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Abstract. This paper explores the matrix modified Korteweg–de Vries (mKdV) integrable models using similarity
transformations. The study employs the Lax pair formulation as a foundation, proposing pairs of similarity
transformations to reduce the Lax pairs of the Ablowitz–Kaup–Newell–Segur matrix spectral problems, thereby
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these reduced integrable models.
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1. Introduction

It starts with formulating Lax pairs [1] to generate inte-
grable models [2], where the spectral matrices originate
from matrix Lie algebras [3]. Infinitely many commut-
ing symmetries and conservation laws can be derived
from the associated Lax pairs, which are linked to
bi-Hamiltonian structures [4]. The inverse scattering
transform can then be applied to their Cauchy problems
[5,6].

The matrix Ablowitz–Kaup–Newell-Segur (AKNS)
spectral problems provide a universal framework for
typical integrable models, such as the nonlinear
Schrödinger (NLS) equation and the modified
Korteweg–de Vries (mKdV) equation. A single simi-
larity transformation can be used to reduce Lax pairs
and get the corresponding reduced integrable models
[7]. Applying a pair of similarity transformations can
produce a variety of reduced integrable models [8]. The
challenge lies in balancing the reductions applied to
the potentials generated by the two similarity trans-
formations, ensuring the invariance of the associated
zero-curvature equations [9].

Similarity transformations have also been widely
applied in the formulation of non-local integrable mod-
els involving reflection points [10]. A complete clas-
sification of lower-order non-local integrable models
associated with the matrix AKNS spectral problems has
identified three types of non-local NLS equations and
two types of non-local modified Korteweg–de Vries
mKdV equations [11]. Additionally, various efficient
approaches have been developed to study reduced inte-
grable models, particularly for constructing their soliton
solutions.

The classical inverse scattering transform remains a
powerful technique for solving Cauchy problems of
non-local integrable models [12,13]. Moreover, tech-
niques, such as the Hirota bilinear method, Bäcklund
transforms, Darboux transformation and Riemann–
Hilbert method have proven to be effective. Also,
several innovative mathematical frameworks have been
proposed to investigate non-local reduced integrable
models (see, e.g., [11,14–19]).

In this paper, we aim to present the reduced integrable
mKdV models through a pair of similarity transforma-
tions, based on the matrix AKNS spectral problems. The
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crucial step involves formulating two similarity trans-
formations that are consistent with each other. In §2, we
lay the foundation for the subsequent analysis by revisit-
ing the AKNS matrix spectral problems, their associated
integrable mKdV models and the general framework for
conducting pairs of similarity transformations. In §3, we
analyse four application scenarios within the generat-
ing scheme, each using distinct sets of block matrices to
construct the pair of similarity transformations. These
examples of integrable mKdV models highlight the rich-
ness of the reduced matrix AKNS integrable models.
The final section provides a summary of our results,
along with some concluding remarks.

2. Matrix-integrable mKdV models via similarity
transformations

2.1 Revisiting the matrix AKNS integrable hierarchies

Letm and n be two natural numbers. As usual, we define
two matrix potentials, p and q, as follows:

p = p(x, t) = (p jk)m×n,

q = q(x, t) = (qkj )n×m,
(1)

and denote the dependent variable by u = u(p, q),
which is a vector-valued function of p and q. For each
r ≥ 0, we associate a pair of standard matrix AKNS
spectral problems:

− iφx = Uφ,

− iφt = V [r ]φ,
(2)

where the Lax pairs are defined as follows:

U = U (u, λ) = λ� + P (3)

and

V [r ] = V [r ](u, λ) = λr� + Q[r ], (4)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� =
[

α1 Im 0
0 α2 In

]

,

P =
[

0 p
q 0

]

,

� =
[

β1 Im 0
0 β2 In

]

,

Q[r ] =
r−1∑

s=0
λs

[
a[r−s] b[r−s]
c[r−s] d[r−s]

]

.

(5)

In these Lax pairs, Ik is the identity matrix of size k,
λ denotes the spectral parameter, α1, α2 and β1, β2 are
two pairs of arbitrary distinct constants and Q[0] is the
(m+n)th-order zero matrix. Additionally, starting with

the initial condition W [0] = �, we define the following
Laurent series:

W =
∑

s≥0

λ−sW [s] =
∑

s≥0

λ−s
[
a[s] b[s]
c[s] d[s]

]

. (6)

This series represents the unique Laurent series solution
to the stationary zero-curvature equation

Wx = i[U,W ]. (7)

Such a series solution is a crucial object for generating
hierarchies of integrable models (see [20,21]).

The zero-curvature equations:

Ut − V [r ]
x + i[U, V [r ]] = 0, r ≥ 0 (8)

ensure the consistency of the two matrix spectral prob-
lems in (2). Based on the specific forms in (3) and (4),
these generate the matrix AKNS hierarchy of integrable
models:

pt = iαb[r+1], qt = −iαc[r+1], r ≥ 0, (9)

where α = α1 − α2. The simplest case with m = n = 1
yields the AKNS integrable hierarchy with scalar poten-
tials, p and q [22]. Each system within the matrix
AKNS integrable hierarchy possesses a bi-Hamiltonian
structure, along with infinitely many symmetries and
conserved quantities (see [23–25]).

When r = 2s+1, s ≥ 1, the matrix AKNS integrable
hierarchy (9) reduces to the matrix mKdV integrable
hierarchy. Furthermore, when s = 1, we obtain the
first nonlinear integrable model – the integrable matrix
mKdV equations:
⎧
⎪⎨

⎪⎩

pt = − β

α3 (pxxx + 3pqpx + 3pxqp),

qt = − β

α3 (qxxx + 3qx pq + 3qpqx ),
(10)

where β = β1 −β2. The corresponding Lax matrix V [3]
is given by

V [3] = λ3� + β

α
λ2P − β

α2 λIm,n(P
2 + i Px )

− β

α3 (i[P, Px ] + Pxx + 2P3), (11)

where Im,n = diag(Im, −In). We note that many other
significant examples of higher-order matrix AKNS inte-
grable models can similarly be generated (see [26]).

2.2 Pairs of similarity transformations

To introduce a pair of similarity transformations, we
start by taking two constant, invertible, symmetric
square matrices of order m, denoted by �1 and 	1, and
two constant, invertible, symmetric square matrices of
order n, denoted by �2 and 	2. We then define two
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invertible constant square matrices of order m + n as
follows, as done in [9,27,28]:

� =
[

�1 0
0 �2

]

, 	 =
[

	1 0
0 	2

]

. (12)

Clearly, both � and 	 satisfy the following similarity
properties:

���−1 = 	�	−1 = �,

���−1 = 	�	−1 = �,
(13)

where � and � are defined as in (5). Assuming that AT

stands for the matrix transpose of a matrix A, we propose
the following pair of similarity transformations:

�U (λ)�−1 = −UT (−λ) = −(U (−λ))T ,

	U (λ)	−1 = −UT (−λ) = −(U (−λ))T ,
(14)

whose constant terms correspond to the identities in
(13). It will be proved later that the original zero-
curvature equations of the mKdV equations remain
invariant under each of these similarity transformations.

Obviously, the two similarity transformations lead to
the following relations for the potential matrix P:

�P�−1 = −PT , 	P	−1 = −PT . (15)

These transformations give rise to the following pairs of
constraints for the two matrix potentials p and q:

pT = −�2q�−1
1 , qT = −�1 p�

−1
2 (16)

and

pT = −	2q	−1
1 , qT = −	1 p	

−1
2 . (17)

Since both � and 	 are symmetric, the two constraints
in (16) and (17) are compatible. Under each of the fol-
lowing two equivalent conditions:

�1 p�
−1
2 = 	1 p	

−1
2 (18)

or

�2q�−1
1 = 	2q	−1

1 , (19)

the two sets of constraints in (16) and (17) imply each
other.

Therefore, under the condition given either in (18) or
(19), the two similarity transformations in (14) generate
the reduced AKNS matrix spectral problems:

−iφx = Uφ, U =
[

α1λIm p

−�−1
2 pT�1 α2λIn

]

, (20)

where p must satisfy (18), or the other reduced AKNS
matrix spectral problems:

−iφx = Uφ, U =
[

α1λIm −�−1
1 qT�2

q α2λIn

]

, (21)

where q must satisfy (19).

2.3 Reduced integrable matrix mKdV models

Note that we take the initial data

W [0] = � =
[

β1 Im 0
0 β2 In

]

, (22)

as the starting term of the Laurent series solution W .
Under the similarity transformations given in (14), we
see from the uniqueness of solutions to the stationary
zero-curvature equation that the solution W , determined
by (6), satisfies

�W (λ)�−1 = WT (−λ) = (W (−λ))T ,

	W (λ)	−1 = WT (−λ) = (W (−λ))T .
(23)

Therefore, for all s ≥ 0, we have
⎧
⎪⎪⎨

⎪⎪⎩

�V [2s+1](λ)�−1 = −V [2s+1]T (−λ)

= −(V [2s+1](−λ))T ,

	V [2s+1](λ)	−1 = −V [2s+1]T (−λ)

= −(V [2s+1](−λ))T ,

(24)

and thus, we obtain

�(Ut − V [2 s+1]
x + i[U, V [2 s+1]])(λ)�−1

= −((Ut − V [2 s+1]
x + i[U, V [2 s+1]])(−λ))T

and

	(Ut − V [2 s+1]
x + i[U, V [2 s+1]])(λ)	−1

= −((Ut − V [2 s+1]
x + i[U, V [2 s+1]])(−λ))T .

Consequently, the matrix AKNS integrable models in
(9) with r = 2s + 1 reduce to the following integrable
mKdV models:

pt = 2ib[2s+2]|q=−�−1
2 pT�1

, s ≥ 0, (25)

where p satisfies (18) or

qt = −2ic[2s+2]|p=−�−1
1 qT�2

, s ≥ 0, (26)

where q satisfies (19).
The matrix spectral problems (20) and

−iφt = V [2s+1]|q=−�−1
2 pT�1

φ, s ≥ 0, (27)

provide Lax pairs for the reduced integrable hierarchy
(25), or the matrix spectral problems (21) and

−iφt = V [2s+1]|p=−�−1
1 qT�2

φ, s ≥ 0 (28)

provide Lax pairs for the reduced integrable hierarchy
(26).

As a consequence of the Lax operator algebras (see
[29]), the resulting reduced integrable models possess
infinitely many commuting symmetries. It is important
to note that since �1, �2, 	1 and 	2 are arbitrary,
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selecting specific forms for these matrices allows for
the construction of a wide variety of integrable mKdV
models. These models serve as concrete examples of
the broader class of reduced integrable matrix AKNS
models. However, when r = 2s, s ≥ 0, the similarity
properties observed in (24) do not hold.

3. Four implementation scenarios

In this section, we explore four distinct scenarios by
selecting four sets of pairs of similarity transforma-
tions. Each scenario presents an illustrative example of
a reduced matrix AKNS spectral problem and its corre-
sponding integrable mKdV equations. We focus on the
case where m = 2 and n = 3, with the spectral matrix
given by

U = U (u, λ) =
[

α2λI2 p
q α2λI3

]

, (29)

where p satisfy(18) and q is determined by the second
equation in either (16) or (17). Alternatively, q may sat-
isfy (19), in which case p is given by the first equation
in either (16) or (17).

Example 1. Let us begin by introducing a pair of similar-
ity transformations. We consider the following specific
pairs of matrices:

�1 =
[

0 σ1
σ1 0

]

, �2 =
⎡

⎣
0 0 δ1
0 δ2 0
δ1 0 0

⎤

⎦ ;

	1 =
[

σ1 0
0 σ1

]

, 	2 =
⎡

⎣
δ1 0 0
0 δ2 0
0 0 δ1

⎤

⎦ ,

(30)

where σ1, δ1 and δ2 are arbitrary non-zero constants. In
this manner, the similarity transformations (14) generate
the expressions for p and q:

p =
[
p1 p2 p3
p3 p2 p1

]

, q =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−σ1

δ1
p1 −σ1

δ1
p3

−σ1

δ2
p2 −σ1

δ2
p2

−σ1

δ1
p3 −σ1

δ1
p1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (31)

It is now straightforward to observe that the corre-
sponding reduced integrable matrix mKdV equations
with u = (p1, p2, p3)

T are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1,t=− β

α3 p1,xxx+ 3βσ1

α3δ1δ2

×{[
δ1 p2

2+2δ2(p2
1+p2

3)
]
p1,x

+δ1 p2(p1+p3)p2,x+(δ1 p2
2+4δ2 p1 p3)p3,x

}
,

p2,t = − β

α3 p2,xxx + 3βσ1

α3δ1δ2

×{[
4δ1 p2

2 + δ2(p1 + p3)
2
]
p2,x

+δ2 p2(p1 + p3)(p1,x + p3,x )
}
,

p3,t=− β

α3 p3,xxx+ 3βσ1

α3δ1δ2

×{
(δ1 p2

2+4δ2 p1 p3)p1,x+δ1 p2(p1+p3)p2,x

+[
δ1 p2

2+2δ2(p2
1+p2

3)
]
p3,x

}
,

(32)

where α, β, σ1, δ1 and δ2 are arbitrary but non-zero con-
stants.

When taking

α = −σ1 = 1, β = −δ1 = −δ2 = −1, (33)

the equations further reduce to the following integrable
mKdV equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1,t = p1,xxx + 3
[
(2p2

1 + p2
2 + 2p2

3)p1,x

+p2(p1+ p3)p2,x+(4p1 p3+ p2
2)p3,x

]
,

p2,t = p2,xxx + 3
{
p2(p1 + p3)(p1,x + p3,x )

+[
4p2

2 + (p1 + p3)
2
]
p2,x

}
,

p3,t = p3,xxx + 3
[
(4p1 p3 + p2

2)p1,x

+p2(p1 + p3)p2,x + (2p2
1 + p2

2 + 2p2
3)p3,x

]
.

(34)

Example 2. Next, we explore the second scenario by
choosing the following specific pairs of matrices:

�1 =
[

σ1 0
0 σ1

]

, �2 =
⎡

⎣
0 0 δ1
0 δ2 0
δ1 0 0

⎤

⎦ ;

	1 =
[

0 σ1
σ1 0

]

, 	2 =
⎡

⎣
δ1 0 0
0 δ2 0
0 0 δ1

⎤

⎦ ,

(35)

where σ1, δ1 and δ2 are arbitrary non-zero constants.
Note that we have swapped the selections for �1 and
	1 in Example 1. Under these choices, the similar-
ity transformations (14) result in the expressions for p
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and q:

p =
[
p1 p2 p3
p3 p2 p1

]

, q =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−σ1

δ1
p3 −σ1

δ1
p1

−σ1

δ2
p2 −σ1

δ2
p2

−σ1

δ1
p1 −σ1

δ1
p3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (36)

Consequently, the corresponding reduced integrable
matrix mKdV equations with u = (p1, p2, p3)

T are
given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1,t= − β

α3 p1,xxx+ βσ1

α3δ1δ2

{
(δ1 p

2
2+4δ2 p1 p3)p1,x

+δ1 p2(p1+ p3)p2,x+
[
δ1 p2

2 +2δ2(p2
1 + p2

3)
]
p3,x

}
,

p2,t= − β

α3 p2,xxx+ βσ1

α3δ1δ2

{[
4δ1 p

2
2 +δ2(p1+p3)

2]

×p2,x + δ2 p2(p1 + p3)(p1,x + p3,x )
}
,

p3,t =− β

α3 p3,xxx+ βσ1

α3δ1δ2

{[
δ1 p

2
2 +2δ2(p

2
1 + p2

3)
]

×p1,x+δ1 p2(p1+ p3)p2,x+(δ1 p2
2+4δ2 p1 p3)p3,x

}
,

(37)

where α, β, σ1, δ1 and δ2 are arbitrary constants but non-
zero. Note that the nonlinear terms on the right-hand
side of the above model coincide with those in (32),
upon replacing p1 with p3.

By setting

α = −σ1 = 1, β = −δ1 = −δ2 = −1, (38)

the equations simplify to the following integrable mKdV
equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1,t = p1,xxx + 3
[
(4p1 p3 + p2

2)p1,x

+p2(p1+ p3)p2,x+(2p2
1 + p2

2 +2p2
3)p3,x

]
,

p2,t = p2,xxx + 3
{
p2(p1 + p3)(p1,x

+p3,x ) + [
4p2

2 + (p1 + p3)
2
]
p2,x

}
,

p3,t = p3,xxx + 3
[
(2p2

1 + p2
2 + 2p2

3)p1,x

+p2(p1 + p3)p2,x + (4p1 p3 + p2
2)p3,x

]
.

(39)

Example 3. Now, we examine the third scenario by
selecting the following specific pairs of matrices:

�1 =
[

0 σ1
σ1 0

]

, �2 =
⎡

⎣
0 0 δ1
0 δ2 0
δ1 0 0

⎤

⎦ ;

	1 =
[

0 σ1
σ1 0

]

, 	2 =
⎡

⎣
δ1 0 0
0 δ2 0
0 0 δ1

⎤

⎦ , (40)

where again σ1, δ1 and δ2 are arbitrary non-zero con-
stants. In these choices, we have used off-diagonal

matrices for both �1 and 	1. Once these matrices have
been set, the similarity transformations described in (14)
lead to the explicit expressions for p and q:

p =
[
p1 p2 p1
p3 p4 p3

]

, q =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−σ1

δ1
p3 −σ1

δ1
p1

−σ1

δ2
p4 −σ1

δ2
p2

−σ1

δ1
p3 −σ1

δ1
p1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (41)

Then, it can be directly seen that the corresponding
reduced integrable matrix mKdV equations with u =
(p1, p2, p3, p4)

T take the following form:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1,t=− β

α3 p1,xxx+ βσ1

α3δ1δ2

[
(6δ2 p1 p3+δ1 p2 p4)p1,x

+δ1(p1 p4+p2 p3)p2,x+(2δ2 p2
1+δ1 p2

2)p3,x
]
,

p2,t = − β

α3 p2,xxx+ βσ1

α3δ1δ2

[
2δ2(p1 p4+p2 p3)p1,x

+(2δ2 p1 p3+3δ1 p2 p4)p2,x+(2δ2 p2
1+δ1 p2

2)p4,x
]
,

p3,t=− β

α3 p3,xxx+ βσ1

α3δ1δ2

[
(2δ2 p

2
3+δ1 p

2
4)p1,x

+(6δ2 p1 p3+δ1 p2 p4)p3,x+δ1(p1 p4+p2 p3)p4,x
]
,

p4,t=− β

α3 p4,xxx+ βσ1

α3δ1δ2

[
(2δ2 p

2
3+δ1 p

2
4)p2,x

+2δ2(p1 p4+p2 p3)p3,x+(2δ2 p1 p3+3δ1 p2 p4)p4,x
]
,

(42)

where α, β, σ1, δ1, δ2 are arbitrary but non-zero con-
stants.

When choosing

α = −σ1 = 1, β = −δ1 = −δ2 = −1, (43)

we obtain the simplified integrable mKdV equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1,t = p1,xxx + 3
[
(6p1 p3 + p2 p4)p1,x

+(p1 p4 + p2 p3)p2,x + (2p2
1 + p2

2)p3,x
]
,

p2,t = p2,xxx + 3
[
2(p1 p4 + p2 p3)p1,x

+(2p1 p3 + 3p2 p4)p2,x + (2p2
1 + p2

2)p4,x
]
,

p3,t = p3,xxx + 3
[
(2p2

3 + p2
4)p1,x + (6p1 p3

+p2 p4)p3,x + (p1 p4 + p2 p3)p4,x
]
,

p4,t = p4,xxx + 3
[
(2p2

3 + p2
4)p2,x + 2(p1 p4

+p2 p3)p3,x + (2p1 p3 + 3p2 p4)p4,x
]
.

(44)

Example 4. Lastly, we explore the fourth scenario by
defining the following specific matrix pairs:

�1 =
[

σ1 0
0 σ1

]

, �2 =
⎡

⎣
0 0 δ1
0 δ2 0
δ1 0 0

⎤

⎦ ;
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	1 =
[

σ1 0
0 σ1

]

, 	2 =
⎡

⎣
δ1 0 0
0 δ2 0
0 0 δ1

⎤

⎦ , (45)

where once again, we have σ1, δ1 and δ2 as arbitrary non-
zero constants. In these matrix choices, we have selected
diagonal matrices for both�1 and	1. After setting these
matrices, the similarity transformations outlined in (14)
provide explicit expressions for p and q:

p =
[
p1 p2 p1
p3 p4 p3

]

, q =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−σ1

δ1
p1 −σ1

δ1
p3

−σ1

δ2
p2 −σ1

δ2
p4

−σ1

δ1
p1 −σ1

δ1
p3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (46)

Thus, it is clear that the corresponding reduced inte-
grable matrix mKdV equations, with u = (p1, p2, p3,

p4)
T , take the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1,t=− β

α3 p1,xxx+ βσ1

α3δ1δ2

[
(4δ2 p

2
1+δ1 p

2
2+2δ2 p

2
3)

×p1,x + δ1(p1 p2+p3 p4)p2,x + (2δ2 p1 p3

+δ1 p2 p4)p3,x
]
,

p2,t = − β

α3 p2,xxx+ βσ1

α3δ1δ2

[
2δ2(p1 p2+p3 p4)p1,x

+(2δ2 p2
1 + 2δ1 p2

2 + δ1 p2
4)p2,x + (2δ2 p1 p3

+δ1 p2 p4)p4,x
]
,

p3,t=− β

α3 p3,xxx+ βσ1

α3δ1δ2

[
(2δ2 p1 p3+δ1 p2 p4)p1,x

+(2δ2 p2
1 + 4δ2 p2

3 + δ1 p2
4)p3,x + δ1(p1 p2

+p3 p4)p4,x
]
,

p4,t=− β

α3 p4,xxx+ βσ1

α3δ1δ2

[
(2δ2 p1 p3+δ1 p2 p4)p2,x

+2δ2(p1 p2 + p3 p4)p3,x + (δ1 p2
2+2δ2 p2

3

+2δ1 p2
4)p4,x

]
,

(47)

where α, β, σ1, δ1, δ2 are arbitrary non-zero constants.
When choosing

α = −σ1 = 1,

β = −δ1 = −δ2 = −1, (48)

we obtain the simplified integrable mKdV equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1,t = p1,xxx + 3
[
(4p2

1 + p2
2 + 2p2

3)p1,x

+(p1 p2+ p3 p4)p2,x+(2p1 p3+ p2 p4)p3,x
]
,

p2,t = p2,xxx + 3
[
2(p1 p2 + p3 p4)p1,x

+(2p2
1 +2p2

2 + p2
4)p2,x+(2p1 p3+ p2 p4)p4,x

]
,

p3,t = p3,xxx + 3
[
(2p1 p3 + p2 p4)p1,x

+(2p2
1 +4p2

3 + p2
4)p3,x+(p1 p2+ p3 p4)p4,x

]
,

p4,t = p4,xxx + 3
[
(2p1 p3 + p2 p4)p2,x

+2(p1 p2+ p3 p4)p3,x+(p2
2 +2p2

3 +2p2
4)p4,x

]
.

(49)

We point out that it is also straightforward to compute
the Lax matrix V [3], as defined by (11), in these four
scenarios. This matrix provides the temporal part of the
Lax pairs for the resulting reduced integrable mKdV
models.

4. Concluding remarks

This paper investigates a pair of similarity transforma-
tions of the same form, applied to the matrix AKNS
spectral problems, leading to reduced integrable matrix
mKdV models. Four specific scenarios of these reduced
integrable matrix mKdV models are constructed, along
with their corresponding reduced matrix AKNS spectral
problems. A central focus of this study is the identifica-
tion of two appropriate similarity transformations that
produce novel mKdV integrable models, thus extend-
ing the framework established in earlier studies (see
[9,27,28]).

The examples presented demonstrate the versatility
and depth of the reduced Lax pairs in constructing
integrable models. By applying various similarity trans-
formations to the zero-curvature equations, a wide range
of integrable reductions can be achieved (see [30–33]).
The choice of diagonal block matrices in the similar-
ity transformations is crucial in shaping the structure
of these systems. These transformations open avenues
for exploring fascinating nonlinear wave phenomena,
with significant potential applications in applied and
engineering sciences. Moreover, they contribute to the
ongoing development of integrable models linked to
higher-order matrix spectral problems, as examined in
[34–39].

This research explores the applications of a frame-
work for the formulation and in-depth analysis of
integrable models. Comparing these models with oth-
ers could provide valuable insights in uncovering the
algebraic and geometric structures inherent in various
integrable models. Furthermore, studying captivating
solution phenomena, such as rogue waves, lump waves
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and soliton waves, would be of great interest (see [40–
49]). The integrable models presented in this work offer
fresh perspectives on classifying multicomponent inte-
grable models within the Lax pair framework, with
the expectation that these models will contribute to
promising applications in both physical and engineer-
ing sciences.
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