or (2.30)), along with their Lax pairs, determined by (2.21) and (2.31) (or (2.22) and (2.32)).

4. Concluding remarks

This letter investigates various types of dual similarity transformations and applies them to matrix AKNS spectral problems to derive reduced 
matrix mKdV integrable models. Four specific scenarios of such reduced integrable mKdV models are presented, along with their corresponding 
reduced matrix AKNS spectral problems, which give rise to integrable hierarchies. The main emphasis of this study is the formulation of appropriate 
dual similarity transformations that yield novel mKdV integrable models, thereby extending the applicability of the zero-curvature framework 
developed in previous works (see, e.g., [31--33]). One may also consider using the trace identity [6] to establish Hamiltonian structures for the 
presented mKdV integrable models.

The examples presented in this study demonstrate the versatility and depth of reduced Lax pairs in constructing integrable models. By applying 
various dual similarity transformations to the zero-curvature equations, a broad spectrum of integrable reductions can be achieved (see, e.g., [35--38]). 
The choice of diagonal and off-diagonal block matrices in these transformations plays a pivotal role in shaping the structure of the resulting systems. 
Moreover, such transformations contribute to the ongoing development of integrable models associated with higher-order matrix spectral problems, 
as discussed in [39--45]. Comparative analysis of these models with other integrable systems may provide valuable insights into the underlying 
algebraic and geometric structures.

An equally compelling direction for future research involves the investigation of rich solution phenomena, such as rogue waves, lump solutions, 
and soliton waves (see, e.g., [46--55]). Approaches such as the inverse scattering method and the Riemann-Hilbert approach offer promising tools 
for deriving these nonlinear wave solutions. In particular, the use of Darboux transformations significantly expands the possibilities for exploring 
fascinating nonlinear wave phenomena, with significant potential applications in applied mathematics and engineering sciences.

In conclusion, this research establishes a robust framework for the formulation and comprehensive analysis of integrable models. The integrable 
models developed herein provide fresh perspectives on the classification of multi-component integrable systems within the Lax pair framework, with 
the expectation that they will contribute meaningfully to future applications in both the physical and engineering sciences.
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