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1. Introduction

Integrable equations possess a kind of exact multiple wave so-
lutions, called N-soliton solutions. Among basic approaches to soli-
ton solutions are the inverse scattering transform,’? the Riemann-
Hilbert technique,® the Darboux transformation,* and the Hirota di-
rect method.® Significant solutions in mathematical physics, such as
breather, complexion, lump and rogue wave solutions, are particular re-
ductions of N-soliton solutions in different situations. Solitons superim-
posed in fibers are applied to optical communications, which enable to
produce faster, richer, more secure, and more flexible communication
systems.®

The Hirota direct method provides a standard and powerful ap-
proach to N-soliton solutions, indeed.” The innovative bilinear deriva-
tives play a crucial role in generating soliton solutions’” as well as
lump solutions,® and Hirota bilinear forms are the key in related basic
theories.” It is a characteristic feature that integrable equations can
be transformed into Hirota bilinear forms under dependent variable
transformations. This is also reflected by the Bell polynomial theory,
which tells when a nonlinear equation can be expressed as a bilinear
equation, either Hirota bilinear or generalized bilinear, through an
exponential function relation.”'°

In this paper, we would like to provide a brief survey on soliton
solutions via the Hirota direct method. In Section 2, we will introduce
both Hirota bilinear derivatives and Hirota bilinear forms. In Section 3,
we will formulate N-soliton solutions via Hirota bilinear forms, and
analyze the Hirota conditions for N-soliton solutions. In Section 4, we
will present a few basic examples of applications, including some novel

examples. Finally in Section 5, we will give a summary, and discuss
higher-dimensional cases and generalized bilinear equations and their
related soliton problems.

2. Hirota bilinear derivatives and forms
2.1. Basic definitions

It is known that Hirota bilinear derivatives with respect to x and ¢
are defined as follows’:

DID!f g = (0 = 0y)"(9 = 9)' f (6, &X' )y r—s 1)
where m,n > 0 and m + n > 1. Particularly, we have

D.f-g= /&~ f&: Dif'g:fxxg_zfxgx-"fgxx' (2.2
When f = g, we get Hirota bilinear expressions:

DD f - f =0y —0u)"©0 = 0p)' f (., O.f (X' s 1) o1 =p» (2.3)
where m,n > 0 and m + n > 1. The first two of such expressions read
Dif - f=0, Dif - [ =2fuf = [ 24

when n = 0. Hirota bilinear derivatives with respect to x,y and ¢ can
be defined completely similarly.

Since we can see that Hirota bilinear expressions of odd degree are
all zero,® we assume that P(x,r) (or P(x,y,1)) is an even polynomial
in x,t (or x,y,7). To guarantee the existence of polynomial solutions,
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particularly in the case of lump solutions, we also assume that P has
no constant term, i.e., P(0) = 0.
A Hirota bilinear equation in (1 + 1)- or (2 + 1)-dimensions is

P(D,,D)f - f =0 or P(D,,D,,D)f - f =0. (2.5)

If a nonlinear partial differential equation (PDE) can be transformed
into a Hirota bilinear equation under a dependent variable transforma-
tion, we say it possesses a Hirota bilinear form. The Bell polynomial
theory'® shows what nonlinear equations can possess Hirota bilinear
forms.

2.2. Illustrative examples

In the case of (1 + 1)-dimensions, the bilinear Korteweg—de Vries
(KdV) equation

(Di + Dth)f . f = z(fxxxxf - 4fxxxfx + 3f3x + fxtf - fxfr) =0 (26)
generates the KdV equation
u, +6uu, +u,, =0, (2.7)

under the dependent variable transformation u = 2(In f),... Actually, we
have

(D*+ D,D))f -
u, +6uu, + iy, = [;tff . (2.8)
f? x

The bilinear Boussinesq equation reads
DY+ D) - f = 2] =S+ 3 e+ S = S =0, 2.9
which gives the Boussinesq equation
Uy + (U7) g + s = 0, (2.10)
if we take u = 6(In f),,.. Precisely, we can show that

3D+ DHf - f
W)t = || @11

f XX

In the case of (2 + 1)-dimensions, the bilinear Kadomtsev—
Petviashvili (KP) equation is

(D*+ DD, - Dﬁ)f - f=0, (2.12)
ie.,

2Wswe] =435+ fuf = fufy = i f + 1) =0, (2.13)
This is equivalent to the KP equation

(uy + 6uuy + uyy ), —uy, =0, (2.149)

under the dependent variable transformation u = 2(In f),,. Similarly,
we have

(Dy+ DD, =D)f - f
2
The bilinear B-type Kadomtsev-Petviashvili (BKP) equation reads

(g + Ouuy + Uy ), —uy, = [ ]Xx. (2.15)

B(f) :=(D$=5D}D,+ D, D, - 5D})f - f
=2fouf = 6Fsx Sy + 15 ufrx = 1012,
= Sfxxxyf F 15 cxy S = 15 fxy frax + 5Fy Faxx
+ fxf = fufi=5Ff +51) =0,

which engenders the BKP equation

(2.16)

N@) := (u, + 15uu, + 15ui — 15u,u, +us, ), —Su Su,, =0, (2.17)

xxxy
under the dependent variable transformation u = 2(In f),. In fact, we
can show that

N@ =B/ s

Based on Hirota bilinear forms, symbolic computation can be ap-
plied, in search of exact multiple wave solutions, including lump solu-
tions as long wave limits (see, e.g., Refs. 11, 12).

(2.18)
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3. Hirota bilinear formulation of solitons
3.1. N-Soliton solutions

We focus on two cases of (1 + 1)-dimensions and (2 + 1)-
dimensions. Assume that the wave vectors are given by

K, = (k;, —w;) or (k;, I, —w,), 1 <i < N. (3.1)
An N-soliton solution is defined as follows:

N
f= Z exp(z Ml + 2 a;jpik;y), (3.2)

4=0,1 i=1 i<j

where pu = (uy, piy, ..., uy), ¢ = 0,1 means that each y; takes either 0 or
1,
n; = kix (+1;y) —w;it + 1,0, n;9 =const.,, 1 <i <N, 3.3)
and

P(k; — k;)
et = A <i<j<N. 3.9

=]
UTU Pk +k) T

When such a function f solves a Hirota bilinear equation, we need a
set of requirements, called the Hirota N-soliton condition (see Refs. 13,
14 for details). Observe that

P(D,.D,,....D, ) f

=P({H(,, ...k )| 1 <ij <iy < <i, <N}, 3.5

where P is another polynomial satisfying

P0) =0,
and where
Hk; ...k ), 1 <ij <iy <--<i, <N,

are called Hirota functions of the wave vectors.'>!* Those functions are
polynomials in the wave vectors and will be defined later. Therefore, a
Hirota bilinear equation possesses an N-soliton solution if and only if
those Hirota functions are all zero.

The first example of integrable equations possessing N -soliton solu-
tions is the KdV equation.'®

3.2. Hirota N-soliton conditions

Let f be defined as before, and & mean that no ¢ is involved.
Then!3:14

P(Dy.....Dy )f - f
=(_1)%N(N—l) Hk ks, ..., ky) Mty
[Ticicjen P&k; +k))

N-1
+ Z(_l)%(an)(anfl)

n=1 1<iy<-<i, <N

Hky, . koK k)

I i<i<isn Pk; +k;)
INTI

o @Iy ety by

N-1
+ Z 2 Q201+, +1<r<s<n a"'S)P(Dxl s DY f, (3.6)

Dy,
n=1 1<ij<---<i, <N
where
f= filu-in = Z eXP(Z 1<ien Hifl; + 2 <N Giy),  (3.7)
gy iy =0.1 I (i1 veenin) NI
n
i =n + Z jj,.» (3.8
r=1
in which Hiyeesiy = (g5 oo s Ay o s M) and fij,...i,, = 0,1 means that

each y; in ji; ..; takes either O or 1. In the above analysis, the Hirota
functions are defined by

HK; ...k )=
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n
> PQok) [[ Pk, -0k o0, 1<n<N, (3.9)
o=+1 r=1 1<r<s<n

where 1 <i; < -+ <i, <N, 06 =(0,09,...
each o, takes either 1 or -1.

Based on (3.6)-(3.8), we can see that a Hirota bilinear equation
possesses an N-soliton solution if and only if

,0,), and ¢ = +1 means that

H(k; ...k, )=0, 1<ij <+ <i, <N, 1<n<N. (3.10)

TR

This is called the Hirota N-soliton condition, or simply, the N-soliton
condition. An equation possessing an N-soliton solution is often called
a soliton equation. Some computational algorithms with weights have
been presented for checking the Hirota N-soliton condition (see, e.g.,
Refs. 13, 14).

In the Hirota N-soliton condition, the case of n = 1 leads to the

dispersion relations:
Pk)=0, 1 <i<N, (3.11)

due to the even property of P. This is why we always assume that the

dispersion relations hold, while discussing N-soliton solutions.
The 1-soliton condition is

P(k;) =0, 3.12)

which means that f =1 + el is a solution. The 2-soliton condition is

2(P(k; +ky)P(k; —ky) — P(k; — k) P(k; +k;)) =0, (3.13)

which is an identity. So there always exists the 2-soliton solution:

f=1+en+e”+ Apentn, 3.19
Taking N = 3, we obtain the 3-soliton condition:
D PGk + ik + psks) Pk — irky)
Hs =1
X P(pyky — i3 k3) P(p kg — puzks) = 0. (3.15)

The 3-soliton solution reads
f=14eN+e”+eB + Aentn 4 Ajentn

+ Ay €Tt 4 A, A3 Apyeli TRt (3.16)

Conjecture. Does the 3-soliton condition imply the N-soliton condition?

There is no counterexample to this conjecture so far. If we require
a sufficient Hirota N-soliton condition:

Pk, ~k)=0, 1<i<j<N, (3.17)

which implies the Hirota N-soliton condition (3.10), we obtain the
resonant N-soliton solution!®17;

f=14cieM +cyeh+ - +cyelv, (3.18)

where ¢;’s are arbitrary constants. Note that all wave vectors k;’s
associated with resonant solutions form an affine space.'”

4. Applications to integrable equations
4.1. (1 + 1)-Dimensional case

In the case of (1 + 1)-dimensions, we have various examples of inte-
grable equations which possess N-soliton solutions (see, e.g., Refs. 18—
20). The following classes of generalized integrable equations, which
possess N-soliton solutions, are explored in. Ref. 13

A class of generalized KdV equations possessing N-soliton solutions
is determined by a polynomial of 4th degree:

P(x,1) = ax* + bx>t + ex? + dxt, b* +d*> £0, 4.1)
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where a,b,c and d arbitrary constants satisfying 5% + d> # 0, which
guarantees that we will have a PDE. The corresponding generalized
bilinear KdV equation is

B(f) :=(aD? +bD>D, + cD> +dD,D)f - f

=2a(farf =4 3xfs +3FD +b(f3xaf = 3fcxeSx +3fceSxx = Fif3x)
+e(fouf = [D+d(fuf = [ /)1 =0 (4.2)

and its generalized KdV equation reads

N (W) = a(6ugity, + ttgy) + b[3(etty), + Uz ,] + cliyy + ditg =0, 4.3

between which there is a link N(u) = (B(f)/f?), under the dependent
variable transformation u = 2(In f),. The case of b = 0 presents the KdV
equation,'® and the case of a = 0, the Hirota-Satsuma equation.'®

A class of generalized Boussinesq equations corresponds to a poly-
nomial of 4th-degree:

P(x,1) = ax* + bx3t + x> + dxt + 2. 4.9

The case of b = d = 0 presents the Boussinesq equation.?!»22
A class of generalized higher-order KdV equations possessing N-
soliton solutions is determined through a polynomial of 6th degree:

P(x,1) = ax® + bx* + cx? + xt. (4.5)
The corresponding generalized higher-order bilinear KdV equation is
B(f) :=(aD® + bD* +cD? +dD,D)f - f
=a(forf = 6fs5efc +15f4cf i = 10f3,)

+0(faxf = 4f3xfs 43D+ (fanf = [+ fuaf = fof1=0 (4.6)
and its generalized higher-order KdV equation reads
N(u) := a(lSuz + 15uuz, +usy ), + b(Ouu, +uy)+cuy, +du, =0, (4.7)

between which there is the same link N(u) = (B(f)/f?), under the
dependent variable transformation u = 2(In f),. The case of b = ¢ =0
presents the Sawada—Kotera equation.'®

A class of generalized Ramani equations corresponds to a polyno-
mial of 6th degree:

P(x,1) = x® + ax* + 5x31 + bx? + ext — 512, (4.8)

The case of a = b = ¢ = 0 presents the Ramani equation.?’
4.2. (2 + 1)-Dimensional case

In the case of (2 + 1)-dimensions, we have the following few
examples.
The first example is the bilinear (2 + 1)-dimensional KdV equation:

B(f) := D,(D; + D)f - f
= z(fytf - fyft + fxxxyf - 3fxxyfx
+ 3fxyfxx - fyfxxx) =0, (4.9)

which is associated with

P(x,y,t) =yt + x3y. (4.10)
This is equivalent to the (2 + 1)-dimensional KdV equation®?:
N(u,v) 1= u, +3Wwo), +uyy, =0, uy =0, (4.11)

under the dependent variable transformation of u = 2(In f),, and v =
2(In f),,. The link is N(u,v) = (B(f)/f?),.
The second example is the bilinear KP equation
B(f) 1= (D} + DD, + D)f - f
= 2(f4xf - 4f3xfx + Sffx

+ Sl = Sufy ¥ fyf = 1D =0, (4.12)
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which is associated with

P(x,y,1) = X+ xr+ yz. (4.13)
It is equivalent to the KP equation
N() = (up + 6uny +1uyy)y +uy, =0, (4.14)

under the dependent variable transformation u = 2(In f),,.. The link is
N@) = B/ [Psx-

The third example is the bilinear Hirota-Satsuma-Ito (HSI)
equation?*
B(f) := (DD, + D,D, + D})f - f
= 2(f3x,tf - 3fxxrfx + 3fxtfxx - frfxxx

+ [l = fyfi+ fof = D=0, (4.15)
which is associated with
P(x,y,1) =x3l+yt+x2. (4.16)
This is equivalent to the HSI equation
N@) 1= ugy +uy + 3y + gy =0, (4.17)

under the dependent variable transformation u = 2(In f),. The link is
N = B/ s
The fourth example is the bilinear BKP equation®®:
B(f) :=(D%+5D>D,+ DD, - spi)f - f
= 2SS = 6sx s+ 15 4 frx = 1013,
+ 5(faxyf = 3fxxySx + 3y Sax = FyS30)

+ fuf = fufi =5y f = F1=0, (4.18)
which is associated with
P(x,y. 1) = x% + 5x%y + xt — 5)°. (4.19)
It is equivalent to the BKP equation
N(u) = (150> + 15uus, + us,),

+ 5lusy y + 3Qtty) ] + gy — Suy, =0, (4.20)

under the dependent variable transformation u = 2(In f),. The link is
N@w) = (B(f)/f),-

In what follows, we would like to present other two novel examples
of generalized nonlinear equations possessing N-soliton solutions in
the case of (2 + 1)-dimensions. The first one is a combined (2 +
1)-dimensional equation?®:

B(f) := [al(Di +D,D,)+ay(D>D,+ D,D,)

+a3D? +a,D, D, + a5D§Jf - f=0, (4.21)
which is associated with
P(x,y,1) = al(x4 + xt) + az(x3y + )+ a3x2 +ayxy + a5y2, (4.22)

where q;’s are arbitrary constants and satisfy a%+a§ # 0 to guarantee the

nonlinearity of the equation. This is equivalent to a nonlinear combined

(2 + 1)-dimensional equation®®:

N(u,v) := ay(u, + 6uu, +u,, )+ ay[v, + 3wv), + v,
+ asuy, +agv, +asv, =0, (4.23)

where Uy, = vy, and the direct link is N(u,v) = (B(f)/f?),, under the

dependent variable transformation of u = 2(In f),, and v = 2(In f),,.
The second one is the bilinear pKP-BKP equation®’:

B(f) :=(aDS+a, D} +a3D} D, +a, D} +asD D, +agDY)f - f =0, (4.24)
which is associated with

P(x,y,0) = a;x® + apx* + a3y + ayx® + asxt + agy?, (4.25)
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where g,’s are arbitrary constants and a5 # 0 to guarantee a PDE. This
is equivalent to a nonlinear pKP-BKP equation®:

N(@) := a;(15u> + 1Suus, + usy), + ay (gt + tg)

+ azluzy ), + 3(uuy) ]+ aguy, + asuy, + aguy, =0, (4.26)

under the dependent variable transformation u = 2(In f),, and the direct
link is N(u) = (B(f)/f?),. It possesses an N-soliton solution if and only
if a3 + 5a;a5 = 0,% which include the two previous BKP equations.

5. Concluding remarks

We have discussed the Hirota bilinear formulation of soliton solu-
tions and presented a brief survey on illustrative examples of integrable
equations, which possess N-soliton solutions. The Hirota N-soliton
conditions have been given explicitly and many new examples have
been discussed, which have been explored in our recent works under
the help of symbolic computations.

We would like to point out that no example of Hirota bilinear
equations in (3 + 1)-dimensions or higher-dimensions has been found
to possess N-soliton solutions. In the case of (3 + 1)-dimensions, the
Jimbo-Miwa equation?®

(D} +2D,)D,-3D,D,1f - f =0 .1)

is the second member of soliton equations in the Sato-KP hierarchy,?’
the KP equation being the first member. But the Jimbo-Miwa equation
passes the Painlevé test just for a subclass of solutions,>® and only
specific types of soliton solutions to the equation have been explored
(see, e.g., Ref. 31). It would always be interesting, challenging and
rewarding to look for typical examples of Hirota bilinear equations in (3
+ 1)-dimensions, or even higher-dimensions, which possess N-soliton
solutions.

We would also like to remark that a kind of generalized bilinear
derivatives, called the D, ,-derivatives, is defined by Ref. 32:

m

D=y (’;’>a;;<az—"f>(x><a;g)<x>, m>1, (5.2)

i=0

where the powers of a, are determined by
@, = (=D)'®, i = r@i) mod p, i >0, (5.3)

with 0 < r(i) < p. Those powers for i = 1,2,3, ... read

p=3: -+ + -+t +.
p=5: —+ -+t
p=T1 -+ -+ oo o

For example, we have
D3 f [ =2fxxx]> Dy S f=6f] (5.4

which is different from the Hirota case (i.e., p = 2). We can have
other generalized bilinear derivatives, e.g., D, Dy, associated with
nonprime odd numbers.

A generalized bilinear equation reads

P(Dyy, Dy Dy )f - f =0, (5.5)
and it possesses a resonant N-soliton solution
f=1+ce" +ce” + ... +cye™, (5.6)

where ¢;’s are arbitrary constants, if and only if the following condition
is satisfied®1°:

P, + k) + P(k; +a,k) =0, 1 <i<j<N. (5.7)

A generalized N-soliton condition is the condition under which a
generalized bilinear equation possesses an N-soliton solution. However,
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what is such a generalized N-soliton condition, i.e., an N-soliton
condition for a generalized bilinear equation? It is very interesting how
to formulate generalized bilinear equations, for example,
P(D5,,D,;)=0, P(Ds,, Ds ., Ds;) = 0, (5.8)
which possess N-soliton solutions, in (1 + 1)-dimensions or (2 + 1)-
dimensions. It is expected that some new theories could be developed
in the case of generalized bilinear equations.
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