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1. Introduction

Soliton equations possessing Hamiltonian structures provide
concrete examples of integrable equations. Matrix spectral prob-
lems (or Lax pairs) from given matrix loop algebras are start-
ing points to generate soliton equations and their Hamiltonian
structures (see, e.g., [1–4]). Among celebrated examples are the
Korteweg-de Vries hierarchy [5], the Ablowitz–Kaup–Newell–Segur
hierarchy [6], the Dirac hierarchy [7], the Kaup–Newell hierarchy
[8] and the Wadati–Konno–Ichikawa hierarchy [9].

Recently, the three-dimensional real special orthogonal Lie al-
gebra so(3,R), which consists of 3 × 3 skew-symmetric matrices,
has been used in constructing soliton hierarchies (see, e.g., [11,12]).
This Lie algebra is simple and has the basis

e1 =
[ 0 0 −1

0 0 0
1 0 0

]
, e2 =

[0 0 0
0 0 −1
0 1 0

]
,

e3 =
[ 0 −1 0

1 0 0
0 0 0

]
, (1.1)

with the circular commutator relations:

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2.

Its derived algebra is itself, and so, it is 3-dimensional, too.
The only other three-dimensional real Lie algebras with a three-
dimensional derived algebra is the special linear algebra sl(2,R),
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which has been widely used in generating soliton hierarchies in
soliton theory (see, e.g., [5–10]).

The matrix loop algebra we shall adopt in what follows is

s̃o(3,R) =
{∑

i≥0

Miλ
n−i

∣∣∣ Mi ∈ so(3,R), i ≥ 0, n ∈ Z

}
, (1.2)

that is, the space of all Laurent series in λ with coefficients in
so(3,R) and a finite regular part. Particular examples of this ma-
trix loop algebra contain the following linear combinations:

λmd1e1 + λnd2e2 + λld3e3

with arbitrary integers m,n, l and real constants d1,d2,d3. The al-
gebra s̃o(3,R) provides a structural basis for our study of soliton
hierarchies, from which a few new soliton hierarchies have been
generated of late (see, e.g., [11–16]).

We shall focus on the Liouville integrability of partial differ-
ential equations [17]. Let x = (x1, · · · , xp) be the vector of spatial
variables and u = (u1, · · · , uq)T the vector of dependent variables.
We consider a Hamiltonian system of evolution equations

ut = J
δH
δu

, u = u(x, t), (1.3)

where J = J (x, u) is a Hamiltonian operator and δ
δu is the vari-

ational derivative with respect to u. A conserved functional of a
Hamiltonian system (1.3) is a functional T = ∫

T dx which deter-
mines a conservation law of (1.3):

Dt T + Div X = 0,
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in which Div denotes spatial divergence. For a given differential
function F , its corresponding one-form is defined by

dF :=
p∑

i=1

∂ F

∂xi
dxi + ∂ F

∂t
dt +

q∑
α=1

∑
# J≥0

∂ F

∂uα
J

duα
J , (1.4)

where if # J = 0, then uα
J = uα , and if # J = k ≥ 1, then uα

J =
∂kuα

∂x j1 ···∂x jk
for J = ( j1, · · · , jk), 1 ≤ ji ≤ p, 1 ≤ i ≤ k.

Definition 1. Let I be a set of integers and r ≥ 1 a natural number.
A set of r-tuples of differential functions{

Sn = (
S1

n, · · · , Sr
n

)T ∣∣ n ∈ I
}

is said to be independent, if all r-tuples of one-forms{
dSn = (

dS1
n, · · · ,dSr

n

)T ∣∣ n ∈ I
}
,

are linearly independent at every point in the infinite jet space. We
say that a set of conserved functionals {Hn | n ∈ I} of a Hamilto-
nian system (1.3) is independent, if all characteristics { J δHn

δu | n ∈ I}
of the associated Hamiltonian vector fields are independent.

By the differential order of an r-tuple S of differential func-
tions, we denote the order of the highest-order derivative of u with
respect to x in S . Obviously, if a set of r-tuples of differential func-
tions has distinct differential orders, then it is independent.

Definition 2. A Hamiltonian system (1.3) is called to be Liou-
ville integrable, if there exists a sequence of conserved functionals
{Hn}∞n=0, which are in involution with respect to the correspond-
ing Poisson bracket:

{Hm,Hn} J :=
∫ (

δHm

δu

)T

J
δHn

δu
dx = 0, m,n ≥ 0, (1.5)

and the characteristics of whose associated Hamiltonian vector
fields

Kn := J
δHn

δu
, n ≥ 0, (1.6)

are independent.

In this paper, we would like to use the matrix loop algebra
s̃o(3,R) to introduce a counterpart matrix spectral problem of the
D-AKNS spectral problem, and compute an integrable Hamiltonian
counterpart hierarchy of the D-AKNS soliton hierarchy [18,19] by
using the zero curvature formulation. The corresponding Hamilto-
nian structures will be furnished by applying the trace identity,
and all soliton equations in the resulting soliton hierarchy will be
shown to be Liouville integrable. The resulting hierarchy provides
another example of soliton hierarchies associated with the loop al-
gebra s̃o(3,R). A few concluding remarks will round off the paper.

2. An integrable counterpart of the D-AKNS hierarchy

We apply the generating scheme using the zero curvature for-
mulation [10,17], to present an integrable counterpart associated
with the matrix loop algebra so(3,R) for the D-AKNS soliton hier-
archy [18,19]. Let us introduce a new 3 × 3 matrix spectral prob-
lem:

φx = Uφ = U (u, λ)φ, u =
[ p

q
r

]
, φ =

[
φ1
φ2
φ3

]
, (2.1)

where the spectral matrix U is chosen as
U = U (u, λ) = (λ + r)e1 + pe2 + qe3

=
[ 0 −q −λ − r

q 0 −p
λ + r p 0

]
∈ s̃o(3,R). (2.2)

This is the selfsame linear combination of the basis matrices as the
D-AKNS one associated with sl(2,R) [18,19].

Once a matrix spectral problem is chosen, it is inherently fea-
sible to compute a soliton hierarchy associated with the spectral
problem. First, we solve the stationary zero curvature equation

W x = [U , W ], W ∈ s̃o(3,R). (2.3)

If W is assumed to be

W = ae1 + be2 + ce3 =
[0 −c −a

c 0 −b
a b 0

]
, (2.4)

then the stationary zero curvature equation (2.3) becomes{ax = pc − qb,

bx = −λc − rc + qa,

cx = −pa + λb + rb.

(2.5)

Further, let a, b and c possess the Laurent expansions:

a =
∑
i≥0

aiλ
−i, b =

∑
i≥0

biλ
−i, c =

∑
i≥0

ciλ
−i, (2.6)

and take the initial data

a0 = −1, b0 = 0, c0 = 0, (2.7)

which are required by the equations on the highest powers of λ in
(2.5):

a0,x = pc0 − qb0, b0 = 0, c0 = 0.

Then, the system (2.5) leads equivalently to⎧⎨⎩
ai+1,x = −pbi,x − qci,x − rai,x,

bi+1 = ci,x + pai − rbi,

ci+1 = −bi,x + qai − rci,

i ≥ 0, (2.8)

the first of which is because from (2.5), we have

λax = λ(pc − qb)

= p(−bx − rc + qa) − q(cx + pa − rb)

= −pbx − qcx − r(pc − qb)

= −pbx − qcx − rax.

While using the above recursion relations (2.8), we impose the
condition that the constants of integration take the value of zero:

ai|u=0 = bi|u=0 = ci |u=0 = 0, i ≥ 1, (2.9)

to determine the sequence of {ai,bi, ci | i ≥ 1} uniquely. This way,
the first three sets can be worked out as follows:

a1 = 0, b1 = −p, c1 = −q;
a2 = 1

2

(
p2 + q2), b2 = −qx + pr, c2 = px + qr;

a3 = pqx − pxq − (
p2 + q2)r,

b3 = pxx + 2qxr + qrx + 1

2
p
(

p2 + q2) − pr2,

c3 = qxx − 2pxr − prx − qr2 + 1 (
p2 + q2)q.
2
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We saw above the localness of the first three sets of {ai,bi, ci |
i ≥ 1}. This is not an accident, and in fact, the functions ai,bi, ci ,
i ≥ 1, are all local. We verify this fact as follows. First from W x =
[U , W ], we can have

d

dx
tr

(
W 2) = 2 tr(W W x) = 2 tr

(
W [U , W ]) = 0,

and so, due to tr(W 2) = −2(a2 + b2 + c2), we have

a2 + b2 + c2 = (
a2 + b2 + c2)∣∣

u=0 = 1, (2.10)

the last step of which follows from the initial data in (2.7). Then,
by using the Laurent expansions in (2.6) and noting the initial data
in (2.7) again, a balance of coefficients of λi in (2.10) for each i ≥ 1
tells that

ai = −1

2

∑
k+l=i, k,l≥1

(akal + bkbl + ckcl), i ≥ 1. (2.11)

Based on this recursion relation (2.11) and the last two recursion
relations in (2.8), an application of the mathematical induction
finally shows that all functions ai,bi, ci, i ≥ 1, are differential poly-
nomials in u, i.e., they are all local; and that for each i ≥ 2, the
differential orders of the functions ai,bi and ci are i − 2, i − 1 and
i − 1, respectively.

Now as usual, we compute((
λmW

)
+
)

x − [
U ,

(
λm W

)
+
]

=
⎡⎣ 0 −bm+1 0

bm+1 0 cm+1
0 −cm+1 0

⎤⎦ , m ≥ 0, (2.12)

where P+ denotes the polynomial part of P in λ. This is not the
same type matrix as the Gateaux derivative matrix U ′ , and so, we
need to introduce modification terms for Lax operators. Noting

[U , e1] = qe2 − pe3,

we take a sequence of Lax operators with modification terms:

V [m] = (
λm W

)
+ + Δm,

Δm = βam+1e1 ∈ s̃o(3,R), m ≥ 0, (2.13)

where β is an arbitrarily given constant. Then, we arrive at

V [m]
x − [

U , V [m]]
=

⎡⎣ 0 −bm+1 − βpam+1 −βam+1,x

bm+1 + βpam+1 0 cm+1 + βqam+1
βam+1,x −cm+1 − βqam+1 0

⎤⎦ ,

m ≥ 0, (2.14)

and further, the corresponding zero curvature equations

Utm − V [m]
x + [

U , V [m]] = 0, m ≥ 0, (2.15)

equivalently yield a hierarchy of soliton equations:

utm =
⎡⎣ p

q
r

⎤⎦
tm

= Km =
⎡⎣ −cm+1 − βqam+1

bm+1 + βpam+1
βam+1,x

⎤⎦ , m ≥ 0. (2.16)

All systems of evolution equations in this counterpart soliton hier-
archy are local, since the functions ai,bi, ci, i ≥ 1, are differential
polynomials in u. The first two nonlinear systems in the hierarchy
are as follows:⎧⎨⎩

pt1 = −px − qr − β
2 (p2 + q2)q,

qt1 = −qx + pr + β
2 p(p2 + q2), (2.17)
rt1 = β(ppx + qqx);
and⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

pt2 = −qxx + 2pxr + prx + qr2 − 1
2 (p2 + q2)q

+ β(pxq − pqx)q + β(p2 + q2)qr,

qt2 = pxx + 2qxr + qrx + 1
2 p(p2 + q2) − pr2

− βp(pxq − pqx) − βp(p2 + q2)r,

rt2 = β[−pxxq + pqxx − 2(px p + qxq)r − (p2 + q2)rx].

(2.18)

3. Hamiltonian structures and Liouville integrability

We shall show that all systems in the counterpart soliton hi-
erarchy (2.16) are Liouville integrable. Towards this end, let us
first establish Hamiltonian structures for the counterpart hierarchy
(2.16). We shall use the trace identity [10,17]:

δ

δu

∫
tr

(
∂U

∂λ
W

)
dx = λ−γ ∂

∂λ
λγ tr

(
∂U

∂u
W

)
,

γ = −λ

2

d

dλ
ln

∣∣tr(W 2)∣∣, (3.1)

or generally, the variational identity (see [20,21]).
It is direct to see that

∂U

∂λ
= e1 =

⎡⎣ 0 0 −1
0 0 0
1 0 0

⎤⎦ ,
∂U

∂ p
= e2 =

⎡⎣ 0 −1 0
1 0 0
0 0 0

⎤⎦ ,

∂U

∂q
= e3 =

⎡⎣ 0 0 −1
0 0 0
1 0 0

⎤⎦ ,
∂U

∂r
= e1 =

⎡⎣ 0 0 −1
0 0 0
1 0 0

⎤⎦ ,

and so, we have

tr

(
W

∂U

∂λ

)
= −2a, tr

(
W

∂U

∂ p

)
= −2b,

tr

(
W

∂U

∂q

)
= −2c, tr

(
W

∂U

∂r

)
= −2a.

Now we readily see that the trace identity (3.1) gives rise to

δ

δu

∫
(−2a)dx = λ−γ ∂

∂λ
λγ

⎡⎣ −2b
−2c
−2a

⎤⎦ . (3.2)

A balance of coefficients of λ−m−1 for each m ≥ 0 in this equality
leads to

δ

δu

∫
am+1 dx = (γ − m)

⎡⎣ bm

cm

am

⎤⎦ , m ≥ 0.

The identity with m = 1 tells γ = 0, and thus, we obtain

δ

δu
Hm =

⎡⎣ bm

cm

am

⎤⎦ , m ≥ 1, (3.3)

with the Hamiltonian functionals being defined by

Hm =
∫ (

−am+1

m

)
dx, m ≥ 1. (3.4)

Obviously, noting am+1,x = pcm+1 − qbm+1, m ≥ 0, we can find
that

Km = J

⎡⎣ bm+1
cm+1
a

⎤⎦ , J =
⎡⎣ 0 −1 −βq

1 0 βp
βq −βp 2β∂

⎤⎦ , m ≥ 0. (3.5)

m+1
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A simple and straightforward computation shows that J is a
Hamiltonian operator. In the case of sl(2,R), the Hamiltonian op-
erator J is different, which can be generated by exchanging two
dependent variables p and q [18,19]. It follows now that the coun-
terpart soliton hierarchy (2.16) has the Hamiltonian structures:

utm = Km = J
δHm+1

δu
, m ≥ 0, (3.6)

where the Hamiltonian functionals Hm ’s are given by (3.4) and the
Hamiltonian operator is defined as in (3.5).

The resulting functionals correspond to common conservation
laws for each soliton system in the counterpart soliton hierarchy
(2.16). We point out that such differential polynomial conservation
laws can also be generated either by computer algebra codes (see,
e.g., [22]) or from some Riccati equation associated with the un-
derlying matrix spectral problem (see, e.g., [23–25]).

Upon observation of the Hamiltonian structures displayed in
(3.6) and the differential orders of the sequence {ai,bi, ci | i ≥ 1}
shown in the last section, we can now state that the counterpart
soliton hierarchy (2.16) is Liouville integrable. More concretely, ev-
ery member in the counterpart hierarchy (2.16) possesses infinitely
many independent commuting conserved functionals and symme-
tries:

{Hk,Hl} J :=
∫ (

δHk

δu

)T

J
δHl

δu
dx = 0, k, l ≥ 0, (3.7)

and

[Kk, Kl] := K ′
k(u)[Kl] − K ′

l (u)[Kk]
= J

δ

δu
{Hk,Hl} J = 0, k, l ≥ 0, (3.8)

where K ′ denotes the Gateaux derivative. These commuting rela-
tions are also consequences of the Virasoro algebra of Lax opera-
tors. See [26–28] for a detailed and systematical study on algebraic
structures related to Lax operators and zero curvature equations.

4. Concluding remarks

Based on the matrix loop algebra s̃o(3,R), we introduced a
counterpart matrix spectral problem of the D-AKNS spectral prob-
lem, and generated an integrable Hamiltonian counterpart of the
D-AKNS soliton hierarchy. All members in the resulting counter-
part soliton hierarchy are Hamiltonian and Liouville integrable.

Among typical discussed spectral matrices associated with
s̃o(3,R) are the following three:

U (u, λ) = λe1 + pe2 + qe3,

U (u, λ) = λ2e1 + λpe2 + λqe3,

U (u, λ) = λe1 + λpe2 + λqe3,

which correspond to the Ablowitz–Kaup–Newell–Segur spectral
matrix, the Kaup–Newell spectral matrix and the Wadati–Konno–
Ichikawa spectral matrix associated with sl(2,R), respectively. In
those three examples, the vector u consists of only two dependent
variables p and q. Our example is a new soliton hierarchy with
three dependent variables, and we hope more examples of such
soliton hierarchies with three dependent variables or even more
dependent variables, such as four or five dependent variables, can
be presented. Given a starting matrix loop algebra, it only needs a
considerable amount of time and computational dexterity to com-
pute hierarchies of integrable Hamiltonian systems.
There are many other higher-order matrix spectral problems
which engender soliton hierarchies (see, e.g., [29–36]). The study
of integrable couplings [37] associated with enlarged matrix loop
algebras [38] will definitely provide more specific examples of soli-
ton hierarchies generated from higher-order matrix spectral prob-
lems.
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