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A B S T R A C T

We present mixed-type reduced soliton hierarchies of nonlocal integrable nonlinear Schrödinger equations of
arbitrary even order by conducting two nonlocal group reductions for the Ablowitz–Kaup–Newell–Segur matrix
spectral problems. Based on specific distributions of eigenvalues and adjoint eigenvalues, we construct soliton
solutions by solving the corresponding reflectionless generalized Riemann–Hilbert problems, where eigenvalues
could equal adjoint eigenvalues.
. Introduction

Nonlinear integrable equations are often generated via zero curva-
ure equations and their Hamiltonian structures can be presented by
he trace identity1 or the variational identity,2 which produce infinitely
any symmetries and conservation laws. Based on matrix spectral
roblems, with which zero curvature equations are associated, the
nverse scattering transform solves Cauchy problems of integrable equa-
ions. By conducting group reductions for matrix spectral problems,
hich keep the zero curvature equations invariant, one can obtain both

ocal and nonlocal reduced integrable equations.
Nonlocal integrable equations have formed a new research area,

upplementing the classical theory of partial differential equations. By
aking one nonlocal group reduction, three kinds of nonlocal non-
inear Schrödinger (NLS) equations and two kinds of nonlocal modi-
ied Korteweg–de Vries (mKdV) equations can be generated from the
blowitz–Kaup–Newell–Segur (AKNS) matrix spectral problems.3,4 The

nverse scattering transform has been successfully applied to analysis of
oliton solutions to nonlocal integrable equations (see, e.g., Refs. 5–8).

Integrable equations can also be solved by other efficient approaches,
hich include Darboux transformation, the Hirota bilinear method
nd Riemann–Hilbert problems, and their soliton solutions can be
ystematically presented, indeed (see, e.g., Refs. 9–14). Particularly, the
iemann–Hilbert technique is used to solve nonlocal integrable NLS
nd mKdV equations.4,15–18 In this paper, we would like to present

E-mail address: mawx@cas.usf.edu.

a kind of mixed-type reduced nonlocal integrable NLS equations of
arbitrary even order by conducting two nonlocal group reductions
and compute their soliton solutions through reflectionless generalized
Riemann–Hilbert problems.

The rest of this paper is organized as follows. In Section 2, we recall
the AKNS hierarchies of integrable equations and their matrix spectral
problems to facilitate the exposition. In Section 3, we conduct two
nonlocal group reductions and present type (−𝜆∗,−𝜆) reduced nonlocal
integrable NLS hierarchies, where 𝜆 is the spectral parameter and ∗
stands for the complex conjugate. Two scalar prototype examples of
the resulting nonlocal integrable equations are

𝑝1,𝑡 = −
𝛽
𝛼2

𝑖[𝑝1,𝑥𝑥 − 2𝜎(𝑝1𝑝∗1(−𝑥, 𝑡) + 𝑝1(𝑥,−𝑡)𝑝∗1(−𝑥,−𝑡))𝑝1],

and

𝑝1,𝑡 = −
𝛽
𝛼2

𝑖[𝑝1,𝑥𝑥 − 2𝛿(𝑝1𝑝1(𝑥,−𝑡) + 𝑝∗1(−𝑥, 𝑡)𝑝
∗
1(−𝑥,−𝑡))𝑝1],

where 𝜎 = ±1, 𝛿 = ±1, and 𝛼 and 𝛽 are arbitrary real constants.
Both pairs of equations are obviously PT-symmetric. In Section 4, based
on the explored distribution of eigenvalues and adjoint eigenvalues,
we solve the corresponding reflectionless generalized Riemann–Hilbert
problems, where eigenvalues could equal adjoint eigenvalues, and com-
pute soliton solutions to the resulting hierarchies of reduced nonlocal
integrable NLS equations of arbitrary even order. In the last section, we
give a conclusion and a few concluding remarks.
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2. The matrix AKNS integrable hierarchies revisited

To facilitate the subsequent exposition, let us recall the AKNS
hierarchies of matrix integrable equations and their matrix spectral
problems.

First, let 𝜆 denote the spectral parameter, and 𝑝 and 𝑞 be two matrix
potentials:

𝑝 = 𝑝(𝑥, 𝑡) = (𝑝𝑗𝑘)𝑚×𝑛, 𝑞 = 𝑞(𝑥, 𝑡) = (𝑞𝑘𝑗 )𝑛×𝑚, (2.1)

where 𝑚, 𝑛 ≥ 1 are two arbitrarily given integers. The matrix AKNS
spectral problems are defined as follows:
{

−𝑖𝜙𝑥 = 𝑈𝜙 = 𝑈 (𝑢, 𝜆)𝜙 = (𝜆𝛬 + 𝑃 )𝜙,
−𝑖𝜙𝑡 = 𝑉 [𝑟]𝜙 = 𝑉 [𝑟](𝑢, 𝜆)𝜙 = (𝜆𝑟𝛺 +𝑄[𝑟])𝜙, 𝑟 ≥ 0.

(2.2)

Here the pair of the (𝑚+ 𝑛)-th order square matrices, 𝛬 and 𝛺, is given
by

𝛬 = diag(𝛼1𝐼𝑚, 𝛼2𝐼𝑛), 𝛺 = diag(𝛽1𝐼𝑚, 𝛽2𝐼𝑛), (2.3)

where 𝐼𝑠 denotes the identity matrix of size 𝑠, and 𝛼1, 𝛼2 and 𝛽1, 𝛽2 are
two pairs of arbitrarily given distinct real constants. The other pair of
(𝑚 + 𝑛)-th order square matrices, 𝑃 and 𝑄[𝑟], is determined by

𝑃 = 𝑃 (𝑢) =
[

0𝑝
𝑞 0

]

, (2.4)

which is called the potential matrix, and

𝑄[𝑟] =
𝑟−1
∑

𝑠=0
𝜆𝑠

[

𝑎[𝑟−𝑠] 𝑏[𝑟−𝑠]

𝑐[𝑟−𝑠] 𝑑[𝑟−𝑠]

]

, (2.5)

where 𝑎[𝑠], 𝑏[𝑠], 𝑐[𝑠] and 𝑑[𝑠] are defined recursively by

𝑏[0] = 0, 𝑐[0] = 0, 𝑎[0] = 𝛽1𝐼𝑚, 𝑑
[0] = 𝛽2𝐼𝑛, (2.6a)

𝑏[𝑠+1] = 1
𝛼
(−𝑖𝑏[𝑠]𝑥 − 𝑝𝑑[𝑠] + 𝑎[𝑠]𝑝), 𝑠 ≥ 0, (2.6b)

𝑐[𝑠+1] = 1
𝛼
(𝑖𝑐[𝑠]𝑥 + 𝑞𝑎[𝑠] − 𝑑[𝑠]𝑞), 𝑠 ≥ 0, (2.6c)

𝑎[𝑠]𝑥 = 𝑖(𝑝𝑐[𝑠] − 𝑏[𝑠]𝑞), 𝑑[𝑠]𝑥 = 𝑖(𝑞𝑏[𝑠] − 𝑐[𝑠]𝑝), 𝑠 ≥ 1, (2.6d)

with zero constants of integration being taken. Particularly, we can
work out

𝑄[1] =
𝛽
𝛼
𝑃 , 𝑄[2] =

𝛽
𝛼
𝜆𝑃 −

𝛽
𝛼2

𝐼𝑚,𝑛(𝑃 2 + 𝑖𝑃𝑥),

and

𝑄[3] =
𝛽
𝛼
𝜆2𝑃 −

𝛽
𝛼2

𝜆𝐼𝑚,𝑛(𝑃 2 + 𝑖𝑃𝑥) −
𝛽
𝛼3

(𝑖[𝑃 , 𝑃𝑥] + 𝑃𝑥𝑥 + 2𝑃 3),

where 𝛼 = 𝛼1 − 𝛼2, 𝛽 = 𝛽1 − 𝛽2 and 𝐼𝑚,𝑛 = diag(𝐼𝑚,−𝐼𝑛). Based on the
recursive relations in (2.6), we can also see that

𝑊 =
∑

𝑠≥0
𝜆−𝑠

[

𝑎[𝑠] 𝑏[𝑠]

𝑐[𝑠] 𝑑[𝑠]

]

(2.7)

presents a Laurent series solution to the stationary zero curvature
equation

𝑊𝑥 = 𝑖[𝑈,𝑊 ]. (2.8)

The compatibility conditions of the two matrix spectral problems in
2.2), i.e., the zero curvature equations:

𝑡 − 𝑉 [𝑟]
𝑥 + 𝑖[𝑈, 𝑉 [𝑟]] = 0, 𝑟 ≥ 0, (2.9)

yield one matrix AKNS integrable hierarchy (see, e.g., Ref. 19 for more
details):

𝑝𝑡 = 𝑖𝛼𝑏[𝑟+1], 𝑞𝑡 = −𝑖𝛼𝑐[𝑟+1], 𝑟 ≥ 0. (2.10)

By a Lax operator algebra theory20,21 and the trace identity,1 we
can directly show that the hierarchy (2.10) defines a hierarchy of com-
muting flows, each of which possesses a bi-Hamiltonian structure and
thus infinitely many commuting conservation laws. The first nonlinear
2

(i.e., 𝑟 = 2) integrable system in the hierarchy gives us the AKNS matrix
NLS equations:

𝑝𝑡 = −
𝛽
𝛼2

𝑖(𝑝𝑥𝑥 + 2𝑝𝑞𝑝), 𝑞𝑡 =
𝛽
𝛼2

𝑖(𝑞𝑥𝑥 + 2𝑞𝑝𝑞), (2.11)

here 𝑝 and 𝑞 are the two matrix potentials defined by (2.1).

. Type (−𝝀∗,−𝝀) reduced nonlocal NLS hierarchies

Let 𝛴1 and 𝛴2 be a pair of constant invertible Hermitian matrices of
izes 𝑚 and 𝑛, respectively, and 𝛥1 and 𝛥2, another pair of constant in-
ertible symmetric matrices of sizes 𝑚 and 𝑛, respectively. We consider
pair of nonlocal group reductions for the spectral matrix 𝑈 :
†(−𝑥, 𝑡,−𝜆∗) = (𝑈 (−𝑥, 𝑡,−𝜆∗))† = −𝛴𝑈 (𝑥, 𝑡, 𝜆)𝛴−1, (3.12)

nd
𝑇 (𝑥,−𝑡,−𝜆) = (𝑈 (𝑥,−𝑡,−𝜆))𝑇 = −𝛥𝑈 (𝑥, 𝑡, 𝜆)𝛥−1, (3.13)

here † and 𝑇 denote the Hermitian transpose and the matrix trans-
ose, respectively, and 𝛴 and 𝛥 are the two constant invertible matrices
efined by

=
[

𝛴1 0
0 𝛴2

]

, 𝛥 =
[

𝛥1 0
0 𝛥2

]

. (3.14)

Equivalently, these two group reductions require

𝑃 †(−𝑥, 𝑡) = −𝛴𝑃 (𝑥, 𝑡)𝛴−1, (3.15)

and

𝑃 𝑇 (𝑥,−𝑡) = −𝛥𝑃 (𝑥, 𝑡)𝛥−1, (3.16)

respectively. More precisely, they need the following reductions on the
matrix potentials 𝑝 and 𝑞:

𝑞(𝑥, 𝑡) = −𝛴−1
2 𝑝†(−𝑥, 𝑡)𝛴1, (3.17)

and

𝑞(𝑥, 𝑡) = −𝛥−1
2 𝑝𝑇 (𝑥,−𝑡)𝛥1, (3.18)

respectively. It therefore follows that the matrix potential 𝑝 must satisfy

𝛴−1
2 𝑝†(−𝑥, 𝑡)𝛴1 = 𝛥−1

2 𝑝𝑇 (𝑥,−𝑡)𝛥1, (3.19)

or the matrix potential 𝑞 must satisfy

𝛴−1
1 𝑞†(−𝑥, 𝑡)𝛴2 = 𝛥−1

1 𝑞𝑇 (𝑥,−𝑡)𝛥2, (3.20)

to guarantee that both group reductions in (3.12) and (3.13) are
compatible.

Furthermore, under the group reductions in (3.12) and (3.13), we
can show that
{

𝑊 †(−𝑥, 𝑡,−𝜆∗) = (𝑊 (−𝑥, 𝑡,−𝜆∗))† = 𝛴𝑊 (𝑥, 𝑡, 𝜆)𝛴−1,
𝑊 𝑇 (𝑥,−𝑡,−𝜆) = (𝑊 (𝑥,−𝑡,−𝜆))𝑇 = 𝛥𝑊 (𝑥, 𝑡, 𝜆)𝛥−1,

(3.21)

which implies that
{

𝑉 [2𝑠]†(−𝑥, 𝑡,−𝜆∗) = (𝑉 [2𝑠](−𝑥, 𝑡,−𝜆∗))† = 𝛴𝑉 [2𝑠](𝑥, 𝑡, 𝜆)𝛴−1,
𝑉 [2𝑠]𝑇 (𝑥,−𝑡,−𝜆) = (𝑉 [2𝑠](𝑥,−𝑡,−𝜆))𝑇 = 𝛥𝑉 [2𝑠](𝑥, 𝑡, 𝜆)𝛥−1,

(3.22)

and
{

𝑄[2𝑠]𝑇 (−𝑥, 𝑡,−𝜆∗) = (𝑄[2𝑠](−𝑥, 𝑡,−𝜆∗))† = 𝛴𝑄[2𝑠](𝑥, 𝑡, 𝜆)𝛴−1,

𝑄[2𝑠]𝑇 (𝑥,−𝑡,−𝜆) = (𝑄[2𝑠](𝑥,−𝑡,−𝜆))𝑇 = 𝛥𝑄[2𝑠](𝑥, 𝑡, 𝜆)𝛥−1,
(3.23)

where 𝑠 ≥ 0.
Consequently, under the potential reductions (3.17) and (3.18), the

integrable matrix AKNS equations in (2.10) with 𝑟 = 2𝑠, 𝑠 ≥ 0, are
reduced to a hierarchy of nonlocal integrable NLS type equations:

𝑝𝑡 = 𝑖𝛼𝑏[2𝑠+1]|𝑞=−𝛴−1
2 𝑝†(−𝑥,𝑡)𝛴1=−𝛥−12 𝑝𝑇 (𝑥,−𝑡)𝛥1

, 𝑠 ≥ 0, (3.24)

where 𝑝 is an 𝑚 × 𝑛 reduced matrix potential satisfying (3.19), 𝛴1 and

𝛴2 is a pair of arbitrary invertible Hermitian matrices of sizes 𝑚 and
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𝑛, respectively, and 𝛥1 and 𝛥2 are a pair of arbitrary invertible sym-
metric matrices of sizes 𝑚 and 𝑛, respectively. As consequences of the
two group reductions, each reduced equation in the hierarchy (3.24)
possesses a Lax pair of the reduced spatial and temporal matrix spectral
problems in (2.2) with 𝑟 = 2𝑠, 𝑠 ≥ 0, and infinitely many symmetries
and conservation laws reduced from those for the integrable matrix
AKNS equations in (2.10) with 𝑟 = 2𝑠, 𝑠 ≥ 0.

If we fix 𝑠 = 1, i.e., 𝑟 = 2, then the reduced nonlocal integrable NLS
type equations in (3.24) with 𝑠 = 1 produce a kind of reduced nonlocal
integrable NLS equations:

𝑝𝑡 = −
𝛽
𝛼2

𝑖(𝑝𝑥𝑥 − 2𝑝𝛴−1
2 𝑝†(−𝑥, 𝑡)𝛴1𝑝)

= −
𝛽
𝛼2

𝑖(𝑝𝑥𝑥 − 2𝑝𝛥−1
2 𝑝𝑇 (𝑥,−𝑡)𝛥1𝑝), (3.25)

where 𝑝 is an 𝑚 × 𝑛 reduced matrix potential satisfying (3.19).
Let us now work out some examples to illustrate these reduced

nonlocal integrable NLS equations, by taking different values for 𝑚, 𝑛
and appropriate choices for 𝛴, 𝛥. In our subsequent construction, we
will use two 2 × 2 matrices:

𝐼2 =
[

1 0
0 1

]

, 𝛱2 =
[

0 1
1 0

]

. (3.26)

Let us first consider the case of 𝑚 = 1 and 𝑛 = 2. We take

𝛴1 = 1, 𝛴−1
2 = 𝜎𝐼2, 𝛥1 = 1, 𝛥−1

2 = 𝛿𝛱2, (3.27)

where 𝜎 and 𝛿 are real constants satisfying 𝜎2 = 𝛿2 = 1. Then, the
potential constraint (3.19) equivalently needs

𝑝2 = 𝜎𝛿𝑝∗1(−𝑥,−𝑡),

where 𝑝 = (𝑝1, 𝑝2), and thus, the corresponding potential matrix 𝑃
becomes

𝑃 =

⎡

⎢

⎢

⎢

⎣

0 𝑝1 𝜎𝛿𝑝∗1(−𝑥,−𝑡)
−𝜎𝑝∗1(−𝑥, 𝑡) 0 0

−𝛿𝑝1(𝑥,−𝑡) 0 0

⎤

⎥

⎥

⎥

⎦

. (3.28)

Furthermore, the corresponding reduced nonlocal integrable NLS equa-
tions become

𝑝1,𝑡 = −
𝛽
𝛼2

𝑖[𝑝1,𝑥𝑥 − 2𝜎(𝑝1𝑝∗1(−𝑥, 𝑡) + 𝑝1(𝑥,−𝑡)𝑝∗1(−𝑥,−𝑡))𝑝1], (3.29)

where 𝜎 = ±1 and 𝑝∗1 denotes the complex conjugate of 𝑝1. In this
pair of equations, there are three types of nonlinearities: reverse-space,
reverse-time and reverse-spacetime nonlocalities.

Similarly, let us take

𝛴1 = 1, 𝛴−1
2 = 𝜎𝛱2, 𝛥1 = 1, 𝛥−1

2 = 𝛿𝐼2, (3.30)

where 𝜎 and 𝛿 are real constants satisfying 𝜎2 = 𝛿2 = 1. This choice
leads to the reduced potential matrix 𝑃 :

𝑃 =

⎡

⎢

⎢

⎢

⎣

0 𝑝1 𝜎𝛿𝑝∗1(−𝑥,−𝑡)
−𝛿𝑝1(𝑥,−𝑡) 0 0

−𝜎𝑝∗1(−𝑥, 𝑡) 0 0

⎤

⎥

⎥

⎥

⎦

, (3.31)

and the reduced mixed-type nonlocal integrable NLS equations:

𝑝1,𝑡 = −
𝛽
𝛼2

𝑖[𝑝1,𝑥𝑥 − 2𝛿(𝑝1𝑝1(𝑥,−𝑡) + 𝑝∗1(−𝑥, 𝑡)𝑝
∗
1(−𝑥,−𝑡))𝑝1], (3.32)

where 𝛿 = ±1 and 𝑝∗1 denotes the complex conjugate of 𝑝1 again. The
mixed-type nonlocality pattern in this pair of equations is different from
the one in (3.29).

Let us second consider the case of 𝑚 = 1 and 𝑛 = 4. We take

𝛴1 = 1, 𝛴−1
2 = diag(𝜎1𝐼2, 𝜎2𝐼2), 𝛥1 = 1, 𝛥−1

2 = diag(𝛿1𝛱2, 𝛿2𝛱2), (3.33)

and

𝛴 = 1, 𝛴−1 = diag(𝜎 𝛱 , 𝜎 𝛱 ), 𝛥 = 1, 𝛥−1 = diag(𝛿 𝐼 , 𝛿 𝐼 ), (3.34)
1 2 1 2 2 2 1 2 1 2 2 2

3

where 𝜎𝑗 and 𝛿𝑗 are real constants satisfying 𝜎2𝑗 = 𝛿2𝑗 = 1, 𝑗 = 1, 2. These
choices can produce the reduced potential matrices:

𝑃 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 𝑝1 𝜎1𝛿1𝑝∗1(−𝑥,−𝑡) 𝑝3 𝜎2𝛿2𝑝∗3(−𝑥,−𝑡)
−𝜎1𝑝∗1(−𝑥, 𝑡) 0 0 0 0
−𝛿1𝑝1(𝑥,−𝑡) 0 0 0 0

−𝜎2𝑝∗3(−𝑥, 𝑡) 0 0 0 0
−𝛿2𝑝3(𝑥,−𝑡) 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(3.35)

and

𝑃 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 𝑝1 𝜎1𝛿1𝑝∗1(−𝑥,−𝑡) 𝑝3 𝜎2𝛿2𝑝∗3(−𝑥,−𝑡)
−𝛿1𝑝1(𝑥,−𝑡) 0 0 0 0
−𝜎1𝑝∗1(−𝑥, 𝑡) 0 0 0 0

−𝛿2𝑝3(𝑥,−𝑡) 0 0 0 0
−𝜎2𝑝∗3(−𝑥, 𝑡) 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(3.36)

respectively. The corresponding two classes of two-component mixed-
type nonlocal integrable NLS equations read

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑝1,𝑡 = −
𝛽
𝛼2

𝑖[𝑝1,𝑥𝑥 − 2𝜎1(𝑝1𝑝∗1(−𝑥, 𝑡) + 𝑝1(𝑥,−𝑡)𝑝∗1(−𝑥,−𝑡))𝑝1

−2𝜎2(𝑝3𝑝∗3(−𝑥, 𝑡) + 𝑝3(𝑥,−𝑡)𝑝∗3(−𝑥,−𝑡))𝑝1],

𝑝3,𝑡 = −
𝛽
𝛼2

𝑖[𝑝3,𝑥𝑥 − 2𝜎1(𝑝1𝑝∗1(−𝑥, 𝑡) + 𝑝1(𝑥,−𝑡)𝑝∗1(−𝑥,−𝑡))𝑝3

−2𝜎2(𝑝3𝑝∗3(−𝑥, 𝑡) + 𝑝3(𝑥,−𝑡)𝑝∗3(−𝑥,−𝑡))𝑝3],

(3.37)

and
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑝1,𝑡 = −
𝛽
𝛼2

𝑖[𝑝1,𝑥𝑥 − 2𝛿1(𝑝1𝑝1(𝑥,−𝑡) + 𝑝∗1(−𝑥, 𝑡)𝑝
∗
1(−𝑥,−𝑡))𝑝1

−2𝛿2(𝑝3𝑝3(𝑥,−𝑡) + 𝑝∗3(−𝑥, 𝑡)𝑝
∗
3(−𝑥,−𝑡))𝑝1],

𝑝3,𝑡 = −
𝛽
𝛼2

𝑖[𝑝3,𝑥𝑥 − 2𝛿1(𝑝1𝑝1(𝑥,−𝑡) + 𝑝∗1(−𝑥, 𝑡)𝑝
∗
1(−𝑥,−𝑡))𝑝3

−2𝛿2(𝑝3𝑝3(𝑥,−𝑡) + 𝑝∗3(−𝑥, 𝑡)𝑝
∗
3(−𝑥,−𝑡))𝑝3],

(3.38)

respectively, where 𝜎𝑗 and 𝛿𝑗 are real constants satisfying 𝜎2𝑗 = 𝛿2𝑗 =
1, 𝑗 = 1, 2. These are two-component generalizations of the previous
calar examples in (3.29) and (3.32).

Let us third consider the case of 𝑚 = 2 and 𝑛 = 2. We take

1 = 𝜎1𝛱2, 𝛴
−1
2 = 𝜎2𝐼2, 𝛥1 = 𝛿1𝛱2, 𝛥

−1
2 = 𝛿2𝛱2, (3.39)

1 = 𝜎1𝛱2, 𝛴
−1
2 = 𝜎2𝛱2, 𝛥1 = 𝛿1𝐼2, 𝛥

−1
2 = 𝛿2𝛱2, (3.40)

1 = 𝜎1𝐼2, 𝛴
−1
2 = 𝜎2𝛱2, 𝛥1 = 𝛿1𝛱2, 𝛥

−1
2 = 𝛿2𝛱2, (3.41)

nd

1 = 𝜎1𝛱2, 𝛴
−1
2 = 𝜎2𝛱2, 𝛥1 = 𝛿1𝛱2, 𝛥

−1
2 = 𝛿2𝐼2, (3.42)

here 𝜎𝑗 and 𝛿𝑗 are real constants satisfying 𝜎2𝑗 = 𝛿2𝑗 = 1, 𝑗 = 1, 2. These
hoices can generate the corresponding reduced matrix potentials:

=
[

𝑝11 𝜎𝛿𝑝∗11(−𝑥,−𝑡)
𝑝21 𝜎𝛿𝑝∗21(−𝑥,−𝑡)

]

, 𝑞 =
[

−𝜎𝑝∗21(−𝑥, 𝑡) −𝜎𝑝∗11(−𝑥, 𝑡)
−𝛿𝑝21(𝑥,−𝑡) −𝛿𝑝11(𝑥,−𝑡)

]

,

(3.43)

=

[

𝑝11 𝑝12
𝜎𝛿𝑝∗11(−𝑥,−𝑡) 𝜎𝛿𝑝∗12(−𝑥,−𝑡)

]

, 𝑞 =

[

−𝛿𝑝12(𝑥,−𝑡) −𝜎𝑝∗12(−𝑥, 𝑡)
−𝛿𝑝11(𝑥,−𝑡) −𝜎𝑝∗11(−𝑥, 𝑡)

]

,

(3.44)

=

[

𝑝11 𝑝12
𝜎𝛿𝑝∗11(−𝑥,−𝑡) 𝜎𝛿𝑝∗12(−𝑥,−𝑡)

]

, 𝑞 =

[

−𝜎𝑝∗12(−𝑥, 𝑡) −𝛿𝑝12(𝑥,−𝑡)
−𝜎𝑝∗11(−𝑥, 𝑡) −𝛿𝑝11(𝑥,−𝑡)

]

,

(3.45)
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𝑚

and

𝑝 =
[

𝑝11 𝜎𝛿𝑝∗11(−𝑥,−𝑡)
𝑝21 𝜎𝛿𝑝∗21(−𝑥,−𝑡)

]

, 𝑞 =
[

−𝛿𝑝21(𝑥,−𝑡) −𝛿𝑝11(𝑥,−𝑡)
−𝜎𝑝∗21(−𝑥, 𝑡) −𝜎𝑝∗11(−𝑥, 𝑡)

]

,

(3.46)

respectively, where 𝜎 = 𝜎1𝜎2 and 𝛿 = 𝛿1𝛿2. Such formulations on the
potential matrices enable us to obtain the following four classes of
two-component mixed-type nonlocal integrable NLS equations:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑝11,𝑡 = −
𝛽
𝛼2

𝑖[𝑝11,𝑥𝑥 − 2𝜎(𝑝11𝑝∗21(−𝑥, 𝑡) + 𝑝∗11(−𝑥,−𝑡)𝑝21(𝑥,−𝑡))𝑝11

−2𝜎(𝑝11𝑝∗11(−𝑥, 𝑡) + 𝑝∗11(−𝑥,−𝑡)𝑝11(𝑥,−𝑡))𝑝21],

𝑝21,𝑡 = −
𝛽
𝛼2

𝑖[𝑝21,𝑥𝑥 − 2𝜎(𝑝21𝑝∗21(−𝑥, 𝑡) + 𝑝∗21(−𝑥,−𝑡)𝑝21(𝑥,−𝑡))𝑝11

−2𝜎(𝑝21𝑝∗11(−𝑥, 𝑡) + 𝑝∗21(−𝑥,−𝑡)𝑝11(𝑥,−𝑡))𝑝21],

(3.47)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑝11,𝑡 = −
𝛽
𝛼2

𝑖[𝑝11,𝑥𝑥 − 2𝛿(𝑝11𝑝12(𝑥,−𝑡) + 𝑝12𝑝11(𝑥,−𝑡))𝑝11

−2𝛿(𝑝11𝑝∗12(−𝑥, 𝑡) + 𝑝12𝑝
∗
11(−𝑥, 𝑡))𝑝

∗
11(−𝑥,−𝑡)],

𝑝12,𝑡 = −
𝛽
𝛼2

𝑖[𝑝12,𝑥𝑥 − 2𝛿(𝑝11𝑝12(𝑥,−𝑡) + 𝑝12𝑝11(𝑥,−𝑡))𝑝12

−2𝛿(𝑝11𝑝∗12(−𝑥, 𝑡) + 𝑝12𝑝
∗
11(−𝑥, 𝑡))𝑝

∗
12(−𝑥,−𝑡)],

(3.48)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑝11,𝑡 = −
𝛽
𝛼2

𝑖[𝑝11,𝑥𝑥 − 2𝜎(𝑝11𝑝∗12(−𝑥, 𝑡) + 𝑝12𝑝
∗
11(−𝑥, 𝑡))𝑝11

−2𝜎(𝑝11𝑝12(𝑥,−𝑡) + 𝑝12𝑝11(𝑥,−𝑡))𝑝∗11(−𝑥,−𝑡)],

𝑝12,𝑡 = −
𝛽
𝛼2

𝑖[𝑝12,𝑥𝑥 − 2𝜎(𝑝11𝑝∗12(−𝑥, 𝑡) + 𝑝12𝑝
∗
11(−𝑥, 𝑡))𝑝12

−2𝜎(𝑝11𝑝12(𝑥,−𝑡) + 𝑝12𝑝11(𝑥,−𝑡))𝑝∗12(−𝑥,−𝑡)],

(3.49)

and

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑝11,𝑡 = −
𝛽
𝛼2

𝑖[𝑝11,𝑥𝑥 − 2𝛿(𝑝11𝑝21(𝑥,−𝑡) + 𝑝∗11(−𝑥,−𝑡)𝑝
∗
21(−𝑥, 𝑡))𝑝11

−2𝛿(𝑝11𝑝11(𝑥,−𝑡) + 𝑝∗11(−𝑥,−𝑡)𝑝
∗
11(−𝑥, 𝑡))𝑝21],

𝑝21,𝑡 = −
𝛽
𝛼2

𝑖[𝑝21,𝑥𝑥 − 2𝛿(𝑝21𝑝21(𝑥,−𝑡) + 𝑝∗21(−𝑥,−𝑡)𝑝
∗
21(−𝑥, 𝑡))𝑝11

−2𝛿(𝑝21𝑝11(𝑥,−𝑡) + 𝑝∗21(−𝑥,−𝑡)𝑝
∗
11(−𝑥, 𝑡))𝑝21],

(3.50)

respectively, where 𝜎 = 𝜎1𝜎2 = ±1 and 𝛿 = 𝛿1𝛿2 = ±1. Obviously, the
nonlinearity patterns in the above four equations are different from the
ones in (3.37) and (3.38).

4. Soliton solutions

4.1. Distribution of eigenvalues and adjoint eigenvalues

Under the group reduction in (3.12) (or (3.13)), we can observe that
𝜆 is an eigenvalue of the matrix spectral problems in (2.2) if and only
if 𝜆̂ = −𝜆∗ (or 𝜆̂ = −𝜆) is an adjoint eigenvalue, namely, the adjoint
matrix spectral problems hold:

𝑖𝜙̃𝑥 = 𝜙̃𝑈 = 𝜙̃𝑈 (𝑢, 𝜆̂), 𝑖𝜙̃𝑡 = 𝜙̃𝑉 [2𝑠] = 𝜙̃𝑉 [2𝑠](𝑢, 𝜆̂), (4.51)

where 𝑠 ≥ 0. As a consequence, we can assume to have eigenvalues
𝜆 ∶ 𝜇, 𝜇∗, 𝜈, and adjoint eigenvalues 𝜆̂ ∶ −𝜇∗, −𝜇, −𝜈 where 𝜇 ∉ R
and 𝜈 ∈ R.

Moreover, under the group reductions in (3.12) and (3.13), we can
see that

𝜙†(−𝑥, 𝑡,−𝜆∗)𝛴 and 𝜙𝑇 (𝑥,−𝑡,−𝜆)𝛥, (4.52)

will be two adjoint eigenfunctions associated with the same original
eigenvalue 𝜆, as long as 𝜙(𝜆) is an eigenfunction of the matrix spectral

problems in (2.2) associated with an eigenvalue 𝜆.

4

4.2. Solitons by generalized Riemann-Hilbert problems

We would like to propose a general formulation of soliton solu-
tions to the resulting mixed-type nonlocal integrable NLS equations by
solving the corresponding reflectionless generalized Riemann–Hilbert
problems (see, e.g., Refs. 19, 22, 23 for applications to local integrable
equations). Let 𝑁1, 𝑁2 ≥ 0 be two integers such that 𝑁 = 2𝑁1+𝑁2 ≥ 1.

First, let us take 𝑁 eigenvalues 𝜆𝑘 and 𝑁 adjoint eigenvalues 𝜆̂𝑘 as
follows:

𝜆𝑘, 1 ≤ 𝑘 ≤ 𝑁 ∶ 𝜇1, ⋯ , 𝜇𝑁1
, 𝜇∗

1 , ⋯ , 𝜇∗
𝑁1

, 𝜈1, ⋯ , 𝜈𝑁2
, (4.53)

and

𝜆̂𝑘, 1 ≤ 𝑘 ≤ 𝑁 ∶ −𝜇∗
1 , ⋯ , −𝜇∗

𝑁1
, −𝜇1, ⋯ , −𝜇𝑁1

, −𝜈1, ⋯ , −𝜈𝑁2
, (4.54)

where 𝜇𝑘 ∉ R, 1 ≤ 𝑘 ≤ 𝑁1, and 𝜈𝑘 ∈ R, 1 ≤ 𝑘 ≤ 𝑁2, and assume
that their corresponding eigenfunctions and adjoint eigenfunctions are
defined by

𝑣𝑘, 1 ≤ 𝑘 ≤ 𝑁, and 𝑣̂𝑘, 1 ≤ 𝑘 ≤ 𝑁, (4.55)

respectively. Obviously, in this nonlocal case, the following condition:

{𝜆𝑘 ∣ 1 ≤ 𝑘 ≤ 𝑁} ∩ {𝜆̂𝑘 | 1 ≤ 𝑘 ≤ 𝑁} = ∅, (4.56)

does not hold.
Next, we introduce two matrices:

𝐺+(𝜆) = 𝐼𝑚+𝑛 −
𝑁
∑

𝑘,𝑙=1

𝑣𝑘(𝑀−1)𝑘𝑙 𝑣̂𝑙
𝜆 − 𝜆̂𝑙

, (𝐺−)−1(𝜆) = 𝐼𝑚+𝑛 +
𝑁
∑

𝑘,𝑙=1

𝑣𝑘(𝑀−1)𝑘𝑙 𝑣̂𝑙
𝜆 − 𝜆𝑘

,

(4.57)

where 𝑀 is a square matrix 𝑀 = (𝑚𝑘𝑙)𝑁×𝑁 , whose entries are defined
y

𝑘𝑙 =

⎧

⎪

⎨

⎪

⎩

𝑣̂𝑘𝑣𝑙
𝜆𝑙 − 𝜆̂𝑘

, if 𝜆𝑙 ≠ 𝜆̂𝑘,

0, if 𝜆𝑙 = 𝜆̂𝑘,
where 1 ≤ 𝑘, 𝑙 ≤ 𝑁. (4.58)

It has been shown in Ref. 16 that these two matrices 𝐺+(𝜆) and 𝐺−(𝜆)
solve the corresponding reflectionless generalized Riemann–Hilbert
problem, i.e., they satisfy

(𝐺−)−1(𝜆)𝐺+(𝜆) = 𝐼𝑚+𝑛, 𝜆 ∈ R, (4.59)

provided that an orthogonal condition:

𝑣̂𝑘𝑣𝑙 = 0 if 𝜆𝑙 = 𝜆̂𝑘, where 1 ≤ 𝑘, 𝑙 ≤ 𝑁, (4.60)

holds.
Now, let us make an asymptotic expansion

𝐺+(𝜆) = 𝐼𝑚+𝑛 +
1
𝜆
𝐺+
1 + O( 1

𝜆2
), (4.61)

as 𝜆 → ∞, to obtain

𝐺+
1 = −

𝑁
∑

𝑘,𝑙=1
𝑣𝑘(𝑀−1)𝑘𝑙 𝑣̂𝑙 , (4.62)

and substituting this into the matrix spatial spectral problems in (2.2)
leads to

𝑃 = −[𝛬,𝐺+
1 ] = lim

𝜆→∞
[𝐺+(𝜆), 𝛬]. (4.63)

Obviously, this generates soliton solutions to the matrix AKNS inte-
grable Eqs. (2.10):

𝑝 = 𝛼
𝑁
∑

𝑘,𝑙=1
𝑣1𝑘(𝑀

−1)𝑘𝑙 𝑣̂2𝑙 , 𝑞 = −𝛼
𝑁
∑

𝑘,𝑙=1
𝑣2𝑘(𝑀

−1)𝑘𝑙 𝑣̂1𝑙 , (4.64)

where for each 1 ≤ 𝑘 ≤ 𝑁 , we have split 𝑣𝑘 and 𝑣̂𝑘 into 𝑣𝑘 =
((𝑣1𝑘)

𝑇 , (𝑣2𝑘)
𝑇 )𝑇 and 𝑣̂𝑘 = (𝑣̂1𝑘, 𝑣̂

2
𝑘), where 𝑣1𝑘 and 𝑣̂1𝑘 are column and row

vectors of dimension 𝑚, respectively, and 𝑣2𝑘 and 𝑣̂2𝑘 are column and row
vectors of dimension 𝑛, respectively.
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When zero matrix potentials are taken, i.e., 𝑝 = 0 and 𝑞 = 0 are
chosen, the corresponding matrix spectral problems in (2.2) yield

𝑣𝑘 = 𝑣𝑘(𝑥, 𝑡, 𝜆𝑘) = e𝑖𝜆𝑘𝛬𝑥+𝑖𝜆
2𝑠
𝑘 𝛺𝑡𝑤𝑘, 1 ≤ 𝑘 ≤ 𝑁, (4.65)

where 𝑤𝑘, 1 ≤ 𝑘 ≤ 𝑁 , are constant column vectors. According to
the preceding analysis in Section 4.1, we can take the corresponding
adjoint eigenfunctions as follows:

𝑣̂𝑘 = 𝑣̂𝑘(𝑥, 𝑡, 𝜆̂𝑘) = 𝑣†𝑘(−𝑥, 𝑡, 𝜆𝑘)𝛴 = 𝑤̂𝑘e−𝑖𝜆̂𝑘𝛬𝑥−𝑖𝜆̂
2𝑠
𝑘 𝛺𝑡, 1 ≤ 𝑘 ≤ 𝑁, (4.66)

where

𝑤̂𝑘 = 𝑤†
𝑘𝛴, 1 ≤ 𝑘 ≤ 𝑁. (4.67)

Then, the orthogonal condition (4.60) becomes

𝑤†
𝑘𝛴𝑤𝑙 = 0 if 𝜆𝑙 = 𝜆̂𝑘, where 1 ≤ 𝑘, 𝑙 ≤ 𝑁. (4.68)

Finally, to present soliton solutions for the resulting nonlocal matrix
integrable NLS equations (3.24), we need to check if 𝐺+

1 defined by
(4.62) satisfies the two involution properties:

(𝐺+
1 )

†(−𝑥, 𝑡) = 𝛴𝐺+
1 (𝑥, 𝑡)𝛴

−1, (𝐺+
1 )

𝑇 (𝑥,−𝑡) = 𝛥𝐺+
1 (𝑥, 𝑡)𝛥

−1. (4.69)

If so, the resulting potential matrix 𝑃 given by (4.63) will satisfy the
two nonlocal group reduction conditions in (3.15) and (3.16). Further,
as a consequence of these conditions, we obtain the following soliton
solutions:

𝑝 = 𝛼
𝑁
∑

𝑘,𝑙=1
𝑣1𝑘(𝑀

−1)𝑘𝑙 𝑣̂2𝑙 , (4.70)

for the resulting mixed-type nonlocal matrix integrable NLS equa-
tions (3.24). These solutions are reduced from the soliton solutions in
(4.64) for the matrix AKNS Eqs. (2.10).

4.3. Realizing the involution properties

We would below like to build a theoretical framework for satisfying
the involution properties in (4.69).

First, following the preceding analysis in Section 4.1, the adjoint
eigenfunctions 𝑣̂𝑘, 1 ≤ 𝑘 ≤ 𝑁 , can be determined as follows:

𝑣̂𝑘 = 𝑣̂𝑘(𝑥, 𝑡, 𝜆̂𝑘) = 𝑣†𝑘(−𝑥, 𝑡, 𝜆𝑘)𝛴 = 𝑣𝑇𝑁1+𝑘
(𝑥,−𝑡, 𝜆𝑁1+𝑘)𝛥, 1 ≤ 𝑘 ≤ 𝑁1,

(4.71)

𝑣̂𝑁1+𝑘 = 𝑣̂𝑁1+𝑘(𝑥, 𝑡, 𝜆̂𝑁1+𝑘) = 𝑣𝑇𝑁1+𝑘
(−𝑥, 𝑡, 𝜆𝑁1+𝑘)𝛴

= 𝑣𝑇𝑘 (𝑥,−𝑡, 𝜆𝑘)𝛥, 1 ≤ 𝑘 ≤ 𝑁1, (4.72)

and

𝑣̂𝑘 = 𝑣̂𝑘(𝑥, 𝑡, 𝜆̂𝑘) = 𝑣†𝑘(−𝑥, 𝑡, 𝜆𝑘)𝛴 = 𝑣𝑇𝑘 (𝑥,−𝑡, 𝜆𝑘)𝛥, 2𝑁1 + 1 ≤ 𝑘 ≤ 𝑁.

(4.73)

These selections in (4.71), (4.72) and (4.73) generate the conditions on
𝑤𝑘, 1 ≤ 𝑘 ≤ 𝑁 :

⎧

⎪

⎨

⎪

⎩

𝑤𝑇
𝑘 (𝛴

∗𝛥∗−1 − 𝛥𝛴−1) = 0, 1 ≤ 𝑘 ≤ 𝑁1,
𝑤𝑘 = 𝛥−1𝛴𝑇𝑤∗

𝑘−𝑁1
, 𝑁1 + 1 ≤ 𝑘 ≤ 𝑁,

𝑤†
𝑘𝛴 = 𝑤𝑇

𝑘 𝛥, 2𝑁1 + 1 ≤ 𝑘 ≤ 𝑁,
(4.74)

where 𝐴∗ denotes the complex matrix of a matrix 𝐴. Note that all these
conditions aim to satisfy the reduction conditions in (3.15) and (3.16).

Next, note that when the solutions to the reflectionless generalized
Riemann–Hilbert problems, defined by (4.57) and (4.58), possess the
involution properties

(𝐺+)†(−𝜆∗) = 𝛴(𝐺−)−1(𝜆)𝛴−1, (𝐺+)𝑇 (−𝜆) = 𝛥(𝐺−)−1(𝜆)𝛥−1, (4.75)

the corresponding relevant matrix 𝐺+
1 will satisfy the involution prop-

erties in (4.69), which are consequences of the group reductions in
(3.12) and (3.13). Consequently, when the conditions in (4.74) and the
5

orthogonal condition in (4.68) are satisfied for 𝑤𝑘, 1 ≤ 𝑘 ≤ 𝑁 , the
formula (4.70), together with (4.57), (4.58), (4.65) and (4.66), presents
soliton solutions to the reduced mixed-type nonlocal matrix integrable
NLS equations (3.24).

Finally, for the case of 𝑚 = 𝑛∕2 = 𝑁 = 1, let us compute an example
of one-soliton solutions to the mixed-type scalar nonlocal integrable
NLS equations. We choose 𝜆1 = 𝜈, 𝜆̂1 = −𝜈, 𝜈 ∈ R, and set 𝑤1 =
(𝑤1,1, 𝑤1,2, 𝑤1,3)𝑇 , where 𝑤1,1, 𝑤1,2, 𝑤1,3 ∈ R are arbitrary. This choice
leads to a class of one-soliton solutions:

𝑝1 =
2𝜎𝜈(𝛼1 − 𝛼2)𝑤1,1𝑤1,2e𝑖(𝛼1−𝛼2)𝜈𝑥+𝑖(𝛽1−𝛽2)𝜈2𝑡

𝜎(𝑤2
1,2 +𝑤2

1,3) +𝑤2
1,1e

2𝑖(𝛼1−𝛼2)𝜈𝑥
, (4.76)

where 𝜈,𝑤1,1, 𝑤1,2, 𝑤1,3 ∈ R are arbitrary constants. It solves the mixed-
type nonlocal integrable NLS equation (3.29), when the condition

𝑤2
1,2 −𝑤2

1,3 = 0 (4.77)

s satisfied, and solves the mixed-type nonlocal integrable NLS
quation (3.32), when the condition

2𝜎𝛿 − 1)𝑤2
1,2 −𝑤2

1,3 = 0 (4.78)

s satisfied. These required conditions are generated from the involution
roperties in (4.69). The class of solutions is analytic if and only if
2
1,1 ≠ 𝑤2

1,2 +𝑤2
1,3.

5. Concluding remarks

Type (−𝜆∗,−𝜆) reduced soliton hierarchies of nonlocal integrable
NLS equations of even order have been presented, and their soliton so-
lutions have been formulated through the corresponding reflectionless
generalized Riemann–Hilbert problems, where eigenvalues could equal
adjoint eigenvalues. The crucial step is to conduct a pair of nonlocal
group reductions for the AKNS matrix spectral problems simultane-
ously. The resulting nonlocal integrable NLS equations are mixed-type,
involving reverse-space, reverse-time and reverse-spacetime nonlocali-
ties.

We remark that it will be of particular importance to explore
soliton solutions by different approaches, including the Darboux trans-
formation, the Hirota direct method, the Wronskian technique (see,
e.g., Refs. 9, 12, 13, 24–27) and to study dynamical properties of di-
verse exact solutions in the nonlocal case, including lump and breather
wave solutions28–31, solitonless solutions32 and algebro-geometric solu-
tions,33–35 from a perspective of Riemann–Hilbert problems. The mixed-
type nonlocality involved creates big challenges for even establishing
global existence of solutions. Additionally, another interesting problem
is to construct reduced nonlocal integrable equations from matrix
spectral problems associated with other semisimple matrix Lie algebras
(see, e.g., Refs. 36, 37 for examples) and nonlocal integrable couplings
associated with non-semisimple matrix Lie algebras (see, e.g., Ref. 38).
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