
Pramana – J. Phys.           (2024) 98:68 © Indian Academy of Sciences
https://doi.org/10.1007/s12043-024-02765-8

Solving a non-local linear differential equation model of
the Newtonian-type
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Abstract. Motivated by recent studies on non-local integrable models, we consider a non-local inhomogeneous
linear differential equation model of Newtonian type:

x ′′(t) = λx(t) + μx(−t) + f (t), t ∈ R,

where λ and μ are real constants and f is continuous. Through decomposing functions into their even and odd
parts, we transform the non-local model into a local model, and then with the classical ODE technique, solve the
resulting local model under the even and odd constraints. The general solution involving two arbitrary constants is
presented in nine cases of the coefficients.
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1. Introduction

Non-local differential equations have various applica-
tions in physical sciences and engineering [1,2]. One
popular application of non-local dynamics is panto-
graph modelling [3]. It has a long history in pantograph
mechanics and pantograph transport [4]. In particular,
the eidograph was invented in 1821 to improve upon
the practical utility of the pantograph [5]. Non-local
equation models contain delay differential equation
models [6,7]. Such models have been introduced to anal-
yse ultradian oscillations of insulin and glucose [8,9],
and to describe physiological control systems regard-
ing dynamical respiratory and hematopoietic diseases
[10]. Two concrete examples are discrete delay equa-
tion models (see, e.g., [11]),

x ′′(t) = F(t, x(t), x(t − a)), a > 0 (1)

and pantograph equation models (see, e.g., [12]),

x ′′(t) = F(t, x(t), x(λt)), 0 < λ < 1, (2)

where F is a continuous function.

Recently, there have been abundant studies on non-
local integrable equations (see, e.g., [13,14]). This
motivates us to consider a class of non-local differential
equation models, involving the value of the unknown
function at the inverse point of time t . The following
equations are among the examples of such equation
models of the Newtonian type:

x ′′(t) = F(t, x(t), x(−t)), t ∈ R (3)

and

x ′′(t) = F(t, x(t), x(t−1)), t > 0, (4)

where F is again a continuous function.
In this paper, we would like to solve the non-local

inhomogeneous linear differential equation model of the
Newtonian type:

x ′′(t) = λx(t) + μx(−t) + f (t), t ∈ R, (5)

where λ and μ are arbitrary real constants and f is a
given continuous function. The left-hand side of the
model is the acceleration, while the right-hand side is
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a force acting on entangled particles. This is the sim-
plest example of non-local linear models of the above
Newtonian-type. Obviously, this non-local model pos-
sesses a linear superposition principle, which exhibits
its solution structure. We will determine a general solu-
tion, which contains two arbitrary constants, to model
(5) in nine cases of the coefficients λ and μ. The results
also show that the dimension of the solution space of
the corresponding homogeneous counterpart non-local
model is two. The conclusion is given in the last section.

2. General solution to the non-local model

We solve the non-local inhomogeneous differential
equation model of the Newtonian-type:

x ′′(t) = λx(t) + μx(−t) + f (t), t ∈ R, (6)

where λ and μ are arbitrary real constants and f is a
continuous function on R. Let us make the even and
odd function decompositions

x(t) = y(t) + z(t), f (t) = g(t) + h(t), (7)

where y and g are even functions, and z and h are odd
functions. Actually, we have

⎧
⎪⎨

⎪⎩

y(t) = 1

2
(x(t) + x(−t)), z(t) = 1

2
(x(t) − x(−t)),

g(t)=1

2
( f (t)+ f (−t)), h(t)=1

2
( f (t)− f (−t)).

(8)

Then, by balancing the even and odd functions, the inho-
mogeneous non-local model (6) becomes

y′′(t) = (λ + μ)y(t) + g(t) (9)

and

z′′(t) = (λ − μ)z(t) + h(t). (10)

This is a local and decoupled model, which can be
solved by the traditional approach. The decomposition
into even and odd function parts makes it possible to
solve the non-local model (6).

We first solve the two resulting local equation models
of the Newtonian-type, eqs (9) and (10). The construc-
tion process requires us to pay attention to the fact that
y is even and z is odd.

Depending on the three cases of

λ + μ = 0, λ + μ > 0, λ + μ < 0, (11)

by the ODE theory, we have the general solution to the
even part local model (9):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(t) = c +
∫ t

0

∫ s

0
g(r)drds,

y(t) = c cosh(a1t)

+ 1

a1

∫ t

0
sinh(a1(t − s))g(s)ds,

y(t) = c cos(a2t) + 1

a2

∫ t

0
sin(a2(t − s))g(s)ds,

(12)

respectively, where c is an arbitrary constant and

a1 = √
λ + μ, a2 = √−λ − μ. (13)

Similarly, depending on the three cases of

λ − μ = 0, λ − μ > 0, λ − μ < 0, (14)

by the ODE theory, we have the general solution to the
odd part local model (10):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

z(t) = d t +
∫ t

0

∫ s

0
h(r)drds,

z(t) = d cosh(b1t)

+ 1

b1

∫ t

0
sinh(b1(t − s))h(s)ds,

z(t) = d cos(b2t) + 1

b2

∫ t

0
sin(b2(t − s))h(s)ds,

(15)

respectively, where d is an arbitrary constant and

b1 = √
λ − μ, b2 = √

μ − λ. (16)

Now, we can present the general solution to the inho-
mogeneous non-local model (6) of the Newtonian-type
in the following nine cases of the coefficients.

Case 1.1. λ + μ = 0, λ − μ = 0: This means that

λ = μ = 0. (17)

The general solution reads as

x(t) = c +
∫ t

0

∫ s

0
g(r)drds + d t +

∫ t

0

∫ s

0
h(r)drds

= c + d t +
∫ t

0

∫ s

0
f (r)drds, (18)

where c and d are arbitrary constants.

Case 1.2. λ+μ = 0, λ−μ > 0: This exactly tells that

λ = −μ, μ < 0. (19)

The general solution is given by

x(t) = c +
∫ t

0

∫ s

0
g(r)drds + d sinh(b1t)

+ 1

b1

∫ t

0
sinh(b1(t−s))h(s)ds, (20)
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where b1 = √
λ − μ = √

2λ, and c and d are arbitrary
constants.

Case 1.3. λ + μ = 0, λ < μ: This means that

λ = −μ, μ > 0. (21)

The general solution reads as

x(t) = c +
∫ t

0

∫ s

0
g(r)drds + d sin(b2t)

+ 1

b2

∫ t

0
sin(b2(t − s))h(s)ds, (22)

where b2 = √
μ − λ = √

2μ, and c and d are arbitrary
constants.

Case 2.1. λ + μ > 0, λ − μ = 0: This means that

λ = μ, μ > 0. (23)

The general solution reads as

x(t) = c cosh(a1t) + 1

a1

∫ t

0
sinh(a1(t − s))g(s)ds

+ d t +
∫ t

0

∫ s

0
h(r)drds, (24)

where a1 = √
λ + μ = √

2μ, and c and d are arbitrary
constants.

Case 2.2. λ+μ > 0, λ−μ > 0: This exactly tells that

λ > max(μ, −μ). (25)

The general solution is given by

x(t) = c cosh(a1t) + 1

a1

∫ t

0
sinh(a1(t − s))g(s)ds

+d sinh(b1t) + 1

b1

∫ t

0
sinh(b1(t − s))h(s)ds,

(26)

where a1 = √
λ + μ, b1 = √

λ − μ, and c and d are
arbitrary constants.

Case 2.3. λ + μ > 0, λ − μ < 0: This means that

− μ < λ < μ, μ > 0. (27)

The general solution reads as

x(t) = c cosh(a1t) + 1

a1

∫ t

0
sinh(a1(t − s))g(s)ds

+ d sin(b2t) + 1

b2

∫ t

0
sin(b2(t − s))h(s)ds,

(28)

where a1 = √
λ + μ, b2 = √

μ − λ, and c and d are
arbitrary constants.

Case 3.1. λ + μ < 0, λ − μ = 0: This means that

λ = μ, λ < 0. (29)

The general solution reads as

x(t) = c cos(a2t) + 1

a2

∫ t

0
sin(a2(t − s))g(s)ds

+ d t +
∫ t

0

∫ s

0
h(r)drds,

(30)

where a2 = √−λ − μ = √−2λ, and c and d are arbi-
trary constants.

Case 3.2. λ+μ < 0, λ−μ > 0: This exactly tells that

μ < λ < −μ, μ < 0. (31)

The general solution is given by

x(t) = c cos(a2t) + 1

a2

∫ t

0
sin(a2(t − s))g(s)ds

+ d sinh(b1t) + 1

b1

∫ t

0
sinh(b1(t − s))h(s)ds,

(32)

where a2 = √−λ − μ, b1 = √
λ − μ, and c and d are

arbitrary constants.

Case 3.3. λ + μ < 0, λ − μ < 0: This means that

λ < min(μ, −μ). (33)

The general solution reads as

x(t) = c cos(a2t) + 1

a2

∫ t

0
sin(a2(t − s))g(s)ds

+ d sin(b2t) + + 1

b2

∫ t

0
sin(b2(t − s))h(s)ds,

(34)

where a2 = √−λ − μ, b2 = √
μ − λ, and c and d are

arbitrary constants.

Example 2.1. Let us take

λ = 2, μ = 1, f (t) = et (35)

and so the non-local model of the Newtonian-type is

x ′′(t) = 2x(t) + x(−t) + et . (36)

This is a special example ofCase 2.2, for which we have

a1 = √
3, b1 = 1, g(t) = cosh t, h(t) = sinh t.

Then by (26), the general solution to (36) reads as

x(t) = c cosh(
√

3 t) + d sinh t − 1

2
et + 1

2
t cosh t,

(37)
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where c and d are arbitrary constants.

Example 2.2. Let us take

λ = 1, μ = −2, f (t) = cos t + sin(2t), (38)

and so the non-local model of the Newtonian-type is

x ′′(t) = x(t) − 2x(−t) + cos t + sin(2t). (39)

This is a particular example of Case 3.2, and we have

a2 = 1, b1 = √
3, g(t) = cos t, h(t) = sin(2t).

Further, based on (32), we arrive at the general solution
to (39):

x(t) = c cos t + d sinh(
√

3 t) − 1

7
sin(2t) + 1

2
t sin t,

(40)

where c and d are again arbitrary constants.
To summarise, the general solution to the inhomoge-

neous non-local differential equation model (6) of the
Newtonian-type is given by (18), (20), (22), (24), (26),
(28), (30), (32) or (34), depending on the nine cases
(17), (19), (21), (23), (25), (27), (29), (31) and (33) of
the two coefficients λ and μ, respectively. The solution
contains two arbitrary constants, c and d, and thus, the
dimension of the solution space of the corresponding
homogeneous counterpart non-local model is two.

3. Concluding remarks

We have presented the general solution to a non-local
inhomogeneous linear differential equation model of the
Newtonian-type in (5). The solution involves two arbi-
trary constants, and thus, the dimension of the solution
space of the corresponding homogeneous counterpart
non-local model is two. The success is to use the decom-
position of functions into their even and odd parts to
remove non-locality. By such an idea, one transforms
the non-local model into a local and decoupled system
to solve.

It is worth pointing out that there is a very different
situation on the existence and uniqueness of solutions
for Cauchy problems in the non-local case. Let us show
this by considering a specific Cauchy problem:
{
x ′′(t) = −μx(t) + μx(−t), t ∈ R,

x(t0) = x0, x ′(t0) = x ′
0,

(41)

where μ > 0 and t0, x0, x ′
0 ∈ R. Based on the general

solution (22), we can easily observe that upon setting
b2 = √

2μ, if cos(b2t0) �= 0, then there is a unique
solution:

x(t) = x0 − x ′
0

b2
tan(b2t0) + x ′

0

b2 cos(b2t0)
sin(b2t), (42)

and if cos(b2t0) = 0, then x ′(t0) = 0, and thus, there is
no solution when x ′

0 �= 0 and there are infinitely many
solutions when x ′

0 = 0:

x(t) = x0 − d sin(b2t0) + d sin(b2t), (43)

where d is an arbitrary constant.
There is another similar type of non-local linear dif-

ferential equation model of the Newtonian-type:

x ′′(t) = λx(t) + μx(t−1) + f (t), t > 0, (44)

where λ and μ are arbitrary real constants, and f is a
continuous function. The coordinate t−1 is the inverse of
t with respect to the group operation – the multiplication,
while the coordinate −t in the previous model (5) is the
inverse of t with respect to the other group operation –
the addition. The above non-local model should be more
difficult to deal with. We expect that one day, one can
present some effective way to solve it.

There exist various non-local integrable partial dif-
ferential equations, which are formulated through con-
ducting one group reduction (see, e.g., [14,15]) and two
group reductions (see, e.g., [16,17]) of matrix spec-
tral problems. Riemann–Hilbert problems and soliton
solutions have been presented for non-local integrable
nonlinear Schrödinger equations (see, e.g., [17,18]) and
non-local integrable modified Korteweg–de Vries equa-
tions (see, e.g., [16,19]). Illustrative examples include

iut = uxx ± [uu(x, −t) + u(−x, t)u(−x, −t)]u,

(45)

iut = uxx ± [uu∗(−x, t) + u(−x, −t)u∗(x, −t)]u
(46)

and

iut = uxx ± [uu∗(−x, t) + u(x, −t)u∗(−x, −t)]u
(47)

and

ut = uxxx ± 3[2uu∗(−x, −t)ux + u(−x, −t)(|u|2)x ],
(48)

ut = uxxx ± 3[2uu(−x, −t)ux + u∗(−x, −t)(|u|2)x ],
(49)

whereu∗ is the complex conjugate ofu. By the same idea
of decomposing functions into their even and odd parts,
one can study those non-local integrable equations like
local equations, supplementing analytical approaches to
local soliton-type solutions (see, e.g., [20–23]) and non-
local soliton-type solutions (see, e.g., [24–26]).



Pramana – J. Phys.           (2024) 98:68 Page 5 of 5    68 

Acknowledgements

The work was supported in part by the National Natu-
ral Science Foundation of China (12271488, 11975145
and 11972291), the Ministry of Science and Technology
of China (G2021016032L and G2023016011L) and the
Natural Science Foundation for Colleges and Universi-
ties in Jiangsu Province (17 KJB 110020). The author
would also like to thank Arthur Danielyan and Sherwin
Kouchekian for their valuable discussions.

References

[1] Y Kuang, Delay differential equations with applications
in population dynamics, in: Mathematics in Science and
Engineering (Academic Press, Boston, MA, 1993) Vol.
191

[2] R Jean-Pierre, Automatica 39, 1667 (2003)
[3] A Shapira and M Tyomkyn, Am. Math. Month. 128, 630

(2021)
[4] Sci. Amer. 73, 87 (1895)
[5] W Wallace, Trans. R. Soc. Edinb. 13, 418 (1836)
[6] R D Driver, Ordinary and delay differential equations, in:

Applied Mathematical Sciences (Springer-Verlag, New
York, 1977) Vol. 20

[7] T Erneux, Applied delay differential equations, in: Sur-
veys andTutorials in theAppliedMathematical Sciences
(Springer, New York, 2009) Vol. 3

[8] J Sturis, K S Polonsky, E Mosekilde and E Van Cauter,
Am. J. Physiol. Endocrinol. Metab. 260, E801 (1991)

[9] A Makroglou, J X Li and Y Kuang, Appl. Numer. Math.
56, 559 (2006)

[10] M C Mackey and L Glass, Science 197, 287 (1977)

[11] K Engelborghs, V Lemaire, J Bélair and D Roose,
J. Math. Biol. 42, 361 (2001)

[12] T Kato and J B McLeod, Bull. Am. Math. Soc. 77, 891
(1971)

[13] M J Ablowitz and Z H Musslimani,Phys. Rev. Lett. 110,
064105 (2013)

[14] W X Ma, Partial Differ. Equ. Appl. Math. 4, 100190
(2021)

[15] W X Ma, Y H Huang and F D Wang, Eur. J. Appl. Math.
33, 1062 (2022)

[16] W X Ma, Appl. Math. Lett. 131, 108074 (2022)
[17] W X Ma, Int. J. Geom. Meth. Mod. Phys. 20, 2350098

(2023)
[18] W X Ma, Rep. Math. Phys. 92, 19 (2023)
[19] W X Ma, J. Geom. Phys. 177, 104522 (2022)
[20] R Hirota, The direct method in soliton theory, in: Cam-

bridge Tracts in Mathematics, Series No. 155 (Cam-
bridge University Press, New York, 2004)
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