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This study aims to explore the connection between integrable couplings and three-dimensional unital algebras. 
Expansions in these algebras generate integrable couplings, including nonlinear integrable couplings, and their 
corresponding Lax pairs and hereditary recursion operators possess specific structures, associated with non-
semisimple Lie algebras. Applications to the KdV equation are explicitly presented.
1. Introduction

Integrable equations have made significant contributions to mathe-
matical physics, particularly in understanding phenomena like solitons 
and nonlinear waves. The Korteweg-de Vries (KdV) equation, nonlinear 
Schrödinger equation, and sine-Gordon equation stand out as prominent 
examples, each with its own distinct characteristics and applications 
across various disciplines.

Integrable couplings, on the other hand, delve deeper into the realm 
of integrable equations, representing a specialized subset within the zero 
curvature formulation. They maintain the integrability property even 
when coupled together, which is a remarkable feature [1]. The associ-
ation of their Lax pairs with non-semisimple Lie algebras adds another 
layer of complexity and mathematical richness to their study, providing 
insights into their symmetries and solutions.

There is a body of interesting work exploring integrable couplings 
within the zero curvature formulation (see, e.g., [2–12]). Perturbation 
equations are a particular class of integrable couplings [1], and a first-
order perturbation equation

𝑢𝑡 =𝐾(𝑢), 𝑣𝑡 =𝐾 ′(𝑢)[𝑣], (1.1)

* Correspondence to: Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA.

where 𝑋′ denotes the Gateaux derivative of 𝑋, is associated with either 
of the two spectral matrices:

𝑈̂ =

[
𝑈 (𝑢) 0

𝑈 ′(𝑢)[𝑣] 𝑈 (𝑢)

]
or 𝑈̂ =

[
𝑈 (𝑢) 𝑈 ′(𝑢)[𝑣]

0 𝑈 (𝑢)

]
, (1.2)

where 𝑈 is the spectral matrix associated with the given integrable 
equation 𝑢𝑡 =𝐾(𝑢). The equation for the variable 𝑣 above is linear with 
respect to 𝑣, when the variable 𝑢 is fixed. An integrable coupling

𝑢𝑡 =𝐾(𝑢), 𝑣𝑡 = 𝑆(𝑢, 𝑣), (1.3)

is called to be nonlinear, when 𝑆 is nonlinear with respect to 𝑣. An 
integrable coupling of the form

𝑢𝑡 =𝐾(𝑢), 𝑣𝑡 = 𝑆(𝑢, 𝑣), 𝑤𝑡 = 𝑇 (𝑢, 𝑣,𝑤), (1.4)

is referred to as a bi-integrable coupling (see, e.g., [13,14]).
Linear integrable couplings involve extensions of symmetry equa-

tions [1,15,16] and play a crucial role in classifying integrable equa-
tions. However, nonlinear couplings exhibit much richer structures. 
There are several systematic ways to construct linear integrable cou-
Available online 12 August 2024
0375-9601/© 2024 Elsevier B.V. All rights are reserved, including those for text and

E-mail address: mawx@cas.usf.edu.

https://doi.org/10.1016/j.physleta.2024.129783
Received 21 June 2024; Received in revised form 5 August 2024; Accepted 7 Augus
data mining, AI training, and similar technologies.

t 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:mawx@cas.usf.edu
https://doi.org/10.1016/j.physleta.2024.129783
https://doi.org/10.1016/j.physleta.2024.129783
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2024.129783&domain=pdf


W.-X. Ma

plings, often beginning with perturbed spectral matrices, defined as 
before, and the enlarged spectral matrices:

𝑈̂ =

[
𝑈 (𝑢) 0

𝑈1,𝑎(𝑣) 0

]
and 𝑈̂ =

[
𝑈 (𝑢) 𝑈2,𝑎(𝑣)

0 0

]
, (1.5)

where either 𝑈1,𝑎 or 𝑈2,𝑎 may not be a square matrix. We have a feasible 
method for constructing nonlinear integrable couplings from a selection 
of spectral matrices of the following forms [17]:

𝑈̂ =

[
𝑈 (𝑢) 0

𝑈𝑎(𝑣) 𝑈 (𝑢) +𝑈𝑎(𝑣)

]
and 𝑈̂ =

[
𝑈 (𝑢) 𝑈𝑎(𝑣)

0 𝑈 (𝑢) +𝑈𝑎(𝑣)

]
. (1.6)

In this paper, we aim to investigate the relationship between inte-
grable couplings and three-dimensional unital algebras. We demonstrate 
that expansions within these algebras encompass various types of bi-
integrable couplings, including nonlinear ones. To illustrate, we apply 
this general procedure to the KdV equation. Our findings contribute 
supplementary insights to the existing body of research on integrable 
couplings.

2. Integrable couplings by three-dimensional algebras

There are five unital associative algebras of dimension three over the 
complex number field (see [18]). Let us denote the identity element by 𝟏. 
Each of these five algebras consists of linear combinations of three basis 
elements: the identity element 𝟏 and two additional elements denoted 
as 𝑎 and 𝑏. Based on the definition of the identity element, we have

𝟏 ⋅ 𝟏 = 𝟏, 𝟏 ⋅ 𝑎 = 𝑎 ⋅ 𝟏 = 𝑎, 𝟏 ⋅ 𝑏 = 𝑏 ⋅ 𝟏 = 𝑏. (2.1)

It remains to specify

(I) 𝑎𝑎 = 0, 𝑏𝑏 = 0, 𝑎𝑏 = 𝑏𝑎 = 0, (2.2)

(II) 𝑎𝑎 = 𝑏, 𝑏𝑏 = 0, 𝑎𝑏 = 𝑏𝑎 = 0, (2.3)

(III) 𝑎𝑎 = 𝑎, 𝑏𝑏 = 0, 𝑎𝑏 = 𝑏𝑎 = 0, (2.4)

(IV) 𝑎𝑎 = 𝑎, 𝑏𝑏 = 𝑏, 𝑎𝑏 = 𝑏𝑎 = 0, (2.5)

(V) 𝑎𝑎 = 𝑎, 𝑏𝑏 = 0, 𝑎𝑏 = 𝑏, 𝑏𝑎 = 0, (2.6)

for five algebras, where we denote 𝑐 ⋅𝑑 by 𝑐𝑑 for convenience. The fifth 
one could be generated by the three elements 𝟏, 𝑎′, 𝑏 satisfying

𝑎′𝑎′ = 𝟏, 𝑎′𝑏 = −𝑏𝑎′ = 𝑏. (2.7)

Such an element 𝑎′ could be taken as 𝑎′ = 2𝑎 − 1.
Let us assume that we have an integrable equation

𝑢𝑡 =𝐾(𝑢, 𝑢𝑥,⋯ , 𝑢(𝑛)), (2.8)

where 𝑢 denotes a column vector of dependent variables and 𝑢(𝑛) stands 
for the 𝑛-th derivative. Moreover, we assume that the integrable equa-
tion possesses a Lax pair of matrix spectral problems:

𝜙𝑥 =𝑈 (𝑢, 𝜆)𝜙, 𝜙𝑡 = 𝑉 (𝑢, 𝜆)𝜙, (2.9)

i.e., it is generated from the zero curvature equation

𝑈𝑡 − 𝑉𝑥 + [𝑈,𝑉 ] = 0, (2.10)

and there is an operator Φ satisfying the recursion operator property 
and the hereditary property:

𝐿𝐾Φ= 0 and 𝐿Φ𝑋Φ=Φ𝐿𝑋Φ, (2.11)

where 𝑋 is an arbitrary vector field and 𝐿𝑋 is the Lie derivative along 
𝑋:
2

(𝐿𝑋Φ)𝑌 =Φ�𝑋,𝑌 �+ �𝑋,Φ𝑌 �, (2.12)
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with 𝑌 being another arbitrary vector field and �𝑋, 𝑌 � denoting the 
commutator of 𝑋 and 𝑌 . The hereditary property [19] allows for the 
definition of a bi-differential calculus [20], which yields commuting hi-
erarchies of symmetries and conserved quantities.

2.1. Generating scheme

We utilize each of the five algebras and perform expansions

𝑢 = 𝑝𝟏+ 𝑞𝑎+ 𝑟𝑏, 𝜙 = 𝜙1𝟏+𝜙2𝑎+𝜙3𝑏. (2.13)

Then, by using (2.1) and each of (2.2)-(2.6), and by taking the above 
expansions, we obtain bi-integrable couplings:

𝑢̂𝑡 = 𝐾̂ = (𝐾̂𝑇
1 , 𝐾̂

𝑇
2 , 𝐾̂

𝑇
3 )

𝑇 , (2.14)

where 𝑢̂ = (𝑝𝑇 , 𝑞𝑇 , 𝑟𝑇 )𝑇 , and

𝐾(𝑝𝟏+ 𝑞𝑎+ 𝑟𝑏) = 𝐾̂1𝟏+ 𝐾̂2𝑎+ 𝐾̂3𝑏 =𝐾(𝑝)𝟏+𝑆(𝑝, 𝑞)𝑎+ 𝑇 (𝑝, 𝑞, 𝑟)𝑏.

(2.15)

More specifically, we have

(I) 𝑝𝑡 =𝐾(𝑝), 𝑞𝑡 =𝐾 ′(𝑝)[𝑞], 𝑟𝑡 =𝐾 ′(𝑝)[𝑟], (2.16)

(II) 𝑝𝑡 =𝐾(𝑝), 𝑞𝑡 =𝐾 ′(𝑝)[𝑞], 𝑟𝑡 = 𝑇2(𝑝, 𝑞, 𝑟), (2.17)

(III) 𝑝𝑡 =𝐾(𝑝), 𝑞𝑡 = 𝑆(𝑝, 𝑞), 𝑟𝑡 =𝐾 ′(𝑝)[𝑟], (2.18)

(IV) 𝑝𝑡 =𝐾(𝑝), 𝑞𝑡 = 𝑆(𝑝, 𝑞), 𝑟𝑡 = 𝑆(𝑝, 𝑟), (2.19)

(V) 𝑝𝑡 =𝐾(𝑝), 𝑞𝑡 = 𝑆(𝑝, 𝑞), 𝑟𝑡 = 𝑇5(𝑝, 𝑞, 𝑟), (2.20)

respectively corresponding to the five algebras. These integrable cou-
plings supplement the categories of four-component integrable equa-
tions recently presented in the literature (see, e.g., [21,22]). The non-
isomorphic nature of the underlying algebras ensures that they are lin-
early independent of each other.

Each of their corresponding associated Lax pairs could be formulated 
as follows:

𝜙̂𝑥 = 𝑈̂ 𝜙̂, 𝜙̂𝑡 = 𝑉 𝜙̂, (2.21)

where 𝜙̂ = (𝜙𝑇
1 , 𝜙

𝑇
2 , 𝜙

𝑇
3 )

𝑇 , and 𝑈̂ and 𝑉 are defined by

(I) 𝑈̂ =
⎡⎢⎢⎢⎣
𝑈̂1 0 0
𝑈̂2 𝑈̂1 0
𝑈̂3 0 𝑈̂1

⎤⎥⎥⎥⎦ , 𝑉 =
⎡⎢⎢⎢⎣
𝑉1 0 0
𝑉2 𝑉1 0
𝑉3 0 𝑉1

⎤⎥⎥⎥⎦ , (2.22)

(II) 𝑈̂ =
⎡⎢⎢⎢⎣
𝑈̂1 0 0
𝑈̂2 𝑈̂1 0
𝑈̂3 𝑈̂2 𝑈̂1

⎤⎥⎥⎥⎦ , 𝑉 =
⎡⎢⎢⎢⎣
𝑉1 0 0
𝑉2 𝑉1 0
𝑉3 𝑉2 𝑉1

⎤⎥⎥⎥⎦ , (2.23)

(III) 𝑈̂ =
⎡⎢⎢⎢⎣
𝑈̂1 0 0
𝑈̂2 𝑈̂1 + 𝑈̂2 0
𝑈̂3 0 𝑈̂1

⎤⎥⎥⎥⎦ , 𝑉 =
⎡⎢⎢⎢⎣
𝑉1 0 0
𝑉2 𝑉1 + 𝑉2 0
𝑉3 0 𝑉1

⎤⎥⎥⎥⎦ , (2.24)

(IV) 𝑈̂ =
⎡⎢⎢⎢⎣
𝑈̂1 0 0
𝑈̂2 𝑈̂1 + 𝑈̂2 0
𝑈̂3 0 𝑈̂1 + 𝑈̂3

⎤⎥⎥⎥⎦ , 𝑉 =
⎡⎢⎢⎢⎣
𝑉1 0 0
𝑉2 𝑉1 + 𝑉2 0
𝑉3 0 𝑉1 + 𝑉3

⎤⎥⎥⎥⎦ ,
(2.25)

(V) 𝑈̂ =
⎡⎢⎢⎢⎣
𝑈̂1 0 0
𝑈̂2 𝑈̂1 + 𝑈̂2 0
𝑈̂3 0 𝑈̂1 + 𝑈̂2

⎤⎥⎥⎥⎦ , 𝑉 =
⎡⎢⎢⎢⎣
𝑉1 0 0
𝑉2 𝑉1 + 𝑉2 0
𝑉3 0 𝑉1 + 𝑉2

⎤⎥⎥⎥⎦ ,
(2.26)
respectively, with 𝑈̂𝑖 and 𝑉𝑖, 1 ≤ 𝑖 ≤ 3, being determined via
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𝑈 (𝑝𝟏+𝑞𝑎+ 𝑟𝑏) = 𝑈̂1𝟏+ 𝑈̂2𝑎+ 𝑈̂3𝑏 =𝑈 (𝑝)𝟏+ 𝑈̂1(𝑝, 𝑞)𝑎+ 𝑈̂3(𝑝, 𝑞, 𝑟)𝑏,

𝑉 (𝑝𝟏+ 𝑞𝑎+ 𝑟𝑏) = 𝑉1𝟏+ 𝑉2𝑎+ 𝑉3𝑏 = 𝑉 (𝑝)𝟏+ 𝑉1(𝑝, 𝑞)𝑎+ 𝑉3(𝑝, 𝑞, 𝑟)𝑏.
(2.27)

Moreover, the following corresponding hereditary recursion operators 
could be formulated:

(I) Φ̂(𝑢̂) =
⎡⎢⎢⎢⎣
Φ̂1 0 0
Φ̂2 Φ̂1 0
Φ̂3 0 Φ̂1

⎤⎥⎥⎥⎦ , (II) Φ̂(𝑢̂) =
⎡⎢⎢⎢⎣
Φ̂1 0 0
Φ̂2 Φ̂1 0
Φ̂3 Φ̂2 Φ̂1

⎤⎥⎥⎥⎦ ,
(2.28)

(III) Φ̂(𝑢̂) =
⎡⎢⎢⎢⎣
Φ̂1 0 0
Φ̂2 Φ̂1 + Φ̂2 0
Φ̂3 0 Φ̂1

⎤⎥⎥⎥⎦ ,

(IV) Φ̂(𝑢̂) =
⎡⎢⎢⎢⎣
Φ̂1 0 0
Φ̂2 Φ̂1 + Φ̂2 0
Φ̂3 0 Φ̂1 + Φ̂3

⎤⎥⎥⎥⎦ ,
(2.29)

(V) Φ̂(𝑢̂) =
⎡⎢⎢⎢⎣
Φ̂1 0 0
Φ̂2 Φ̂1 + Φ̂2 0
Φ̂3 0 Φ̂1 + Φ̂2

⎤⎥⎥⎥⎦ , (2.30)

where

Φ(𝑝𝟏+ 𝑞𝑎+ 𝑟𝑏) = Φ̂1𝟏+ Φ̂2𝑎+ Φ̂3𝑏 =Φ(𝑝)𝟏+ Φ̂2(𝑝, 𝑞)𝑎+ Φ̂3(𝑝, 𝑞, 𝑟)𝑏,

(2.31)

with Φ(𝑢) being a hereditary recursion operator for the original equation 
(2.8).

The system (2.16) represents a generalization of the symmetry prob-
lem with two copies of the linearized equation, and the system (2.17)
is exactly the second-order perturbation equation [1]. The first three 
integrable couplings in (2.16), (2.17) and (2.18) are all extensions of 
the first-order perturbation equation. Since the sub-vectors 𝑆, 𝑇2 , and 
𝑇5 are nonlinear, the resulting extended equations (2.17), (2.18), (2.19)
and (2.20), except the first one (2.16), all present nonlinear integrable 
couplings of the original equation.

2.2. Applications to the KdV equation

Let us compute a few application examples. We consider the KdV 
equation

𝑢𝑡 = 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥. (2.32)

It possesses the Lax pair:

𝑈 (𝑢, 𝜆) =

[
0 1

𝜆− 𝑢 0

]
, 𝑉 (𝑢, 𝜆) =

[
−𝑢𝑥 4𝜆+ 2𝑢

−2(2𝜆+ 𝑢)(𝑢− 𝜆) − 𝑢𝑥𝑥 𝑢𝑥

]
,

(2.33)

and the hereditary recursion operator:

Φ(𝑢) = 𝜕2 + 4𝑢+ 2𝑢𝑥𝜕−1. (2.34)

The five resulting bi-integrable couplings are given respectively by

(I) 𝑝𝑡 = 6𝑝𝑝𝑥 + 𝑝𝑥𝑥𝑥, 𝑞𝑡 = 6(𝑝𝑞)𝑥 + 𝑞𝑥𝑥𝑥, 𝑟𝑡 = 6(𝑝𝑟)𝑥 + 𝑟𝑥𝑥𝑥, (2.35)

(II) 𝑝𝑡 = 6𝑝𝑝𝑥 + 𝑝𝑥𝑥𝑥, 𝑞𝑡 = 6(𝑝𝑞)𝑥 + 𝑞𝑥𝑥𝑥, 𝑟𝑡 = 6(𝑝𝑟)𝑥 + 6𝑞𝑞𝑥 + 𝑟𝑥𝑥𝑥,

(2.36)

(III) 𝑝𝑡 = 6𝑝𝑝𝑥 + 𝑝𝑥𝑥𝑥, 𝑞𝑡 = 6(𝑝𝑞)𝑥 + 6𝑞𝑞𝑥 + 𝑞𝑥𝑥𝑥, 𝑟𝑡 = 6(𝑝𝑟)𝑥 + 𝑟𝑥𝑥𝑥,
3

(2.37)
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(IV) 𝑝𝑡 = 6𝑝𝑝𝑥 + 𝑝𝑥𝑥𝑥, 𝑞𝑡 = 6(𝑝𝑞)𝑥 + 6𝑞𝑞𝑥 + 𝑞𝑥𝑥𝑥, 𝑟𝑡 = 6(𝑝𝑟)𝑥
+ 6𝑟𝑟𝑥 + 𝑟𝑥𝑥𝑥, (2.38)

(V) 𝑝𝑡 = 6𝑝𝑝𝑥 + 𝑝𝑥𝑥𝑥, 𝑞𝑡 = 6(𝑝𝑞)𝑥 + 6𝑞𝑞𝑥 + 𝑞𝑥𝑥𝑥, 𝑟𝑡 = 6(𝑝𝑟)𝑥
+ 6𝑞𝑟𝑥 + 𝑟𝑥𝑥𝑥, (2.39)

the first of which is a generalization of the perturbation equation of 
the KdV equation and the second to the fifth of which are nonlinear 
integrable couplings of the KdV equation. The matrix blocks 𝑈̂𝑖 and 𝑉𝑖, 
1 ≤ 𝑖 ≤ 3, in the corresponding Lax pairs (2.22)-(2.26) are determined 
as follows:

(I-V) 𝑈̂1 =𝑈 (𝑝), 𝑈̂2 =
[

0 0
−𝑞 0

]
, 𝑈̂3 =

[
0 0
−𝑟 0

]
, 𝑉1 = 𝑉 (𝑝),

and

(I) 𝑉2 =

[
−𝑞𝑥 2𝑞

−2(𝜆+ 2𝑝)𝑞 − 𝑞𝑥𝑥 𝑞𝑥

]
,

𝑉3 =

[
−𝑟𝑥 2𝑟

−2(𝜆+ 2𝑝)𝑟− 𝑟𝑥𝑥 𝑟𝑥

]
,

(II) 𝑉2 =

[
−𝑞𝑥 2𝑞

−2(𝜆+ 2𝑝)𝑞 − 𝑞𝑥𝑥 𝑞𝑥

]
,

𝑉3 =

[
−𝑟𝑥 2𝑟

−2(𝜆𝑟+ 2𝑝𝑟+ 𝑞2) − 𝑟𝑥𝑥 𝑟𝑥

]
,

(III) 𝑉2 =

[
−𝑞𝑥 2𝑞

−2(𝜆+ 2𝑝+ 𝑞)𝑞 − 𝑞𝑥𝑥 𝑞𝑥

]
,

𝑉3 =

[
−𝑟𝑥 2𝑟

−2(𝜆+ 2𝑝)𝑟− 𝑟𝑥𝑥 𝑟𝑥

]
,

(IV) 𝑉2 =

[
−𝑞𝑥 2𝑞

−2(𝜆+ 2𝑝+ 𝑞)𝑞 − 𝑞𝑥𝑥 𝑞𝑥

]
,

𝑉3 =

[
−𝑟𝑥 2𝑟

−2(𝜆+ 2𝑝+ 𝑟)𝑟− 𝑟𝑥𝑥 𝑟𝑥

]
,

(V) 𝑉2 =

[
−𝑞𝑥 2𝑞

−2(𝜆+ 2𝑝+ 𝑞)𝑞 − 𝑞𝑥𝑥 𝑞𝑥

]
,

𝑉3 =

[
−𝑟𝑥 2𝑟

−2(𝜆+ 2𝑝)𝑟− 𝑟𝑥𝑥 𝑟𝑥

]
.

Furthermore, the associated hereditary recursion operators can be ex-
pressed by the following:

(I) Φ̂(𝑢̂) =
⎡⎢⎢⎢⎣

Φ(𝑝) 0 0

4𝑞 + 2𝑞𝑥𝜕−1𝑥 Φ(𝑝) 0

4𝑟+ 2𝑟𝑥𝜕−1𝑥 0 Φ(𝑝)

⎤⎥⎥⎥⎦ ,

(II) Φ̂(𝑢̂) =
⎡⎢⎢⎢⎣

Φ(𝑝) 0 0

4𝑞 + 2𝑞𝑥𝜕−1𝑥 Φ(𝑝) 0

4𝑟+ 2𝑟𝑥𝜕−1𝑥 4𝑞 + 2𝑞𝑥𝜕−1𝑥 Φ(𝑝)

⎤⎥⎥⎥⎦ ,

(III) Φ̂(𝑢̂) =
⎡⎢⎢

Φ(𝑝) 0 0

4𝑞 + 2𝑞𝑥𝜕−1𝑥 Φ(𝑝+ 𝑞) 0
⎤⎥⎥ ,
⎢⎣ 4𝑟+ 2𝑟𝑥𝜕−1𝑥 0 Φ(𝑝)
⎥⎦
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(IV) Φ̂(𝑢̂) =
⎡⎢⎢⎢⎣

Φ(𝑝) 0 0
4𝑞 + 2𝑞𝑥𝜕−1𝑥 Φ(𝑝+ 𝑞) 0
4𝑟+ 2𝑟𝑥𝜕−1𝑥 0 Φ(𝑝+ 𝑟)

⎤⎥⎥⎥⎦ ,

(V) Φ̂(𝑢̂) =
⎡⎢⎢⎢⎣

Φ(𝑝) 0 0
4𝑞 + 2𝑞𝑥𝜕−1𝑥 Φ(𝑝+ 𝑞) 0
4𝑟+ 2𝑟𝑥𝜕−1𝑥 0 Φ(𝑝+ 𝑞)

⎤⎥⎥⎥⎦ ,
where 𝑢̂ = (𝑝, 𝑞, 𝑟)𝑇 and Φ(𝑢) is the hereditary recursion operator of the 
KdV equation, defined by (2.34).

By using these extended integrable equations, Alice-Bob systems, 
both local and nonlocal, can also be generated (see, e.g., [23,24]). The 
basic idea described above can be applied to other integrable equations, 
including both scalar and multi-component ones.

3. Concluding remarks

We have demonstrated that expansions over three-dimensional uni-
tal associative algebras yield bi-integrable couplings, presenting a gen-
erative idea for integrable couplings. All these algebras exhibit rich 
algebraic structures related to bi-integrable equations, including their 
associated Lax pairs and hereditary recursion operators. To illustrate 
our general approach, we employed the KdV equation as an example. 
These analyses enhance the existing body of research on integrable cou-
plings [1,25,26].

It is evident that employing block type matrix algebras for Lax 
pairs enables us to generate larger classes of integrable couplings. By 
combining the considered form of spectral matrices with other forms 
found in the literature, we can create a more diverse range of inte-
grable couplings. Furthermore, these integrable couplings may exhibit 
additional integrable properties, such as Hirota bilinear forms and 𝜏-
symmetry algebras [27]. Moreover, dark type integrable couplings [28]
using expansions in nilpotent elements (or dark numbers [29]) can be 
generated [1]. The richness of dynamical structures in such nonlinear 
models, including soliton phenomena (see, e.g., [30–34]) and Frobe-
nius decompositions (see, e.g., [35,36]), can be explored. On the other 
hand, integrable extensions, encompassing supersymmetric ones (see, 
e.g., [37]), bosonizations (see, e.g., [38,39]) and ren-integrable ones 
(see, e.g., [40]), can also be represented using expansions involving 
nilpotent elements, such as Grassmann numbers in supersymmetry the-
ory. All such analyses will enrich our understanding of multi-component 
integrable equations (see, e.g., [21,22,41,42]) and contribute towards 
their classification from through an algebraic lens.

An intriguing question concerning bi-integrable couplings is whether 
it is possible to construct an integrable coupling that encompasses two 
given integrable equations. In other words, given two integrable equa-
tions 𝑢𝑡 = 𝐾(𝑢) and 𝑣𝑡 = 𝑆(𝑣), can we construct a larger system of the 
form

𝑢𝑡 =𝐾(𝑢), 𝑣𝑡 = 𝑆(𝑣), 𝑤𝑡 = 𝑇 (𝑢, 𝑣,𝑤), (3.1)

while preserving overall integrability? Here, the Gateaux derivatives 
𝑇 ′(𝑢) and 𝑇 ′(𝑣) are assumed to be non-zero, characterizing a special bi-
integrable coupling. We hope to answer this question in the near future.

Understanding integrable couplings and their associated Lax pairs 
and recursion operators not only deepens our comprehension of these 
systems but also opens avenues for exploring new mathematical struc-
tures and solving complex physical problems. The applications of inte-
grable equations and couplings extend across diverse fields, from fluid 
dynamics and plasma physics to nonlinear optics and quantum me-
chanics, highlighting their relevance and importance in understanding 
natural phenomena and engineering applications.
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