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A B S T R A C T

The paper aims to provide a brief overview of soliton solutions obtained through the Hirota direct method. A
bilinear formulation of soliton solutions in both (1+1)-dimensions and (2+1)-dimensions is discussed, together
with applications to various integrable equations. The Hirota conditions for 𝑁-soliton solutions are analyzed
and a few open questions regarding higher-dimensional cases and generalized bilinear equations are presented.
. Introduction

Integrable equations possess a kind of exact multiple wave so-
utions, called 𝑁-soliton solutions. Among basic approaches to soli-
on solutions are the inverse scattering transform,1,2 the Riemann–
ilbert technique,3 the Darboux transformation,4 and the Hirota di-

ect method.5 Significant solutions in mathematical physics, such as
reather, complexion, lump and rogue wave solutions, are particular re-
uctions of 𝑁-soliton solutions in different situations. Solitons superim-
osed in fibers are applied to optical communications, which enable to
roduce faster, richer, more secure, and more flexible communication
ystems.6

The Hirota direct method provides a standard and powerful ap-
roach to 𝑁-soliton solutions, indeed.5 The innovative bilinear deriva-
ives play a crucial role in generating soliton solutions7 as well as
ump solutions,8 and Hirota bilinear forms are the key in related basic
heories.5 It is a characteristic feature that integrable equations can
e transformed into Hirota bilinear forms under dependent variable
ransformations. This is also reflected by the Bell polynomial theory,
hich tells when a nonlinear equation can be expressed as a bilinear
quation, either Hirota bilinear or generalized bilinear, through an
xponential function relation.9,10

In this paper, we would like to provide a brief survey on soliton
olutions via the Hirota direct method. In Section 2, we will introduce
oth Hirota bilinear derivatives and Hirota bilinear forms. In Section 3,
e will formulate 𝑁-soliton solutions via Hirota bilinear forms, and
nalyze the Hirota conditions for 𝑁-soliton solutions. In Section 4, we
ill present a few basic examples of applications, including some novel

∗ Correspondence to: Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA.
E-mail address: mawx@cas.usf.edu.

examples. Finally in Section 5, we will give a summary, and discuss
higher-dimensional cases and generalized bilinear equations and their
related soliton problems.

2. Hirota bilinear derivatives and forms

2.1. Basic definitions

It is known that Hirota bilinear derivatives with respect to 𝑥 and 𝑡
are defined as follows7:

𝐷𝑚
𝑥𝐷

𝑛
𝑡 𝑓 ⋅ 𝑔 = (𝜕𝑥 − 𝜕𝑥′ )𝑚(𝜕𝑡 − 𝜕𝑡′ )𝑛𝑓 (𝑥, 𝑡)𝑔(𝑥′, 𝑡′)|𝑥′=𝑥,𝑡′=𝑡, (2.1)

where 𝑚, 𝑛 ≥ 0 and 𝑚 + 𝑛 ≥ 1. Particularly, we have

𝐷𝑥𝑓 ⋅ 𝑔 = 𝑓𝑥𝑔 − 𝑓𝑔𝑥, 𝐷
2
𝑥𝑓 ⋅ 𝑔 = 𝑓𝑥𝑥𝑔 − 2𝑓𝑥𝑔𝑥 + 𝑓𝑔𝑥𝑥. (2.2)

When 𝑓 = 𝑔, we get Hirota bilinear expressions:

𝐷𝑚
𝑥𝐷

𝑛
𝑡 𝑓 ⋅ 𝑓 = (𝜕𝑥 − 𝜕𝑥′ )𝑚(𝜕𝑡 − 𝜕𝑡′ )𝑛𝑓 (𝑥, 𝑡)𝑓 (𝑥′, 𝑡′)|𝑥′=𝑥,𝑡′=𝑡, (2.3)

where 𝑚, 𝑛 ≥ 0 and 𝑚 + 𝑛 ≥ 1. The first two of such expressions read

𝐷𝑥𝑓 ⋅ 𝑓 = 0, 𝐷2
𝑥𝑓 ⋅ 𝑓 = 2(𝑓𝑥𝑥𝑓 − 𝑓 2

𝑥 ), (2.4)

when 𝑛 = 0. Hirota bilinear derivatives with respect to 𝑥, 𝑦 and 𝑡 can
be defined completely similarly.

Since we can see that Hirota bilinear expressions of odd degree are
all zero,8 we assume that 𝑃 (𝑥, 𝑡) (or 𝑃 (𝑥, 𝑦, 𝑡)) is an even polynomial
in 𝑥, 𝑡 (or 𝑥, 𝑦, 𝑡). To guarantee the existence of polynomial solutions,
ttps://doi.org/10.1016/j.padiff.2021.100220
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particularly in the case of lump solutions, we also assume that 𝑃 has
no constant term, i.e., 𝑃 (𝟎) = 0.

A Hirota bilinear equation in (1 + 1)- or (2 + 1)-dimensions is

𝑃 (𝐷𝑥, 𝐷𝑡)𝑓 ⋅ 𝑓 = 0 or 𝑃 (𝐷𝑥, 𝐷𝑦, 𝐷𝑡)𝑓 ⋅ 𝑓 = 0. (2.5)

If a nonlinear partial differential equation (PDE) can be transformed
into a Hirota bilinear equation under a dependent variable transforma-
tion, we say it possesses a Hirota bilinear form. The Bell polynomial
theory10 shows what nonlinear equations can possess Hirota bilinear
forms.

2.2. Illustrative examples

In the case of (1 + 1)-dimensions, the bilinear Korteweg–de Vries
(KdV) equation

(𝐷4
𝑥 +𝐷𝑥𝐷𝑡)𝑓 ⋅ 𝑓 = 2(𝑓𝑥𝑥𝑥𝑥𝑓 − 4𝑓𝑥𝑥𝑥𝑓𝑥 + 3𝑓 2

𝑥𝑥 + 𝑓𝑥𝑡𝑓 − 𝑓𝑥𝑓𝑡) = 0 (2.6)

generates the KdV equation

𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0, (2.7)

under the dependent variable transformation 𝑢 = 2(ln𝑓 )𝑥𝑥. Actually, we
have

𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 =
[ (𝐷4

𝑥 +𝐷𝑥𝐷𝑡)𝑓 ⋅ 𝑓
𝑓 2

]

𝑥
. (2.8)

The bilinear Boussinesq equation reads

(𝐷4
𝑥 +𝐷2

𝑡 )𝑓 ⋅ 𝑓 = 2(𝑓𝑥𝑥𝑥𝑥𝑓 − 4𝑓𝑥𝑥𝑥𝑓𝑥 + 3𝑓 2
𝑥𝑥 + 𝑓𝑡𝑡𝑓 − 𝑓 2

𝑡 ) = 0, (2.9)

which gives the Boussinesq equation

𝑢𝑡𝑡 + (𝑢2)𝑥𝑥 + 𝑢𝑥𝑥𝑥𝑥 = 0, (2.10)

if we take 𝑢 = 6(ln𝑓 )𝑥𝑥. Precisely, we can show that

𝑢𝑡𝑡 + (𝑢2)𝑥𝑥 + 𝑢𝑥𝑥𝑥𝑥 =
[ 3(𝐷4

𝑥 +𝐷2
𝑡 )𝑓 ⋅ 𝑓

𝑓 2

]

𝑥𝑥
. (2.11)

In the case of (2 + 1)-dimensions, the bilinear Kadomtsev–
etviashvili (KP) equation is

𝐷4
𝑥 +𝐷𝑥𝐷𝑡 −𝐷2

𝑦)𝑓 ⋅ 𝑓 = 0, (2.12)

i.e.,

2(𝑓𝑥𝑥𝑥𝑥𝑓 − 4𝑓𝑥𝑥𝑥𝑓𝑥 + 3𝑓 2
𝑥𝑥 + 𝑓𝑥𝑡𝑓 − 𝑓𝑥𝑓𝑡 − 𝑓𝑦𝑦𝑓 + 𝑓 2

𝑦 ) = 0. (2.13)

This is equivalent to the KP equation

(𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥)𝑥 − 𝑢𝑦𝑦 = 0, (2.14)

under the dependent variable transformation 𝑢 = 2(ln 𝑓 )𝑥𝑥. Similarly,
we have

(𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥)𝑥 − 𝑢𝑦𝑦 =
[ (𝐷4

𝑥 +𝐷𝑥𝐷𝑡 −𝐷2
𝑦)𝑓 ⋅ 𝑓

𝑓 2

]

𝑥𝑥
. (2.15)

The bilinear B-type Kadomtsev–Petviashvili (BKP) equation reads

𝐵(𝑓 ) ∶= (𝐷6
𝑥 − 5𝐷3

𝑥𝐷𝑦 +𝐷𝑥𝐷𝑡 − 5𝐷2
𝑦)𝑓 ⋅ 𝑓

= 2(𝑓6𝑥𝑓 − 6𝑓5𝑥𝑓𝑥 + 15𝑓4𝑥𝑓𝑥𝑥 − 10𝑓 2
𝑥𝑥𝑥

− 5𝑓𝑥𝑥𝑥𝑦𝑓 + 15𝑓𝑥𝑥𝑦𝑓𝑥 − 15𝑓𝑥𝑦𝑓𝑥𝑥 + 5𝑓𝑦𝑓𝑥𝑥𝑥

+ 𝑓𝑥𝑡𝑓 − 𝑓𝑥𝑓𝑡 − 5𝑓𝑦𝑦𝑓 + 5𝑓 2
𝑦 ) = 0, (2.16)

which engenders the BKP equation

𝑁(𝑢) ∶= (𝑢𝑡 + 15𝑢𝑢𝑥𝑥𝑥 + 15𝑢3𝑥 − 15𝑢𝑥𝑢𝑦 + 𝑢5𝑥)𝑥 − 5𝑢𝑥𝑥𝑥𝑦 − 5𝑢𝑦𝑦 = 0, (2.17)

under the dependent variable transformation 𝑢 = 2(ln𝑓 )𝑥. In fact, we
can show that

𝑁(𝑢) = (𝐵(𝑓 )∕𝑓 2)𝑥. (2.18)

Based on Hirota bilinear forms, symbolic computation can be ap-
plied, in search of exact multiple wave solutions, including lump solu-

tions as long wave limits (see, e.g., Refs. 11, 12).
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3. Hirota bilinear formulation of solitons

3.1. 𝑁-Soliton solutions

We focus on two cases of (1 + 1)-dimensions and (2 + 1)-
dimensions. Assume that the wave vectors are given by

𝐤𝑖 = (𝑘𝑖,−𝜔𝑖) or (𝑘𝑖, 𝑙𝑖,−𝜔𝑖), 1 ≤ 𝑖 ≤ 𝑁. (3.1)

An 𝑁-soliton solution is defined as follows:

𝑓 =
∑

𝜇=0,1
exp(

𝑁
∑

𝑖=1
𝜇𝑖𝜂𝑖 +

∑

𝑖<𝑗
𝑎𝑖𝑗𝜇𝑖𝜇𝑗 ), (3.2)

here 𝜇 = (𝜇1, 𝜇2,… , 𝜇𝑁 ), 𝜇 = 0, 1 means that each 𝜇𝑖 takes either 0 or
,

𝑖 = 𝑘𝑖𝑥 (+𝑙𝑖𝑦) − 𝜔𝑖𝑡 + 𝜂𝑗,0, 𝜂𝑗,0 = const., 1 ≤ 𝑖 ≤ 𝑁, (3.3)

and

e𝑎𝑖𝑗 = 𝐴𝑖𝑗 = −
𝑃 (𝐤𝑖 − 𝐤𝑗 )
𝑃 (𝐤𝑖 + 𝐤𝑗 )

, 1 ≤ 𝑖 < 𝑗 ≤ 𝑁. (3.4)

When such a function 𝑓 solves a Hirota bilinear equation, we need a
et of requirements, called the Hirota 𝑁-soliton condition (see Refs. 13,
4 for details). Observe that

𝑃 (𝐷𝑥1 , 𝐷𝑥2 ,… , 𝐷𝑥𝑀 )𝑓 ⋅ 𝑓
= 𝑃 ({𝐻(𝐤𝑖1 ,… ,𝐤𝑖𝑛 ) | 1 ≤ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑛 ≤ 𝑁}),

(3.5)

here 𝑃 is another polynomial satisfying

𝑃 (𝟎) = 0,

nd where

(𝐤𝑖1 ,… ,𝐤𝑖𝑛 ), 1 ≤ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑛 ≤ 𝑁,

are called Hirota functions of the wave vectors.13,14 Those functions are
polynomials in the wave vectors and will be defined later. Therefore, a
Hirota bilinear equation possesses an 𝑁-soliton solution if and only if
those Hirota functions are all zero.

The first example of integrable equations possessing 𝑁-soliton solu-
tions is the KdV equation.15

3.2. Hirota 𝑁-soliton conditions

Let 𝑓 be defined as before, and 𝜉 mean that no 𝜉 is involved.
hen13,14

(𝐷𝑥1 ,… , 𝐷𝑥𝑀 )𝑓 ⋅ 𝑓

= (−1)
1
2𝑁(𝑁−1) 𝐻(𝐤1,𝐤2,… ,𝐤𝑁 )

∏

1≤𝑖<𝑗≤𝑁𝑃 (𝐤𝑖 + 𝐤𝑗 )
e𝜂1+𝜂2+⋯+𝜂𝑁

+
𝑁−1
∑

𝑛=1
(−1)

1
2 (𝑁−𝑛)(𝑁−𝑛−1) ∑

1≤𝑖1<⋯<𝑖𝑛≤𝑁

𝐻(𝐤1,… , 𝐤̂𝑖1 ,… , 𝐤̂𝑖𝑛 ,… ,𝐤𝑁 )
∏

1≤𝑖<𝑗≤𝑁
𝑖,𝑗∉{𝑖1 ,…,𝑖𝑛}

𝑃 (𝐤𝑖 + 𝐤𝑗 )

× e𝜂1+⋯+𝜂̂𝑖1+⋯+𝜂̂𝑖𝑛+⋯+𝜂𝑁

+
𝑁−1
∑

𝑛=1

∑

1≤𝑖1<⋯<𝑖𝑛≤𝑁
e2(𝜂𝑖1+⋯+𝜂𝑖𝑛+

∑

1≤𝑟<𝑠≤𝑛 𝑎𝑖𝑟𝑖𝑠 )𝑃 (𝐷𝑥1 ,… , 𝐷𝑥𝑀 )𝑓 ⋅ 𝑓, (3.6)

here

̃ = 𝑓𝑖1⋯𝑖𝑛 =
∑

𝜇̃𝑖1⋯𝑖𝑛=0,1
exp(

∑

1≤𝑖≤𝑁
𝑖∉{𝑖1 ,…,𝑖𝑛}

𝜇𝑖𝜂̃𝑖 +
∑

1≤𝑖<𝑗≤𝑁
𝑖,𝑗∉{𝑖1 ,…,𝑖𝑛}

𝑎𝑖𝑗𝜇𝑖𝜇𝑗 ), (3.7)

𝜂̃𝑖 = 𝜂𝑖 +
𝑛
∑

𝑟=1
𝑎𝑖𝑖𝑟 , (3.8)

n which 𝜇̃𝑖1⋯𝑖𝑛 = (𝜇1,… , 𝜇̂𝑖1 ⋯ , 𝜇̂𝑖𝑛 ,… , 𝜇𝑁 ) and 𝜇̃𝑖1⋯𝑖𝑛 = 0, 1 means that
each 𝜇𝑖 in 𝜇̃𝑖1⋯𝑖𝑛 takes either 0 or 1. In the above analysis, the Hirota
functions are defined by

𝐻(𝐤 ,… ,𝐤 ) ∶=
𝑖1 𝑖𝑛
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p

𝐻

d

𝑃

∑

𝜎=±1
𝑃 (

𝑛
∑

𝑟=1
𝜎𝑟𝐤𝑖𝑟 )

∏

1≤𝑟<𝑠≤𝑛
𝑃 (𝜎𝑟𝐤𝑖𝑟 − 𝜎𝑠𝐤𝑖𝑠 )𝜎𝑟𝜎𝑠, 1 ≤ 𝑛 ≤ 𝑁, (3.9)

where 1 ≤ 𝑖1 < ⋯ < 𝑖𝑛 ≤ 𝑁 , 𝜎 = (𝜎1, 𝜎2,… , 𝜎𝑛), and 𝜎 = ±1 means that
ach 𝜎𝑟 takes either 1 or –1.

Based on (3.6)–(3.8), we can see that a Hirota bilinear equation
ossesses an 𝑁-soliton solution if and only if

(𝐤𝑖1 ,… ,𝐤𝑖𝑛 ) = 0, 1 ≤ 𝑖1 < ⋯ < 𝑖𝑛 ≤ 𝑁, 1 ≤ 𝑛 ≤ 𝑁. (3.10)

This is called the Hirota 𝑁-soliton condition, or simply, the 𝑁-soliton
condition. An equation possessing an 𝑁-soliton solution is often called
a soliton equation. Some computational algorithms with weights have
been presented for checking the Hirota 𝑁-soliton condition (see, e.g.,
Refs. 13, 14).

In the Hirota 𝑁-soliton condition, the case of 𝑛 = 1 leads to the
dispersion relations:

𝑃 (𝐤𝑖) = 0, 1 ≤ 𝑖 ≤ 𝑁, (3.11)

due to the even property of 𝑃 . This is why we always assume that the
ispersion relations hold, while discussing 𝑁-soliton solutions.

The 1-soliton condition is

(𝐤1) = 0, (3.12)

which means that 𝑓 = 1 + e𝜂1 is a solution. The 2-soliton condition is

2(𝑃 (𝐤1 + 𝐤2)𝑃 (𝐤1 − 𝐤2) − 𝑃 (𝐤1 − 𝐤2)𝑃 (𝐤1 + 𝐤2)) = 0, (3.13)

which is an identity. So there always exists the 2-soliton solution:

𝑓 = 1 + e𝜂1 + e𝜂2 + 𝐴12e𝜂1+𝜂2 . (3.14)

Taking 𝑁 = 3, we obtain the 3-soliton condition:
∑

𝜇1 ,𝜇2 ,𝜇3=±1
𝑃 (𝜇1𝐤1 + 𝜇2𝐤2 + 𝜇3𝐤3)𝑃 (𝜇1𝐤1 − 𝜇2𝐤2)

× 𝑃 (𝜇2𝐤2 − 𝜇3𝐤3)𝑃 (𝜇1𝐤1 − 𝜇3𝐤3) = 0. (3.15)

The 3-soliton solution reads

𝑓 = 1 + e𝜂1 + e𝜂2 + e𝜂3 + 𝐴12e𝜂1+𝜂2 + 𝐴13e𝜂1+𝜂3

+ 𝐴23e𝜂2+𝜂3 + 𝐴12𝐴13𝐴23e𝜂1+𝜂2+𝜂3 . (3.16)

Conjecture. Does the 3-soliton condition imply the 𝑁-soliton condition?

There is no counterexample to this conjecture so far. If we require
a sufficient Hirota 𝑁-soliton condition:

𝑃 (𝐤𝑖 − 𝐤𝑗 ) = 0, 1 ≤ 𝑖 < 𝑗 ≤ 𝑁, (3.17)

which implies the Hirota 𝑁-soliton condition (3.10), we obtain the
resonant 𝑁-soliton solution16,17:

𝑓 = 1 + 𝑐1e𝜂1 + 𝑐2e𝜂2 +⋯ + 𝑐𝑁e𝜂𝑁 , (3.18)

where 𝑐𝑖’s are arbitrary constants. Note that all wave vectors 𝐤𝑖’s
associated with resonant solutions form an affine space.17

4. Applications to integrable equations

4.1. (1 + 1)-Dimensional case

In the case of (1 + 1)-dimensions, we have various examples of inte-
grable equations which possess 𝑁-soliton solutions (see, e.g., Refs. 18–
20). The following classes of generalized integrable equations, which
possess 𝑁-soliton solutions, are explored in. Ref. 13

A class of generalized KdV equations possessing 𝑁-soliton solutions
is determined by a polynomial of 4th degree:

𝑃 (𝑥, 𝑡) = 𝑎𝑥4 + 𝑏𝑥3𝑡 + 𝑐𝑥2 + 𝑑𝑥𝑡, 𝑏2 + 𝑑2 ≠ 0, (4.1)
3

where 𝑎, 𝑏, 𝑐 and 𝑑 arbitrary constants satisfying 𝑏2 + 𝑑2 ≠ 0, which
guarantees that we will have a PDE. The corresponding generalized
bilinear KdV equation is

𝐵(𝑓 ) ∶= (𝑎𝐷4
𝑥 + 𝑏𝐷3

𝑥𝐷𝑡 + 𝑐𝐷2
𝑥 + 𝑑𝐷𝑥𝐷𝑡)𝑓 ⋅ 𝑓

= 2[𝑎(𝑓4𝑥𝑓 − 4𝑓3𝑥𝑓𝑥 + 3𝑓 2
𝑥 ) + 𝑏(𝑓3𝑥,𝑡𝑓 − 3𝑓𝑥𝑥𝑡𝑓𝑥 + 3𝑓𝑥𝑡𝑓𝑥𝑥 − 𝑓𝑡𝑓3𝑥)

+ 𝑐(𝑓𝑥𝑥𝑓 − 𝑓 2
𝑥 ) + 𝑑(𝑓𝑥𝑡𝑓 − 𝑓𝑥𝑓𝑡)] = 0 (4.2)

and its generalized KdV equation reads

𝑁(𝑢) ∶= 𝑎(6𝑢𝑥𝑢𝑥𝑥 + 𝑢4𝑥) + 𝑏[3(𝑢𝑥𝑢𝑡)𝑥 + 𝑢3𝑥,𝑡] + 𝑐𝑢𝑥𝑥 + 𝑑𝑢𝑥𝑡 = 0, (4.3)

between which there is a link 𝑁(𝑢) = (𝐵(𝑓 )∕𝑓 2)𝑥 under the dependent
variable transformation 𝑢 = 2(ln𝑓 )𝑥. The case of 𝑏 = 0 presents the KdV
equation,15 and the case of 𝑎 = 0, the Hirota–Satsuma equation.18

A class of generalized Boussinesq equations corresponds to a poly-
nomial of 4th-degree:

𝑃 (𝑥, 𝑡) = 𝑎𝑥4 + 𝑏𝑥3𝑡 + 𝑐𝑥2 + 𝑑𝑥𝑡 + 𝑡2. (4.4)

The case of 𝑏 = 𝑑 = 0 presents the Boussinesq equation.21,22

A class of generalized higher-order KdV equations possessing 𝑁-
soliton solutions is determined through a polynomial of 6th degree:

𝑃 (𝑥, 𝑡) = 𝑎𝑥6 + 𝑏𝑥4 + 𝑐𝑥2 + 𝑥𝑡. (4.5)

The corresponding generalized higher-order bilinear KdV equation is

𝐵(𝑓 ) ∶= (𝑎𝐷6
𝑥 + 𝑏𝐷4

𝑥 + 𝑐𝐷2
𝑥 + 𝑑𝐷𝑥𝐷𝑡)𝑓 ⋅ 𝑓

= 2[𝑎(𝑓6𝑥𝑓 − 6𝑓5𝑥𝑓𝑥 + 15𝑓4𝑥𝑓𝑥𝑥 − 10𝑓 2
3𝑥)

+ 𝑏(𝑓4𝑥𝑓 − 4𝑓3𝑥𝑓𝑥 + 3𝑓 2
𝑥 ) + 𝑐(𝑓𝑥𝑥𝑓 − 𝑓 2

𝑥 ) + 𝑓𝑥𝑡𝑓 − 𝑓𝑥𝑓𝑡] = 0 (4.6)

and its generalized higher-order KdV equation reads

𝑁(𝑢) ∶= 𝑎(15𝑢3𝑥 +15𝑢𝑥𝑢3𝑥 + 𝑢5𝑥)𝑥 + 𝑏(6𝑢𝑥𝑢𝑥𝑥 + 𝑢4𝑥) + 𝑐𝑢𝑥𝑥 +𝑑𝑢𝑥𝑡 = 0, (4.7)

between which there is the same link 𝑁(𝑢) = (𝐵(𝑓 )∕𝑓 2)𝑥 under the
dependent variable transformation 𝑢 = 2(ln 𝑓 )𝑥. The case of 𝑏 = 𝑐 = 0
presents the Sawada–Kotera equation.19

A class of generalized Ramani equations corresponds to a polyno-
mial of 6th degree:

𝑃 (𝑥, 𝑡) = 𝑥6 + 𝑎𝑥4 + 5𝑥3𝑡 + 𝑏𝑥2 + 𝑐𝑥𝑡 − 5𝑡2. (4.8)

The case of 𝑎 = 𝑏 = 𝑐 = 0 presents the Ramani equation.20

4.2. (2 + 1)-Dimensional case

In the case of (2 + 1)-dimensions, we have the following few
examples.

The first example is the bilinear (2 + 1)-dimensional KdV equation:

𝐵(𝑓 ) ∶= 𝐷𝑦(𝐷𝑡 +𝐷3
𝑥)𝑓 ⋅ 𝑓

= 2(𝑓𝑦𝑡𝑓 − 𝑓𝑦𝑓𝑡 + 𝑓𝑥𝑥𝑥𝑦𝑓 − 3𝑓𝑥𝑥𝑦𝑓𝑥

+ 3𝑓𝑥𝑦𝑓𝑥𝑥 − 𝑓𝑦𝑓𝑥𝑥𝑥) = 0, (4.9)

which is associated with

𝑃 (𝑥, 𝑦, 𝑡) = 𝑦𝑡 + 𝑥3𝑦. (4.10)

This is equivalent to the (2 + 1)-dimensional KdV equation23:

𝑁(𝑢, 𝑣) ∶= 𝑢𝑡 + 3(𝑢𝑣)𝑥 + 𝑢𝑥𝑥𝑥 = 0, 𝑢𝑥 = 𝑣𝑦, (4.11)

under the dependent variable transformation of 𝑢 = 2(ln 𝑓 )𝑥𝑦 and 𝑣 =
2(ln 𝑓 )𝑥𝑥. The link is 𝑁(𝑢, 𝑣) = (𝐵(𝑓 )∕𝑓 2)𝑥.

The second example is the bilinear KP equation

𝐵(𝑓 ) ∶= (𝐷4
𝑥 +𝐷𝑥𝐷𝑡 +𝐷2

𝑦)𝑓 ⋅ 𝑓

= 2(𝑓4𝑥𝑓 − 4𝑓3𝑥𝑓𝑥 + 3𝑓 2
𝑥𝑥

+ 𝑓𝑥𝑡𝑓 − 𝑓𝑥𝑓𝑡 + 𝑓𝑦𝑦𝑓 − 𝑓 2
𝑦 ) = 0, (4.12)
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which is associated with

𝑃 (𝑥, 𝑦, 𝑡) = 𝑥4 + 𝑥𝑡 + 𝑦2. (4.13)

It is equivalent to the KP equation

𝑁(𝑢) ∶= (𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥)𝑥 + 𝑢𝑦𝑦 = 0, (4.14)

under the dependent variable transformation 𝑢 = 2(ln𝑓 )𝑥𝑥. The link is
𝑁(𝑢) = (𝐵(𝑓 )∕𝑓 2)𝑥𝑥.

The third example is the bilinear Hirota–Satsuma–Ito (HSI)
equation24

𝐵(𝑓 ) ∶= (𝐷3
𝑥𝐷𝑡 +𝐷𝑦𝐷𝑡 +𝐷2

𝑥)𝑓 ⋅ 𝑓

= 2(𝑓3𝑥,𝑡𝑓 − 3𝑓𝑥𝑥𝑡𝑓𝑥 + 3𝑓𝑥𝑡𝑓𝑥𝑥 − 𝑓𝑡𝑓𝑥𝑥𝑥

+ 𝑓𝑦𝑡𝑓 − 𝑓𝑦𝑓𝑡 + 𝑓𝑥𝑥𝑓 − 𝑓 2
𝑥 ) = 0, (4.15)

which is associated with

𝑃 (𝑥, 𝑦, 𝑡) = 𝑥3𝑡 + 𝑦𝑡 + 𝑥2. (4.16)

This is equivalent to the HSI equation

𝑁(𝑢) ∶= 𝑢𝑥𝑥 + 𝑢𝑦𝑡 + 3(𝑢𝑥𝑢𝑡)𝑥 + 𝑢𝑥𝑥𝑥𝑡 = 0, (4.17)

under the dependent variable transformation 𝑢 = 2(ln 𝑓 )𝑥. The link is
𝑁(𝑢) = (𝐵(𝑓 )∕𝑓 2)𝑥.

The fourth example is the bilinear BKP equation25:

𝐵(𝑓 ) ∶= (𝐷6
𝑥 + 5𝐷3

𝑥𝐷𝑦 +𝐷𝑥𝐷𝑡 − 5𝐷2
𝑦)𝑓 ⋅ 𝑓

= 2[𝑓6𝑥𝑓 − 6𝑓5𝑥𝑓𝑥 + 15𝑓4𝑥𝑓𝑥𝑥 − 10𝑓 3
3𝑥

+ 5(𝑓3𝑥,𝑦𝑓 − 3𝑓𝑥𝑥𝑦𝑓𝑥 + 3𝑓𝑥𝑦𝑓𝑥𝑥 − 𝑓𝑦𝑓3𝑥)

+ 𝑓𝑥𝑡𝑓 − 𝑓𝑥𝑓𝑡 − 5(𝑓𝑦𝑦𝑓 − 𝑓 2
𝑦 )] = 0, (4.18)

which is associated with

𝑃 (𝑥, 𝑦, 𝑡) = 𝑥6 + 5𝑥3𝑦 + 𝑥𝑡 − 5𝑦2. (4.19)

It is equivalent to the BKP equation

𝑁(𝑢) ∶= (15𝑢3𝑥 + 15𝑢𝑥𝑢3𝑥 + 𝑢5𝑥)𝑥

+ 5[𝑢3𝑥,𝑦 + 3(𝑢𝑥𝑢𝑦)𝑥] + 𝑢𝑥𝑡 − 5𝑢𝑦𝑦 = 0, (4.20)

under the dependent variable transformation 𝑢 = 2(ln 𝑓 )𝑥. The link is
𝑁(𝑢) = (𝐵(𝑓 )∕𝑓 2)𝑥.

In what follows, we would like to present other two novel examples
of generalized nonlinear equations possessing 𝑁-soliton solutions in
the case of (2 + 1)-dimensions. The first one is a combined (2 +
1)-dimensional equation26:

𝐵(𝑓 ) ∶= [𝑎1(𝐷4
𝑥 +𝐷𝑥𝐷𝑡) + 𝑎2(𝐷3

𝑥𝐷𝑦 +𝐷𝑦𝐷𝑡)

+ 𝑎3𝐷
2
𝑥 + 𝑎4𝐷𝑥𝐷𝑦 + 𝑎5𝐷

2
𝑦]𝑓 ⋅ 𝑓 = 0, (4.21)

which is associated with

𝑃 (𝑥, 𝑦, 𝑡) = 𝑎1(𝑥4 + 𝑥𝑡) + 𝑎2(𝑥3𝑦 + 𝑦𝑡) + 𝑎3𝑥
2 + 𝑎4𝑥𝑦 + 𝑎5𝑦

2, (4.22)

where 𝑎𝑖’s are arbitrary constants and satisfy 𝑎21+𝑎
2
2 ≠ 0 to guarantee the

nonlinearity of the equation. This is equivalent to a nonlinear combined
(2 + 1)-dimensional equation26:

𝑁(𝑢, 𝑣) ∶= 𝑎1(𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥) + 𝑎2[𝑣𝑡 + 3(𝑢𝑣)𝑥 + 𝑣𝑥𝑥𝑥]

+ 𝑎3𝑢𝑥 + 𝑎4𝑣𝑥 + 𝑎5𝑣𝑦 = 0, (4.23)

where 𝑢𝑦 = 𝑣𝑥, and the direct link is 𝑁(𝑢, 𝑣) = (𝐵(𝑓 )∕𝑓 2)𝑥, under the
dependent variable transformation of 𝑢 = 2(ln𝑓 )𝑥𝑥 and 𝑣 = 2(ln𝑓 )𝑥𝑦.

The second one is the bilinear pKP-BKP equation27:

𝐵(𝑓 ) ∶= (𝑎1𝐷6
𝑥+𝑎2𝐷

4
𝑥+𝑎3𝐷

3
𝑥𝐷𝑦+𝑎4𝐷

2
𝑥+𝑎5𝐷𝑥𝐷𝑡+𝑎6𝐷

2
𝑦)𝑓 ⋅𝑓 = 0, (4.24)

which is associated with
6 4 3 2 2
𝑃 (𝑥, 𝑦, 𝑡) = 𝑎1𝑥 + 𝑎2𝑥 + 𝑎3𝑥 𝑦 + 𝑎4𝑥 + 𝑎5𝑥𝑡 + 𝑎6𝑦 , (4.25)

4

where 𝑎𝑖’s are arbitrary constants and 𝑎5 ≠ 0 to guarantee a PDE. This
is equivalent to a nonlinear pKP-BKP equation27:

𝑁(𝑢) ∶= 𝑎1(15𝑢3𝑥 + 15𝑢𝑥𝑢3𝑥 + 𝑢5𝑥)𝑥 + 𝑎2(6𝑢𝑥𝑢𝑥𝑥 + 𝑢4𝑥)

+ 𝑎3[𝑢3𝑥,𝑦 + 3(𝑢𝑥𝑢𝑦)𝑥] + 𝑎4𝑢𝑥𝑥 + 𝑎5𝑢𝑥𝑡 + 𝑎6𝑢𝑦𝑦 = 0, (4.26)

under the dependent variable transformation 𝑢 = 2(ln𝑓 )𝑥, and the direct
link is 𝑁(𝑢) = (𝐵(𝑓 )∕𝑓 2)𝑥. It possesses an 𝑁-soliton solution if and only
if 𝑎23 + 5𝑎1𝑎6 = 0,27 which include the two previous BKP equations.

5. Concluding remarks

We have discussed the Hirota bilinear formulation of soliton solu-
tions and presented a brief survey on illustrative examples of integrable
equations, which possess 𝑁-soliton solutions. The Hirota 𝑁-soliton
conditions have been given explicitly and many new examples have
been discussed, which have been explored in our recent works under
the help of symbolic computations.

We would like to point out that no example of Hirota bilinear
equations in (3 + 1)-dimensions or higher-dimensions has been found
to possess 𝑁-soliton solutions. In the case of (3 + 1)-dimensions, the
Jimbo–Miwa equation28

[(𝐷3
𝑥 + 2𝐷𝑡)𝐷𝑦 − 3𝐷𝑥𝐷𝑧]𝑓 ⋅ 𝑓 = 0 (5.1)

is the second member of soliton equations in the Sato-KP hierarchy,29

the KP equation being the first member. But the Jimbo–Miwa equation
passes the Painlevé test just for a subclass of solutions,30 and only
specific types of soliton solutions to the equation have been explored
(see, e.g., Ref. 31). It would always be interesting, challenging and
rewarding to look for typical examples of Hirota bilinear equations in (3
+ 1)-dimensions, or even higher-dimensions, which possess 𝑁-soliton
solutions.

We would also like to remark that a kind of generalized bilinear
derivatives, called the 𝐷𝑝,𝑥-derivatives, is defined by Ref. 32:

(𝐷𝑚
𝑝,𝑥𝑓 ⋅ 𝑔)(𝑥) =

𝑚
∑

𝑖=0

(

𝑚
𝑖

)

𝛼𝑖𝑝(𝜕
𝑛−𝑖
𝑥 𝑓 )(𝑥)(𝜕𝑖𝑥𝑔)(𝑥), 𝑚 ≥ 1, (5.2)

where the powers of 𝛼𝑝 are determined by

𝛼𝑖𝑝 = (−1)𝑟(𝑖), 𝑖 = 𝑟(𝑖) mod 𝑝, 𝑖 ≥ 0, (5.3)

with 0 ≤ 𝑟(𝑖) < 𝑝. Those powers for 𝑖 = 1, 2, 3,… read

𝑝 = 3 ∶ −,+,+,−,+,+,…;

𝑝 = 5 ∶ −,+,−,+,+,−,+,−,+,+,…;

𝑝 = 7 ∶ −,+,−,+,−,+,+,−,+,−,+,−,+,+,… .

For example, we have

𝐷3
3,𝑥𝑓 ⋅ 𝑓 = 2𝑓𝑥𝑥𝑥𝑓, 𝐷4

3,𝑥𝑓 ⋅ 𝑓 = 6𝑓 2
𝑥𝑥, (5.4)

which is different from the Hirota case (i.e., 𝑝 = 2). We can have
other generalized bilinear derivatives, e.g., 𝐷6,𝑥, 𝐷9,𝑥, associated with
nonprime odd numbers.

A generalized bilinear equation reads

𝑃 (𝐷𝑝,𝑥, 𝐷𝑝,𝑦, 𝐷𝑝,𝑡)𝑓 ⋅ 𝑓 = 0, (5.5)

and it possesses a resonant 𝑁-soliton solution

𝑓 = 1 + 𝑐1e𝜂1 + 𝑐2e𝜂2 +⋯ + 𝑐𝑁e𝜂𝑁 , (5.6)

where 𝑐𝑖’s are arbitrary constants, if and only if the following condition
is satisfied9,10:

𝑃 (𝐤𝑖 + 𝛼𝑝𝐤𝑗 ) + 𝑃 (𝐤𝑗 + 𝛼𝑝𝐤𝑖) = 0, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑁. (5.7)

A generalized 𝑁-soliton condition is the condition under which a

generalized bilinear equation possesses an 𝑁-soliton solution. However,
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what is such a generalized 𝑁-soliton condition, i.e., an 𝑁-soliton
condition for a generalized bilinear equation? It is very interesting how
to formulate generalized bilinear equations, for example,

𝑃 (𝐷3,𝑥, 𝐷,𝑡) = 0, 𝑃 (𝐷3,𝑥, 𝐷3,𝑦, 𝐷3,𝑡) = 0, (5.8)

which possess 𝑁-soliton solutions, in (1 + 1)-dimensions or (2 + 1)-
dimensions. It is expected that some new theories could be developed
in the case of generalized bilinear equations.
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