
Physics Letters A 457 (2023) 128575
Contents lists available at ScienceDirect

Physics Letters A

journal homepage: www.elsevier.com/locate/pla

A multi-component integrable hierarchy and its integrable reductions

Wen-Xiu Ma a,b,c,d,∗
a Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
b Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
c Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA
d School of Mathematical and Statistical Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 October 2022
Received in revised form 17 October 2022
Accepted 1 December 2022
Available online 8 December 2022
Communicated by B. Malomed

Keywords:
Matrix spectral problem
Zero curvature equation
Integrable hierarchy
NLS equations
mKdV equations

We present a multi-component integrable hierarchy via the zero curvature formulation. The trace identity
is applied to construction of its Hamiltonian structure, and two integrable reductions are generated under 
similarity transformations. The adopted matrix spectral problem is associated with a special Lie sub-
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1. Introduction

Integrable equations are based on Lax pairs or matrix spectral problems associated with matrix Lie algebras [1,2]. The most commonly 
used is the special linear algebra [3–5], but special orthogonal algebras also generate integrable hierarchies with Hamiltonian structures 
(see, e.g., [6]). The key point is to choose a pseudoregular element in a matrix loop algebra to form a spectral matrix, and then the 
corresponding zero curvature equations will naturally produce an integrable hierarchy. Hamiltonian structures could be constructed via the 
trace identity [7] if the associated Lie algebra is semisimple, and the variational identity [8] if the associated Lie algebra is non-semisimple. 
This usually guarantees the Liouville integrability.

Integrable reductions could be made under similarity transformations, which keep the original zero curvature equations to be invariant. 
Local and nonlocal reduced integrable equations have been generated from matrix spectral problems associated with the Ablowitz-Kaup-
Newell-Segur (AKNS) spectral problems (see, e.g., [9–11] and [12–17] for local and nonlocal reductions, respectively). It has been shown 
that through pairs of group reductions, we can generate novel kinds of nonlocal reduced integrable equations [18–20]. All such studies 
provide great supplements to the traditional theories of partial differential equations.

This letter aims to present an application of the zero curvature formulation to a matrix spectral problem with multiple components. 
In Section 2, we present a special matrix Lie sub-algebra of the general linear algebra and formulate a matrix spectral problem. Via 
zero curvature equations, we generate an integrable hierarchy with multiple components, and using the trace identity, we construct 
its Hamiltonian structure. In Section 3, we propose two group reductions of the spectral matrix, which lead to two reduced integrable 
hierarchies. A typical example in the first reduced hierarchy reads

pt3 = pxxx + 3pxαβpT p + 3pαβpT px − pxαpT pβ − 2pαpT
x pβ,

where α and β are two constant commuting symmetric and orthogonal matrices and pT denotes the matrix transpose of the potential p. 
Two typical examples in the second reduced hierarchy are
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ipt2 = pxx + 2pβp† p − pαpT p∗βα,

and

pt3 = pxxx + 3pxβp† p + 3pβp† px − pxαpT p∗βα − 2pαpT
x p∗βα,

where α and β are two real commuting symmetric and orthogonal matrices, and p† and p∗ denote the Hermitian transpose and the 
complex conjugate of the potential p, respectively. In the last section, we give a conclusion and some concluding remarks.

2. A multi-component integrable hierarchy

2.1. A matrix Lie algebra

Let n be a given natural number, and α be a given symmetric and orthogonal matrix of order n:

αT = α, αT α = In, (2.1)

where In is the identity matrix of order n.
Consider a class of square matrices

A =

⎡
⎢⎢⎣

−a b 0

c d αT bT

0 cT αT a

⎤
⎥⎥⎦ , (2.2)

where a is a scalar, b and cT are row vectors of dimension n and d is a square matrix which satisfies

(αd)T = −αd. (2.3)

It is direct to check that such matrices form a matrix Lie algebra, under the matrix commutator: [A, B] = AB − B A. All matrices in (2.2)
are determined by the property that⎡

⎢⎢⎣
0 0 1

0 −α 0

1 0 0

⎤
⎥⎥⎦ A (2.4)

is skew-symmetric.

2.2. A multi-component integrable hierarchy

As usual, let λ denote the spectral parameter, and assume that the potential vector reads:

u = u(x, t) = (p,qT )T , p = p(x, t) = (p1, · · · , pn), q = q(x, t) = (q1, · · · ,qn)T . (2.5)

We consider the spatial matrix spectral problem as follows:

−iφx = Uφ = U (u, λ)φ, U =

⎡
⎢⎢⎣

−λ p 0

q 0 αT pT

0 qT αT λ

⎤
⎥⎥⎦ , (2.6)

which provides a counterpart of the AKNS spectral problem [3].
We first solve the stationary zero curvature equation

W x = i[U , W ], (2.7)

by looking for a Laurent series solution:

W =

⎡
⎢⎢⎣

−a b 0

c d αT bT

0 cT αT a

⎤
⎥⎥⎦ =

∑
s≥0

λ−s W [s], W [s] =

⎡
⎢⎢⎣

−a[s] b[s] 0

c[s] d[s] αT b[s]T

0 c[s]T αT a[s]

⎤
⎥⎥⎦ . (2.8)

Note that we have

[U , W ] =

⎡
⎢⎢⎣

pc − bq −λb + pd + ap 0

λc − dq − qa [U , W ]22 −λαT bT − dαT pT + αT pT a

0 λcT αT − aqT αT + qT αT d qT bT − cT pT

⎤
⎥⎥⎦ ,
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where

[U , W ]22 = qb − cp − αT bT qT αT + αT pT cT αT .

Thus, the stationary zero curvature equation gives the recursion relation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a[0]
x = 0, b[0] = 0, c[0] = 0, d[0]

x = 0,

b[s+1] = ib[s]
x + pd[s] + a[s]p,

c[s+1] = −ic[s]
x + d[s]q + qa[s],

a[s+1]
x = i(b[s+1]q − pc[s+1]) = −b[s]

x q − pc[s]
x ,

d[s+1]
x = i(qb[s+1] − c[s+1]p − αT b[s+1]T qT αT + αT pT c[s+1]T αT ),

(2.9)

where s ≥ 0. Upon choosing

a[0] = 1, d[0] = 0, (2.10)

and taking the constant of integration to be zero,

a[s]|u=0 = 0, d[s]|u=0 = 0, s ≥ 1, (2.11)

we can work out⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b[1] = p, c[1] = q, a[1] = 0, d[1] = 0;
b[2] = ipx, c[2] = −iqx, a[2] = −pq, d[2] = −qp + αT pT qT αT ;
b[3] = −pxx − 2pqp + pαT pT qT αT ,

c[3] = −qxx − 2qpq + αT pT qT αT q,

a[3] = −i(pxq − pqx),

d[3] = i[−(qpx − qx p) + αT (pT
x qT − pT qT

x )αT ];
b[4] = −ipxxx − 3ipxqp − 3ipqpx + ipxα

T pT qT αT + 2ipαT pT
x qT αT ,

c[4] = iqxxx + 3iqx pq + 3iqpqx − 2iαT pT qT
x αT q − iαT pT qT αT qx.

(2.12)

Then, we introduce the temporal matrix spectral problems:

−iφt = V [r]φ = V [r](u, λ)φ, V [r] = (λr W )+ =
r∑

s=0

λs W [r−s], r ≥ 0. (2.13)

Now it is direct to see that the compatibility conditions of the two matrix spectral problems in (2.6) and (2.13), i.e., the zero curvature 
equations:

Utr − V [r]
x + i[U , V [r]] = 0, r ≥ 0, (2.14)

generate the multi-component integrable hierarchy:

utr = K [r] = (ib[r+1],−ic[r+1]T )T , i.e., ptr = ib[r+1], qtr = −ic[r+1], r ≥ 0. (2.15)

The first two nonlinear integrable equations are the generalized nonlinear Schrödinger equations{
ipt2 = pxx + 2pqp − pαpT qT α,

iqt2 = −qxx − 2qpq + αpT qT αq,
(2.16)

and the generalized modified Korteweg-de Vries equations{
pt3 = pxxx + 3pxqp + 3pqpx − pxαpT qT α − 2pαpT

x qT α,

qt3 = qxxx + 3qx pq + 3qpqx − 2αpT qT
x αq − αpT qT αqx.

(2.17)

2.3. Hamiltonian structure

To construct a Hamiltonian structure for the integrable hierarchy (2.15), we apply the trace identity

δ

δu

∫
tr

(
W

∂U

∂λ

)
dx = λ−γ ∂

∂λ
λγ tr

(
W

∂U

∂u

)
, (2.18)

where γ is a constant. Obviously, we have
3
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tr
(
W

∂U

∂λ

) = 2a, tr
(
W

∂U

∂u

) = 2(cT ,b)T , (2.19)

and thus, we obtain

δ

δu

∫
a[s+1] dx = λ−γ ∂

∂λ
λγ (c[s]T ,b[s])T , s ≥ 0. (2.20)

Taking s = 2, we find γ = 0, and then we have

δ

δu

∫
H [s] dx = (c[s]T ,b[s])T , H[s] = −

∫
a[s+1]

s
dx, s ≥ 1. (2.21)

This enables us to furnish the Hamiltonian structure for the integrable hierarchy (2.15):

utr = Kr = J
δH[r]

δu
, J =

[
0 i Im

−i Im 0

]
, r ≥ 1, (2.22)

where J is a Hamiltonian operator and H[r] is defined by (2.21). This Hamiltonian structure establishes a relation between symmetries 
and conserved quantities. Infinitely many symmetries, which are commuting

�Ks1 , Ks2� = K ′
s1

(u)[Ks2 ] − K ′
s2

(u)[Ks1 ] = 0, s1, s2 ≥ 0, (2.23)

are guaranteed by a Lax operator:

�V [s1], V [s2]� = V [s1]′(u)[K [s2]] − V [s2]′(u)[K [s1]] + [V [s1], V [s2]] = 0, s1, s2 ≥ 0, (2.24)

which can be proved directly. It then follows from the Hamiltonian structure that

{Hs1 ,Hs2} J =
∫ (δH[s1]

δu

)T
J
δH[s2]

δu
dx = 0, s1, s2 ≥ 0. (2.25)

A bi-Hamiltonian structure [21] can be presented as well by combining J with a recursion relation for Ks from (2.9) [22].

3. Integrable reductions

Let β be another constant square matrix of order n which satisfies

βT = β, βT β = In, αβ = βα, (3.1)

where α is the square matrix involved in the spectral matrix U by (2.6).
Case 1: First, we take a reduction for the spectral matrix U :

C U (λ)C−1 = U (−λ), C =

⎡
⎢⎢⎣

0 0 1

0 β 0

1 0 0

⎤
⎥⎥⎦ . (3.2)

Noting that

C U (λ)C−1 =

⎡
⎢⎢⎣

λ qT αT βT 0

βαT pT 0 βq

0 pβT −λ

⎤
⎥⎥⎦ ,

the above reduction equivalently requires

q = αβpT or p = qT αβ. (3.3)

It is direct to see that

C W (λ)C−1 = −W (−λ), (3.4)

since both Laurent series C W (λ)C−1 and W (−λ) of λ solve the stationary zero curvature equation (2.7) with U (−λ) and possess the 
opposite initial values at λ = ∞. Therefore, by virtue of V [r] = (λr W )+ , we further have

C V [r](λ)C−1 = (−1)r+1 V [r](−λ), r ≥ 0. (3.5)

This implies that

C
(
Ut2s+1(λ) − V [2s+1]

x (λ) + i[U (λ), V [2s+1](λ)])C−1

= U (−λ) − V [2s+1]
(−λ) + i[U (−λ), V [2s+1](−λ)], s ≥ 0,

(3.6)

t2s+1 x
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and thus, we obtain a reduced integrable hierarchy

pt2s+1 = ib[2s+2]|q=αβpT , s ≥ 0, (3.7)

each of which possesses infinitely many symmetries and conservation laws inherited from the original ones under the potential reduction 
(3.3). The first nonlinear reduced integrable equation is

pt3 = pxxx + 3pxαβpT p + 3pαβpT px − pxαpT pβ − 2pαpT
x pβ. (3.8)

Case 2: Second, we take another reduction for the spectral matrix U :

C U (λ)C−1 = U †(λ∗), C =

⎡
⎢⎢⎣

1 0 0

0 β 0

0 0 1

⎤
⎥⎥⎦ , (3.9)

where U †(λ∗) = (U (λ∗))†, β is again a constant square matrix of order n which satisfies (3.1), and † denotes the Hermitian transpose, and 
∗ stands for the complex conjugate. In what follows, we assume that α and β are real.

Upon observing that

C U (λ)C−1 =

⎡
⎢⎢⎣

−λ pβT 0

βq 0 βαT pT

0 qT αT βT λ

⎤
⎥⎥⎦ ,

the above reduction on the spectral matrix exactly requires

q† = pβ or p† = βq, (3.10)

(note that to keep U †(λ∗) to be in the chosen algebra, α must be real, and to impose this pair of potential reductions, β must be real). 
Under such a potential reduction, we have

C W (λ)C−1 = W †(λ∗), (3.11)

which guarantees that

C V [r](λ)C−1 = V [r]†(λ∗), r ≥ 0. (3.12)

It then follows that

C
(
Utr (λ) − V [r]

x (λ) + i[U (λ), V [r](λ)])C−1

= (
Utr (λ

∗) − V [r]
x (λ∗) + i[U (λ∗), V [r](λ∗)])†

, r ≥ 0,
(3.13)

and thus, we obtain a reduced integrable hierarchy

ptr = ibr+1|q=βp† , r ≥ 0, (3.14)

whose infinitely many symmetries and conservation laws are similarly inherited from the original ones under the potential reduction 
(3.10). The first two nonlinear reduced integrable equations read

ipt2 = pxx + 2pβT p† p − pαpT p∗βT α, (3.15)

and

pt3 = pxxx + 3pxβp† p + 3pβp† px − pxαpT p∗βα − 2pαpT
x p∗βα, (3.16)

where p† and p∗ denote the Hermitian transpose and the complex conjugate of the potential p, respectively.

4. Concluding remarks

A multi-component integrable hierarchy has been presented from a newly introduced matrix spectral problem associated with a special 
Lie algebra of the general linear algebra. Two integrable reductions have been made, one of which leads to a reduced integrable hierarchy 
of generalized mKdV equations, and the other, to a reduced integrable hierarchy involving both generalized NLS equations and generalized 
mKdV equations.

We remark that it would be interesting to construct reduced nonlocal integrable equations from the adopted matrix spectral problem 
(see, e.g., [23] for the case so(3,R)). It would also be of significant importance to explore soliton solutions of the presented integrable 
equations by the Darboux transformation, Riemann-Hilbert problems or the Hirota direct method, including lump solutions [24,25], com-
plexitons [26], rogue waves [27,28] solitonless solutions and algebro-geometric solutions [29]. For lower order integrable equations in the 
presented hierarchies, one can directly generate multi-phase solutions through special functions including elliptic functions.
5
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