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1. Introduction

Nonlinear integrable equations are often generated via zero curva-
ture equations and their Hamiltonian structures can be presented by
the trace identity’ or the variational identity,> which produce infinitely
many symmetries and conservation laws. Based on matrix spectral
problems, with which zero curvature equations are associated, the
inverse scattering transform solves Cauchy problems of integrable equa-
tions. By conducting group reductions for matrix spectral problems,
which keep the zero curvature equations invariant, one can obtain both
local and nonlocal reduced integrable equations.

Nonlocal integrable equations have formed a new research area,
supplementing the classical theory of partial differential equations. By
taking one nonlocal group reduction, three kinds of nonlocal non-
linear Schrodinger (NLS) equations and two kinds of nonlocal modi-
fied Korteweg—de Vries (mKdV) equations can be generated from the
Ablowitz-Kaup-Newell-Segur (AKNS) matrix spectral problems.** The
inverse scattering transform has been successfully applied to analysis of
soliton solutions to nonlocal integrable equations (see, e.g., Refs. 5-8).

Integrable equations can also be solved by other efficient approaches,
which include Darboux transformation, the Hirota bilinear method
and Riemann-Hilbert problems, and their soliton solutions can be
systematically presented, indeed (see, e.g., Refs. 9-14). Particularly, the
Riemann-Hilbert technique is used to solve nonlocal integrable NLS
and mKdV equations.»>"1® In this paper, we would like to present
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a kind of mixed-type reduced nonlocal integrable NLS equations of
arbitrary even order by conducting two nonlocal group reductions
and compute their soliton solutions through reflectionless generalized
Riemann-Hilbert problems.

The rest of this paper is organized as follows. In Section 2, we recall
the AKNS hierarchies of integrable equations and their matrix spectral
problems to facilitate the exposition. In Section 3, we conduct two
nonlocal group reductions and present type (—A*, —1) reduced nonlocal
integrable NLS hierarchies, where 1 is the spectral parameter and
stands for the complex conjugate. Two scalar prototype examples of
the resulting nonlocal integrable equations are

Py = —%i [P1xx = 20(p1 P} (=X, 1) + py (x, =)} (=x, =D)p; ],
and
Py = —%i[pl,xx = 26(p1py (x, =) + Py (=x, )} (=x, =D)p; ],

where ¢ = 1, § = %1, and « and p are arbitrary real constants.
Both pairs of equations are obviously PT-symmetric. In Section 4, based
on the explored distribution of eigenvalues and adjoint eigenvalues,
we solve the corresponding reflectionless generalized Riemann-Hilbert
problems, where eigenvalues could equal adjoint eigenvalues, and com-
pute soliton solutions to the resulting hierarchies of reduced nonlocal
integrable NLS equations of arbitrary even order. In the last section, we
give a conclusion and a few concluding remarks.
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2. The matrix AKNS integrable hierarchies revisited

To facilitate the subsequent exposition, let us recall the AKNS
hierarchies of matrix integrable equations and their matrix spectral
problems.

First, let A denote the spectral parameter, and p and ¢ be two matrix
potentials:

P =00 =P dmxns 4= 91 = @i nxms (2.1)

where m,n > 1 are two arbitrarily given integers. The matrix AKNS
spectral problems are defined as follows:

{ ~ipy = Udp = U, ) = (AA + P),

—ig; = V[’]q_’; = V[’](u, Np=Q+ Q[r])¢, r>0. 2.2)

Here the pair of the (m+ n)-th order square matrices, A and €, is given
by

A =diag(a, I, a,1,), 2 = diag(h 1, b1,), (2.3)
where I, denotes the identity matrix of size s, and a,, @, and g,, §, are
two pairs of arbitrarily given distinct real constants. The other pair of
(m + n)-th order square matrices, P and Q!"), is determined by
P=Pu= [ Op } : (2.4)
qg O

which is called the potential matrix, and

r—1

[r=s]  plr=s]
¢ a

Q[r] — z 25 [ sl glrs] ] , (2.5)

s=0

where al’l, b5, 5] and d'*! are defined recursively by

=0, =0, o =p1,, d=p,1, (2.6a)
plstll = é(—'bgﬁ —pd™ + aBlp), 5 >0, (2.6b)
clstll = é(ic)[f] +qa¥l — dllg), s >0, (2.60)
al¥l = i(pcl! — plslg), dl! = i(gb!! — cBlp), s> 1, (2.6d)

with zero constants of integration being taken. Particularly, we can
work out

B B B

ol = oP, o = —iP - EI'"*"(PZ +iP),
and
obl = gazp - %Alm,n(lﬁ +iP)— %(i[P, P+ Py +2P7),

where @« = @) —a,, § = f; — p, and I,,,, = diag({,,, —I,). Based on the
recursive relations in (2.6), we can also see that

[s] [s]

_ I b

W= [ sl gls) ] @7
520

presents a Laurent series solution to the stationary zero curvature

equation

W, =ilU,W1]. (2.8)

The compatibility conditions of the two matrix spectral problems in
(2.2), i.e., the zero curvature equations:

U -vin+iw, vl =o0, r>0, (2.9)

yield one matrix AKNS integrable hierarchy (see, e.g., Ref. 19 for more
details):

p, = iab"™ N g = —iqcl*Y, F> 0. (2.10)

By a Lax operator algebra theory?>2! and the trace identity,! we
can directly show that the hierarchy (2.10) defines a hierarchy of com-
muting flows, each of which possesses a bi-Hamiltonian structure and
thus infinitely many commuting conservation laws. The first nonlinear
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(i.e., r = 2) integrable system in the hierarchy gives us the AKNS matrix
NLS equations:

B B .
P = ——i(pyx +2pqp), 4 = —i(qxy + 2qp), (211)
[04 a

where p and ¢ are the two matrix potentials defined by (2.1).
3. Type (—41*,—A1) reduced nonlocal NLS hierarchies

Let X; and X, be a pair of constant invertible Hermitian matrices of
sizes m and n, respectively, and 4, and 4,, another pair of constant in-
vertible symmetric matrices of sizes m and n, respectively. We consider
a pair of nonlocal group reductions for the spectral matrix U:

Ul (=x,t,-2) = U(=x,t,-2) = = XU, 1, )=, (3.12)
and
UT(x,—t,—2) = (U(x,—1,— )T = —AU(x,1,1)47", (3.13)

where 1 and T denote the Hermitian transpose and the matrix trans-
pose, respectively, and X and 4 are the two constant invertible matrices
defined by

2:[%1 gz],A:[‘:)l fz]. 3.14)
Equivalently, these two group reductions require

Pi(=x,n==-ZP(x,nZ"", (3.15)

and

PT(x,~1) = —AP(x,N47}, (3.16)

respectively. More precisely, they need the following reductions on the
matrix potentials p and g¢:

qe, ) = -2 p'(—x,0 %, (3.17)
and
q(x,1) = =45 p" (x, —0)4,, (3.18)

respectively. It therefore follows that the matrix potential p must satisfy

== 0Z = 47" p (x, 04, (3.19)
or the matrix potential ¢ must satisfy
T (—x,0Z, = 47'q" (x, -1 4, (3.20)

to guarantee that both group reductions in (3.12) and (3.13) are
compatible.

Furthermore, under the group reductions in (3.12) and (3.13), we
can show that

Wi(=x,t,=2") = (W (=x,1,=A)| = TW (x,1, HZ7", 3.21)

WT(x,—t,—2) = (W(x,—t,-A) = AW (x,1, )4a7", )
which implies that

VT 1, =2 = (V2 =) = VPl 2L g oo

VI (x, —1, =) = W) (x, =1, =) = AV2(x, 1, )47, :
and

O (—x,1,=4%) = (QP(—x,1,-2*)" = QP (x,1, ) =7, (3.23)

O (x, —1, =) = (Q™(x, =1, = )" = 40> (x,1, DA™, '

where s > 0.

Consequently, under the potential reductions (3.17) and (3.18), the
integrable matrix AKNS equations in (2.10) with r = 25, s > 0, are
reduced to a hierarchy of nonlocal integrable NLS type equations:

254+1]|

— il
Py = 1ab T oty =2y T ey $ 200 324

where p is an m x n reduced matrix potential satisfying (3.19), X, and
%, is a pair of arbitrary invertible Hermitian matrices of sizes m and
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n, respectively, and 4, and 4, are a pair of arbitrary invertible sym-
metric matrices of sizes m and n, respectively. As consequences of the
two group reductions, each reduced equation in the hierarchy (3.24)
possesses a Lax pair of the reduced spatial and temporal matrix spectral
problems in (2.2) with r = 2s, s > 0, and infinitely many symmetries
and conservation laws reduced from those for the integrable matrix
AKNS equations in (2.10) with r = 2s,s > 0.

If we fix s = 1, i.e., r = 2, then the reduced nonlocal integrable NLS
type equations in (3.24) with s = 1 produce a kind of reduced nonlocal
integrable NLS equations:

p . 1
P = =i = 2p%; 'l (—x, )2, p)

= L ity ~ 208557 (=001, (3.25)
4

where p is an m X n reduced matrix potential satisfying (3.19).

Let us now work out some examples to illustrate these reduced
nonlocal integrable NLS equations, by taking different values for m,n
and appropriate choices for X, A. In our subsequent construction, we
will use two 2 X 2 matrices:

1 0 0 1
L0 me[0 ] 020
Let us first consider the case of m = 1 and n = 2. We take
=1, 2 =0l A/ =1, &' =611, (3.27)

where ¢ and § are real constants satisfying 6> = 6> = 1. Then, the
potential constraint (3.19) equivalently needs

Py = 06pi(=x, 1),

where p = (p;,p,), and thus, the corresponding potential matrix P
becomes

0 D1 oép*l‘(—x, —1)
P=| —-opj(=x,n) O 0 (3.28)
—opy(x,—=t) 0 0

Furthermore, the corresponding reduced nonlocal integrable NLS equa-
tions become

Pri = = Loilh1 = 200015750 + 915,057 (=3~ (3.29)

where ¢ = +1 and p] denotes the complex conjugate of p;. In this
pair of equations, there are three types of nonlinearities: reverse-space,
reverse-time and reverse-spacetime nonlocalities.

Similarly, let us take
Z =1, 3 =0lly, 4 =1, 45" =61, (3.30)

where ¢ and 6 are real constants satisfying 6> = 62 = 1. This choice
leads to the reduced potential matrix P:

0 pr 0opi(=x,—1)
P=| —ép(x,-1) O 0 , (3.31)
—(yp’l“(—x, Hn 0 0

and the reduced mixed-type nonlocal integrable NLS equations:

Py = —%i[pl,xx = 26(p1p (x, =t) + Py (=x, )P} (=x, =1)p; ], (3.32)

where § = x1 and p} denotes the complex conjugate of p; again. The
mixed-type nonlocality pattern in this pair of equations is different from
the one in (3.29).

Let us second consider the case of m = 1 and n = 4. We take

x =1, ;' =diag(e I, 0, 1y), 4 =1, A7 = diag(s, 1), 6, 11,), (3.33)
and

z =1, ;! =diag(e, I1y,0,ITy), A = 1, A7 = diag(6,1,.5,1,). (3.34)
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where o; and §; are real constants satisfying af = 5/? =1, j=1,2. These

choices can produce the reduced potential matrices:

0 pr 018 p](=x,—=1)  p3  0636,p5(—xX, 1)
—alp’i‘(—x,t) 0 0 0 0
p=| —6,px.-n 0 0 0 0 .
—azpz(—x,t) 0 0 0 0
=6,p3(x,—t) 0 0 0 0
(3.35)
and
0 pr 018 p](=x,—1) p3  036,p5(—xX, 1)
—8,py(x,—1) 0 0 0 0
P=| —opj(=xn 0 0 0 0 ,
—6,p3(x,—1) 0 0 0 0
—opi(-x0) 0 0 0 0
(3.36)

respectively. The corresponding two classes of two-component mixed-
type nonlocal integrable NLS equations read

Py = _%i[Pl,xx = 204 (p1Py (=X, 1)+ py (X, =D)p} (=X, =1)p,
_202@3 Py (=x,1) + p3(x, =Dp3 (=%, —=D)py 1, (3.37)
P3; = _ﬁi[%,xx =201 (p1p} (=%, 1) + py (x, =P} (=, =1))p3
=20,5(p3P} (=, 1) + p3(x, )Py (=X, —D)p3],
and
P = _%i[Pl,xx = 261(pyp1(x, =1) + Py (=X, D} (=X, =)y
—;52(;;3 p3(x, =) + P (=x, Hp3(—x, —))py], (3.38)
Py = _;i[PS,xx =28, (pypy(x, =) + P (=X, Dp] (=X, —1)p3
—26,(p3p3(x, —1) + P (=X, DP5 (=X, —=1)ps],

respectively, where o; and §; are real constants satisfying aj? = 6} =
1, j = 1,2. These are two-component generalizations of the previous
scalar examples in (3.29) and (3.32).

Let us third consider the case of m =2 and n = 2. We take

2 =01l 5 =0y0y, A =611, A" =6,11,, (3.39)
2 =01, ' =0y00,, A =61, 4;' = 6,11, (3.40)
2 =01l I =0y0ly, A =611, A;' =6,10,, (3.41)
and

2 =0l ' =00, A =611, 47" = 6,1, (3.42)

where o i and & ; are real constants satisfying af = 5/2 =1, j=1,2. These
choices can generate the corresponding reduced matrix potentials:

p=[ P 08p} (=x,—1) ] =[ —opy (=x,1)
Py oopy (=x,=1) |’ —6py (x, =)

—op},(=x.1)
=épy(x, - |’

(3.43)

o= P P12 4= —=6ppp(x, =) —opj,(=x,0)
o6 (=x.~1)  oopl,(=x.—1) |’ ~opy(x.=t)  —op}(=x.1) |’
(3.44)
_ P P2 g= —opl(=x, 1) =dpp(x, =)
oop;,(=x,—1)  o6p},(—x,—1) ’ —opj,(=x,1)  —6p (x,—1) ’

(3.45)
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and
_| Pu 65PT1(—X,—I)] =[ —6py (x,=1)  —6pyy(x,—1)
P 08py (=x,—1) |’ —op5 (=x,t) —op (=x,1) |’
(3.46)

respectively, where ¢ = 6,0, and § = §,5,. Such formulations on the
potential matrices enable us to obtain the following four classes of
two-component mixed-type nonlocal integrable NLS equations:

Pits = =Tl = 20000103, (=30 + 5}y (x.=0p1 (ko —00py
=20(py 1P}, (=X, 1) + P}, (=X, =1)p; (X, =))py ],
Pag = —%i[pn,xx = 20(py Py (=X, 1) + P, (=%, =1)py (x, =1))py
—26(py1 (=X, 1) + p5, (=X, =D)py1 (X, =)y 1,
(3.47)

B .
Pl = _zl[pll,xx = 258(p11 p1a(x, —1) + p1ap1 (X, —1))py
-26 (=%, 1)+ papt (=x, D)t (=x, —1)],
) ﬁ(PnPlz( ) + Piapy, (=x,D)py; ( ) (3.48)
Piog = _ﬁ[[pllxx =26(p1 1 P12(x, =) + p1op1 1 (X, —D)P12

=28(p11 P, (=X, 1) + prap}, (=X, )P}, (=x, =],
B .
Piig = _;l[pll,xx = 20(py1 P, (=%, 1) + p1op}, (=X, D)py
=20(py1P12(X, =1) + p1apyy (x, —D)p], (=x, =11,

J P (3.49)
Doy = _zi[pllxx = 20(p11 P}, (=%, 1) + p1op}, (=X, )Py,

=20(py P12 (X, =) + PPy (X, =D)pT, (=X, =D)],

and

B . )
Py = _;l[pll,xx = 26(py1p21 (X, =) + P} (—=x, =1)p5 (=X, )Py
=268(py1 11 (x, =1 + pi, (=X, =0)p}, (=X, D)pyy ],

B .
Py = _;l[pZI,xx = 28(py1 po1 (X, =1) + p5, (=x, =O)p3, (=X, ))py;

=268(py1 p11(x, =1 + p5, (=X, =0)p}, (=X, ))pyy ],
(3.50)

respectively, where ¢ = 6,0, = =1 and § = §,6, = +1. Obviously, the
nonlinearity patterns in the above four equations are different from the
ones in (3.37) and (3.38).

4. Soliton solutions
4.1. Distribution of eigenvalues and adjoint eigenvalues

Under the group reduction in (3.12) (or (3.13)), we can observe that
A is an eigenvalue of the matrix spectral problems in (2.2) if and only
if 1 = —A* (or A = —4) is an adjoint eigenvalue, namely, the adjoint
matrix spectral problems hold:

i, = QU = pU W, 1), i, = V21 = gy, ), (4.51)

where s > 0. As a consequence, we can assume to have eigenvalues
A u, p*, v, and adjoint eigenvalues 1 : —u*, —u, —v where u ¢ R
and v € R.

Moreover, under the group reductions in (3.12) and (3.13), we can

see that

¢f(=x,1,—-1*)2 and ¢ (x, -1, —1)4, (4.52)

will be two adjoint eigenfunctions associated with the same original
eigenvalue 4, as long as ¢(4) is an eigenfunction of the matrix spectral
problems in (2.2) associated with an eigenvalue A.
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4.2. Solitons by generalized Riemann-Hilbert problems

We would like to propose a general formulation of soliton solu-
tions to the resulting mixed-type nonlocal integrable NLS equations by
solving the corresponding reflectionless generalized Riemann-Hilbert
problems (see, e.g., Refs. 19, 22, 23 for applications to local integrable
equations). Let Ny, N, > 0 be two integers such that N =2N,; + N, > 1.

First, let us take N eigenvalues 1, and N adjoint eigenvalues 4, as
follows:

Ao LERSN T g, s fings Hys 05 By Vis 505 Vs (4.53)
and
A TSKSN T —pf, oy =y s —Hps woos =iy =Vps ooy =V, (4.54)

where y, ¢ R, 1 < k < Nj,and vy, € R, 1 < k < N,, and assume
that their corresponding eigenfunctions and adjoint eigenfunctions are

defined by
v, 1<k<N,andd,, 1<k<N, (4.55)

respectively. Obviously, in this nonlocal case, the following condition:

(MIT<k<N)Nn{i|1<k<N}=4, (4.56)
does not hold.
Next, we introduce two matrices:
N —1 N N —1 ~
U (M™ )10, - (M~ )0
G D=l = X, = G D=+ Y, =7
kl=1 1 k=1
(4.57)

where M is a square matrix M = (my;) yxn, Whose entries are defined
by
) A
AL i A # A,
A= Ay
0, if 4, =4,

my = where 1 <k,l < N. (4.58)

It has been shown in Ref. 16 that these two matrices G*(1) and G~ (1)
solve the corresponding reflectionless generalized Riemann-Hilbert
problem, i.e., they satisfy

G DG W) =1,,y,. LER, (4.59)
provided that an orthogonal condition:
opv; =0 if 4, = A, where 1 <k,/ <N, (4.60)
holds.

Now, let us make an asymptotic expansion
G (A) =L, + %GT + 0(%), (4.61)
as 1 — oo, to obtain

N

GF ==Y vu(M™)0, (4.62)

Ki=1
and substituting this into the matrix spatial spectral problems in (2.2)
leads to

P =—[A, GT] = lim [G*(A), A]. (4.63)

Obviously, this generates soliton solutions to the matrix AKNS inte-
grable Egs. (2.10):

N N
p=a Z vl MY, 0%, g = —a Z (MY, 00, (4.64)
ki=1 ki=1

where for each 1 < k < N, we have split v, and 9, into v, =
((u,lc)T,(ui)T)T and 0, = (ﬁ}c, ﬁi), where ”zlc and ﬁ}{ are column and row
vectors of dimension m, respectively, and vi and ﬁi are column and row

vectors of dimension n, respectively.
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When zero matrix potentials are taken, i.e., p = 0 and ¢ = 0 are
chosen, the corresponding matrix spectral problems in (2.2) yield

: 1128
A AXFHiAY Qtw

U = U(x, 1, 4y) =€ v 1<k<N, (4.65)

where w,, 1 < k < N, are constant column vectors. According to
the preceding analysis in Section 4.1, we can take the corresponding
adjoint eigenfunctions as follows:

O = Bu(x, 1, 3y) = 0L (=x, 1, A T = e MU L <k <N, (4.66)
where

Wy=w > 1<k<N. (4.67)
Then, the orthogonal condition (4.60) becomes

w} Zw, =0 if 4, = 1, where 1 <k,/ <N. (4.68)

Finally, to present soliton solutions for the resulting nonlocal matrix
integrable NLS equations (3.24), we need to check if GT defined by
(4.62) satisfies the two involution properties:

GH'(=x.1) = ZGFx,nZ™", (GD) (x,—1) = AGT (x,1)47". (4.69)

If so, the resulting potential matrix P given by (4.63) will satisfy the
two nonlocal group reduction conditions in (3.15) and (3.16). Further,
as a consequence of these conditions, we obtain the following soliton
solutions:

N
p=a ) oMo, (4.70)
k=1

for the resulting mixed-type nonlocal matrix integrable NLS equa-
tions (3.24). These solutions are reduced from the soliton solutions in
(4.64) for the matrix AKNS Egs. (2.10).

4.3. Realizing the involution properties

We would below like to build a theoretical framework for satisfying
the involution properties in (4.69).

First, following the preceding analysis in Section 4.1, the adjoint
eigenfunctions 9;, 1 <k < N, can be determined as follows:
0 = 00t A) = U (=X, 1, A E = Uy L (=1 Ay )4, 1Sk S Ny,

(4.71)

Onyak = Onyk Ot Ay i) = U§I+k(—X, LAN 42
=0} (x, =1, )4, 1 <k <Ny, (4.72)

and

0 = 0p(x.1,4) = V(=x.1, 1) X = vl (x,~1, 4,)4, 2N, + 1 <k < N.
(4.73)

These selections in (4.71), (4.72) and (4.73) generate the conditions on
wy, 1 <k<N:

whH(Z* a4 -4z =0, 1<k <Ny,
w = a7 sTwy Ny +1<k<N,
wiZ=wld 2N +1<k<N,

(4.74)

where A* denotes the complex matrix of a matrix A. Note that all these
conditions aim to satisfy the reduction conditions in (3.15) and (3.16).

Next, note that when the solutions to the reflectionless generalized
Riemann-Hilbert problems, defined by (4.57) and (4.58), possess the
involution properties

(GHI (= =2GE) 'z (GHT (=) = A6 waT (4.75)

the corresponding relevant matrix G;f will satisfy the involution prop-
erties in (4.69), which are consequences of the group reductions in
(3.12) and (3.13). Consequently, when the conditions in (4.74) and the
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orthogonal condition in (4.68) are satisfied for w;, 1 < k < N, the
formula (4.70), together with (4.57), (4.58), (4.65) and (4.66), presents
soliton solutions to the reduced mixed-type nonlocal matrix integrable
NLS equations (3.24).

Finally, for the case of m = n/2 = N = 1, let us compute an example
of one-soliton solutions to the mixed-type scalar nonlocal integrable
NLS equations. We choose 4, = v, 4, = —v, v € R, and set w, =
(wy,, w5, wy 3)7, where w) |, w;,, w3 € R are arbitrary. This choice
leads to a class of one-soliton solutions:

20v(a; — az)w“wmei(al—Hz)vx+i(/’1—ﬂz)v2t

pr = (4.76)

2 2 2 a2i(a;—as)vx
6(w|’2+w1’3)+wlyle 1—%

where v, w; ;,w; 5, w; 3 € R are arbitrary constants. It solves the mixed-
type nonlocal integrable NLS equation (3.29), when the condition

w, —wi; =0 4.77)

is satisfied, and solves the mixed-type nonlocal integrable NLS
equation (3.32), when the condition

Q06— Dwy, —wiy =0 (4.78)

is satisfied. These required conditions are generated from the involution
properties in (4.69). The class of solutions is analytic if and only if
Wi, # Wi, +wis.

5. Concluding remarks

Type (—4*,—4) reduced soliton hierarchies of nonlocal integrable
NLS equations of even order have been presented, and their soliton so-
lutions have been formulated through the corresponding reflectionless
generalized Riemann-Hilbert problems, where eigenvalues could equal
adjoint eigenvalues. The crucial step is to conduct a pair of nonlocal
group reductions for the AKNS matrix spectral problems simultane-
ously. The resulting nonlocal integrable NLS equations are mixed-type,
involving reverse-space, reverse-time and reverse-spacetime nonlocali-
ties.

We remark that it will be of particular importance to explore
soliton solutions by different approaches, including the Darboux trans-
formation, the Hirota direct method, the Wronskian technique (see,
e.g., Refs. 9, 12, 13, 24-27) and to study dynamical properties of di-
verse exact solutions in the nonlocal case, including lump and breather
wave solutions?®-3!, solitonless solutions>? and algebro-geometric solu-
tions,33-3° from a perspective of Riemann-Hilbert problems. The mixed-
type nonlocality involved creates big challenges for even establishing
global existence of solutions. Additionally, another interesting problem
is to construct reduced nonlocal integrable equations from matrix
spectral problems associated with other semisimple matrix Lie algebras
(see, e.g., Refs. 36, 37 for examples) and nonlocal integrable couplings
associated with non-semisimple matrix Lie algebras (see, e.g., Ref. 38).
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