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A B S T R A C T

We aim to discuss about how to construct and classify nonlocal PT-symmetric integrable equations via nonlocal
group reductions of matrix spectral problems. The nonlocalities considered are reverse-space, reverse-time and
reverse-spacetime, each of which can involve either the transpose or the Hermitian transpose. The associated
spectral problems are used to formulate a kind of Riemann–Hilbert problems and thus inverse scattering
transforms. Soliton solutions are generated from specific Riemann–Hilbert problems with the identity jump
matrix. We focus on two expository examples: nonlocal PT-symmetric matrix nonlinear Schrödinger and
modified Korteweg–de Vries equations.
. Introduction

Zero curvature equations associated with matrix Lie algebras gener-
te Liouville integrable equations1–4. The Liouville integrability means
hat there exist infinitely many symmetries and conservation laws.
asic tools to explore such Liouville integrability are the trace identity5

nd the variational identity6, corresponding to semi-simple Lie algebras
r non-semi-simple Lie algebras, respectively. Among the well-known
ierarchies of integrable equations are the KdV hierarchy, the AKNS
ierarchy and the Kaup–Newell hierarchy7,8, and various hierarchies
f their associated integrable couplings9,10.

A generating scheme11 starts from two matrix spectral problems:

𝑖𝜙𝑥 = 𝑈𝜙, −𝑖𝜙𝑡 = 𝑉 𝜙, (1.1)

here 𝑖 is the unit imaginary number, 𝑈 = 𝑈 (𝑢, 𝜆) and 𝑉 = 𝑉 (𝑢, 𝜆) are a
ax pair of given matrices belonging to a loop algebra (called a spectral
atrix and a Lax matrix, respectively), and 𝜙 is a matrix eigenfunction

ssociated with an eigenvalue 𝜆. The zero curvature equation

𝑡 − 𝑉𝑥 + 𝑖[𝑈, 𝑉 ] = 0, (1.2)

hich is the compatibility condition of the two spectral problems, de-
ermines an integrable equation5. Its bi-Hamiltonian structure12, which
ields a series of commuting symmetries and conservation laws13,14,
an often be furnished through applying the trace identity or the vari-
tional identity. Conservation laws and recursion operators can also be

✩ In celebration of the retirement of Professor Chaudry Masood Khalique.
∗ Correspondence to: Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA.
E-mail address: mawx@cas.usf.edu.

generated by performing symbolic computations with computer algebra
systems (see, e.g.,15,16). Generally, conservation laws correspond to
pairs of symmetries and adjoint symmetries17,18.

A PT-symmetry is a fundamental symmetry of physical laws under
a parity transformation: either 𝑥 → −𝑥 or 𝑥 → −𝑥, 𝑦 → −𝑦, 𝑧 → −𝑧
(but not 𝑥 → −𝑥, 𝑦 → −𝑦, which is a rotation); time reversal: 𝑡 → −𝑡;
and charge conjugation: 𝑖 → −𝑖. It is a symmetry of nature at the
fundamental level19,20. An equation is called to be PT-symmetric, if it
is invariant under a PT-symmetry.

In this article, we would like to discuss about how to generate
and classify nonlocal integrable group reductions of matrix spectral
problems, which lead to nonlocal PT-symmetric integrable equations.
The nonlocalities considered include reverse-space, reverse-time and
reverse-spacetime, each of which involve either the transpose or the
Hermitian transpose. Many illustrative examples of nonlocal integrable
equations were recently given in soliton theory (see, e.g.,21–32). Based
on special linear Lie algebras, we would like to consider the matrix
AKNS spectral problems. The associated spectral problems are used to
establish a kind of Riemann–Hilbert problems and thus inverse scat-
tering transforms. Soliton solutions are obtained from solving specific
Riemann–Hilbert problems with the identity jump matrix. We focus
on two expository examples: nonlocal PT-symmetric matrix nonlin-
ear Schrödinger and modified Korteweg–de Vries equations. A few
concluding remarks are given in the last section.
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Received 21 September 2021; Received in revised form 25 October 2021; Accepted

2666-8181/© 2021 The Author. Published by Elsevier B.V. This is an open access
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
26 October 2021

article under the CC BY-NC-ND license

https://doi.org/10.1016/j.padiff.2021.100190
http://www.elsevier.com/locate/padiff
http://www.elsevier.com/locate/padiff
http://crossmark.crossref.org/dialog/?doi=10.1016/j.padiff.2021.100190&domain=pdf
mailto:mawx@cas.usf.edu
https://doi.org/10.1016/j.padiff.2021.100190
http://creativecommons.org/licenses/by-nc-nd/4.0/


W.-X. Ma Partial Differential Equations in Applied Mathematics 4 (2021) 100190

𝑈

w

𝑄

m

𝑝

H
c

(

r
c
e

𝑝

𝑝

(

r
i

𝑝

2. Matrix NLS equations and mKdV equations

Let 𝑚, 𝑛 ∈ N be arbitrarily given. Suppose that 𝑢 = 𝑢(𝑝, 𝑞), where 𝑝
and 𝑞 are potential matrices:

𝑝 = (𝑝𝜇𝜈 )1≤𝜇≤𝑚, 1≤𝜈≤𝑛, 𝑞 = (𝑞𝜈𝜇)1≤𝜈≤𝑛, 1≤𝜇≤𝑚, (2.1)

and set

𝛬 = diag(𝛼1𝐼𝑚, 𝛼2𝐼𝑛), 𝛺 = diag(𝛽1𝐼𝑚, 𝛽2𝐼𝑛), (2.2)

where 𝛼𝑖 and 𝛽𝑖, 𝑖 = 1, 2, are two pairs of different numbers. For a fixed
𝑟 ∈ N, we consider a Lax pair in the AKNS matrix spectral problems as
follows:

𝑈 = 𝜆𝛬 + 𝑃 (𝑢), 𝑉 [𝑟] = 𝜆𝑟𝛺 +𝑄[𝑟](𝑢, 𝜆), (2.3)

where 𝑃 and 𝑄[𝑟] are traceless, and the degree of 𝑄[𝑟] with respect to
𝜆 is less than 𝑟.

The matrix nonlinear Schrödinger (NLS) equations has the potential
matrix:

𝑃 =
[

0 𝑝
𝑞 0

]

. (2.4)

and the 𝑄[2] matrix:

𝑄[2] =
𝛽
𝛼
𝜆
[

0 𝑝
𝑞 0

]

−
𝛽
𝛼2

[

𝑝𝑞 𝑖𝑝𝑥
−𝑖𝑞𝑥 −𝑞𝑝

]

, (2.5)

where 𝛼 = 𝛼1 − 𝛼2 and 𝛽 = 𝛽1 − 𝛽2. The corresponding zero curvature
equation

𝑈𝑡 − 𝑉 [2]
𝑥 + 𝑖[𝑈, 𝑉 [2]] = 0

gives the matrix NLS equations:

𝑝𝑡 = −
𝛽
𝛼2
𝑖(𝑝𝑥𝑥 + 2𝑝𝑞𝑝), 𝑞𝑡 =

𝛽
𝛼2
𝑖(𝑞𝑥𝑥 + 2𝑞𝑝𝑞). (2.6)

Consider the following zero curvature equation

𝑡 − 𝑉 [3]
𝑥 + 𝑖[𝑈, 𝑉 [3]] = 0,

here 𝑉 [3] = 𝜆3𝛬 +𝑄[3] with

[3] =
𝛽
𝛼
𝜆2𝑃 −

𝛽
𝛼2
𝜆𝐼𝑚,𝑛(𝑃 2 + 𝑖𝑃𝑥) −

𝛽
𝛼3

(𝑖[𝑃 , 𝑃𝑥] + 𝑃𝑥𝑥 + 2𝑃 3), (2.7)

in which 𝐼𝑚,𝑛 = diag(𝐼𝑚,−𝐼𝑛). This zero curvature equation presents the
atrix modified Korteweg–de Vries (mKdV) equations:

𝑡 = −
𝛽
𝛼3

(𝑝𝑥𝑥𝑥 + 3𝑝𝑞𝑝𝑥 + 3𝑝𝑥𝑞𝑝), 𝑞𝑡 = −
𝛽
𝛼3
𝑖(𝑞𝑥𝑥𝑥 + 3𝑞𝑥𝑝𝑞 + 3𝑞𝑝𝑞𝑥). (2.8)

The above matrix NLS equations and mKdV equations possess bi-
amiltonian structures, leading to infinitely many symmetries and
onservation laws (see, e.g.,33,34), and it is easy to see that they are

all PT-symmetric.

3. Nonlocal integrable equations

Let us consider the cases of replacing eigenvalues: 𝜆 → −𝜆∗,−𝜆, 𝜆.
We will see those replacements produce nonlocal integrable reductions
(see, e.g.,29–32).

The other case of 𝜆 → 𝜆∗ only produces local integrable reductions
(see, e.g.,35).

To obtain reduced integrable equations, we can consider the follow-
ing PT-symmetric nonlocal group reductions:

𝑈†(𝑥̃, 𝑡,−𝜆∗) = −𝐶𝑈 (𝑥, 𝑡, 𝜆)𝐶−1, (3.1)

𝑈𝑇 (𝑥̃, 𝑡,−𝜆) = −𝐶𝑈 (𝑥, 𝑡, 𝜆)𝐶−1, (3.2)

𝑈𝑇 (𝑥̃, 𝑡, 𝜆) = 𝐶𝑈 (𝑥, 𝑡, 𝜆)𝐶−1, (3.3)

where (𝑥̃, 𝑡) = (−𝑥, 𝑡), (𝑥,−𝑡) or (−𝑥,−𝑡), and

𝐶 =
[

𝛴10
0 𝛴2

]

, 𝛴†
𝑗 = 𝛴𝑗 or 𝛴𝑇

𝑗 = 𝛴𝑗 , 𝑗 = 1, 2. (3.4)
2

3.1. Nonlocal PT-symmetric NLS reductions

In the case of NLS equations, it is easy to see that all admissible
nonlocal PT-symmetric group reductions can be divided into three cate-
gories of reverse-space, reverse-time and reverse-spacetime reductions:

𝑈†(−𝑥, 𝑡,−𝜆∗) = −𝐶𝑈 (𝑥, 𝑡, 𝜆)𝐶−1, (3.5)

𝑈𝑇 (𝑥,−𝑡,−𝜆) = −𝐶𝑈 (𝑥, 𝑡, 𝜆)𝐶−1, (3.6)

𝑈𝑇 (−𝑥,−𝑡, 𝜆) = 𝐶𝑈 (𝑥, 𝑡, 𝜆)𝐶−1. (3.7)

They lead to the potential reductions:

𝑞(𝑥, 𝑡) = −𝛴−1
2 𝑝†(−𝑥, 𝑡)𝛴1, (3.8)

𝑞(𝑥, 𝑡) = −𝛴−1
2 𝑝𝑇 (𝑥,−𝑡)𝛴1, (3.9)

𝑞(𝑥, 𝑡) = 𝛴−1
2 𝑝𝑇 (−𝑥,−𝑡)𝛴1, (3.10)

respectively, and the associated Lax matrices satisfy

(𝑉 [2])†(−𝑥, 𝑡,−𝜆∗) = 𝐶𝑉 [2](𝑥, 𝑡, 𝜆)𝐶−1, (3.11)

(𝑉 [2])𝑇 (𝑥,−𝑡,−𝜆) = 𝐶𝑉 [2](𝑥, 𝑡, 𝜆)𝐶−1, (3.12)

𝑉 [2])𝑇 (−𝑥,−𝑡, 𝜆) = 𝐶𝑉 [2](𝑥, 𝑡, 𝜆)𝐶−1, (3.13)

espectively. It is then direct to see that the corresponding nonlo-
al integrable reverse-space, reverse-time and reverse-spacetime NLS
quations are given as follows:

𝑡 = −
𝛽
𝛼2
𝑖[𝑝𝑥𝑥 − 2𝑝𝛴−1

2 𝑝†(−𝑥, 𝑡)𝛴1𝑝], 𝛴
†
𝑖 = 𝛴𝑖, 𝑖 = 1, 2, (3.14)

𝑡 = −
𝛽
𝛼2
𝑖[𝑝𝑥𝑥 − 2𝑝𝛴−1

2 𝑝𝑇 (𝑥,−𝑡)𝛴1𝑝], 𝛴𝑇
𝑖 = 𝛴𝑖, 𝑖 = 1, 2, (3.15)

𝑝𝑡 = −
𝛽
𝛼2
𝑖[𝑝𝑥𝑥 + 2𝑝𝛴−1

2 𝑝𝑇 (−𝑥,−𝑡)𝛴1𝑝], 𝛴𝑇
𝑖 = 𝛴𝑖, 𝑖 = 1, 2. (3.16)

Obviously, those three nonlocal matrix NLS equations are also PT-
symmetric.

3.2. Nonlocal PT-symmetric mKdV reductions

In the case of mKdV equations, we can similarly see that all ad-
missible PT-symmetric group reductions are composed of the following
complex and real reverse-spacetime reductions:

𝑈†(−𝑥,−𝑡,−𝜆∗) = −𝐶𝑈 (𝑥, 𝑡, 𝜆)𝐶−1, (3.17)

𝑈𝑇 (−𝑥,−𝑡, 𝜆) = 𝐶𝑈 (𝑥, 𝑡, 𝜆)𝐶−1. (3.18)

They generate the potential reductions:

𝑞(𝑥, 𝑡) = −𝛴−1
2 𝑝†(−𝑥,−𝑡)𝛴1, (3.19)

𝑞(𝑥, 𝑡) = 𝛴−1
2 𝑝𝑇 (−𝑥,−𝑡)𝛴1, (3.20)

respectively, and the associated Lax matrices satisfy

(𝑉 [3])†(−𝑥,−𝑡,−𝜆∗) = −𝐶𝑉 [3](𝑥, 𝑡, 𝜆)𝐶−1, (3.21)

𝑉 [3])𝑇 (−𝑥,−𝑡, 𝜆) = 𝐶𝑉 [3](𝑥, 𝑡, 𝜆)𝐶−1, (3.22)

espectively. It is now obvious to see that the corresponding nonlocal
ntegrable complex and real reverse-spacetime mKdV equations read

= −
𝛽
[𝑝 − 3𝑝𝛴−1𝑝†(−𝑥,−𝑡)𝛴 𝑝 − 3𝑝 𝛴−1𝑝†(−𝑥,−𝑡)𝛴 𝑝],
𝑡 𝛼3 𝑥𝑥𝑥 2 1 𝑥 𝑥 2 1
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𝛴†
𝑖 = 𝛴𝑖, 𝑖 = 1, 2, (3.23)

and

𝑝𝑡 = −
𝛽
𝛼3

[𝑝𝑥𝑥𝑥 + 3𝑝𝛴−1
2 𝑝𝑇 (−𝑥,−𝑡)𝛴1𝑝𝑥 + 3𝑝𝑥𝛴−1

2 𝑝𝑇 (−𝑥,−𝑡)𝛴1𝑝],

𝛴𝑇
𝑖 = 𝛴𝑖, 𝑖 = 1, 2. (3.24)

It is also easy to find that those two nonlocal matrix mkdV equations
are PT-symmetric.

4. Riemann-Hilbert problems

To formulate Riemann–Hilbert problems with respect to 𝑥, let us
assume that 𝛼 = 𝛼1−𝛼2 < 0 and suppose that two matrix eigenfunctions
𝜓± satisfy

𝑖𝜓±
𝑥 = 𝜆[𝛬,𝜓±] + 𝑃𝜓±, 𝜓± → 𝐼𝑚+𝑛 when 𝑥 → ±∞. (4.1)

Then to formulate Riemann–Hilbert problems, we define two new
matrices:

𝑇 + = 𝜓−𝐻1 + 𝜓+𝐻2, 𝑇
− = 𝐻1(𝜓−)−1 +𝐻2(𝜓+)−1, (4.2)

where

𝐻1 = diag(𝐼𝑚, 0,… , 0
⏟⏟⏟

𝑛

), 𝐻2 = diag(0,… , 0
⏟⏟⏟

𝑚

, 𝐼𝑛 ). (4.3)

Using the theory of Volterra integral equations, we can see that 𝑇 + is
analytic in C+ and continuous in C̄+, and 𝑇 − is analytic in C− and
continuous in C̄−, where C+ = {𝜇 ∈ C| Im𝜇 > 0} and C− = {𝜇 ∈
C| Im𝜇 < 0}, and C̄± are the closures of C±, respectively.

From the definition of 𝜓±, we obtain

lim
𝑥→∞

𝑇 + =
[

𝑆11 0
0 𝐼𝑛

]

, 𝜆 ∈ C̄+, lim
𝑥→−∞

𝑇 − =
[

𝑆̂11 0
0 𝐼𝑛

]

, 𝜆 ∈ C̄−,

(4.4)

and

det 𝑇 +(𝑥, 𝜆) = det 𝑆11(𝜆), det 𝑇 −(𝑥, 𝜆) = det 𝑆̂11(𝜆), (4.5)

where the scattering matrix 𝑆 is defined by

𝜓−𝐸 = 𝜓+𝐸𝑆(𝜆), 𝐸 = e𝑖𝜆𝛬𝑥, 𝜆 ∈ R, (4.6)

and we split 𝑆(𝜆) and 𝑆−1(𝜆) = (𝑆(𝜆))−1 as follows:

𝑆(𝜆) =
[

𝑆11(𝜆) 𝑆12(𝜆)
𝑆21(𝜆) 𝑆22(𝜆)

]

, 𝑆−1(𝜆) =
[

𝑆̂11(𝜆) 𝑆̂12(𝜆)
𝑆̂21(𝜆) 𝑆̂22(𝜆)

]

. (4.7)

Finally, we can arrive at a kind of Riemann–Hilbert problems:

𝐺+(𝑥, 𝜆) = 𝐺−(𝑥, 𝜆)𝐺0(𝑥, 𝜆), 𝜆 ∈ R, (4.8)

where
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐺+(𝑥, 𝜆) = 𝑇 +(𝑥, 𝜆)
[

𝑆−1
11 (𝜆) 0
0 𝐼𝑛

]

, 𝜆 ∈ C̄+,

(𝐺−)−1(𝑥, 𝜆) =
[

𝑆̂−1
11 (𝜆) 0
0 𝐼𝑛

]

𝑇 −(𝑥, 𝜆), 𝜆 ∈ C̄−,
(4.9)

and the jump matrix 𝐺0 is

𝐺0(𝑥, 𝜆) = 𝐸
[

𝑆̂−1
11 (𝜆) 0
0 𝐼𝑛

]

[

𝐼𝑚 𝑆̂12

𝑆21 𝐼𝑛

]

[

𝑆−1
11 (𝜆) 0
0 𝐼𝑛

]

𝐸−1.

(4.10)

We have the corresponding reduction properties. For example, in
the case of 𝜆→ −𝜆∗, the eigenfunction matrix 𝜓 satisfies

† ∗ −1 −1
𝜓 (−𝑥, 𝑡,−𝜆 ) = 𝐶𝜓 (𝑥, 𝑡, 𝜆)𝐶 , (4.11)

3

when 𝜓 → 𝐼𝑛+1, 𝑥, 𝑡 or 𝜆 → ∞. This implies that if 𝜆 is an eigenvalue,
then −𝜆∗ is also an eigenvalue, and

𝐺†
0(−𝑥, 𝑡,−𝜆

∗) = 𝐶𝐺0(𝑥, 𝑡, 𝜆)𝐶−1, (4.12)

where 𝐺0(𝜆) is the jump matrix.
Starting from the above established Riemann–Hilbert problems, we

can also formulate associated inverse scattering transforms for solving
Cauchy problems of the resulting nonlocal PT-symmetric integrable
equations (see, e.g.,22,29–32).

5. Soliton solutions

To obtain soliton solutions to the resulting nonlocal integrable equa-
tions, we need to develop a novel formulation of solutions to Riemann–
Hilbert problems with the identity jump matrix (see also31,32).

Let us take 𝐺0 = 𝐼𝑚+𝑛. Choose {𝜆𝑘, 𝜆̂𝑘 ∈ C}𝑁𝑘=1. Then we have
the following formulation of solutions to the specific Riemann–Hilbert
problems with 𝐺0 = 𝐼𝑚+𝑛:

𝐺+ = 𝐼𝑚+𝑛 −
𝑁
∑

𝑗,𝑙=1

𝑣𝑗 (𝑀−1)𝑗𝑙 𝑣̂𝑙
𝜆 − 𝜆̂𝑙

, 𝐺− = 𝐼𝑚+𝑛 +
𝑁
∑

𝑗,𝑙=1

𝑣𝑗 (𝑀−1)𝑗𝑙 𝑣̂𝑙
𝜆 − 𝜆𝑗

, (5.1)

where 𝑀 is a new square matrix:

𝑀 = (𝑚𝑗𝑙)𝑁×𝑁 , 𝑚𝑗𝑙 =

⎧

⎪

⎨

⎪

⎩

𝑣̂𝑗𝑣𝑙
𝜆𝑙 − 𝜆̂𝑗

, if 𝜆𝑙 ≠ 𝜆̂𝑗 , 1 ≤ 𝑗, 𝑙 ≤ 𝑁,

0, if 𝜆𝑙 = 𝜆̂𝑗 , 1 ≤ 𝑗, 𝑙 ≤ 𝑁,
(5.2)

and

𝑣̂𝑗𝑣𝑙 = 0, if 𝜆𝑙 = 𝜆̂𝑗 , 1 ≤ 𝑗, 𝑙 ≤ 𝑁. (5.3)

This exactly tells that under the orthogonal condition (5.3), the two
square matrices 𝐺± defined by (5.1) are inverse to each other. When

{𝜆𝑘| 1 ≤ 𝑘 ≤ 𝑁} ∩ {𝜆̂𝑘| 1 ≤ 𝑘 ≤ 𝑁} = ∅, (5.4)

the above solution formulation is reduced to the existing one for local
integrable equations (see, e.g.,4,28).

The corresponding matrix spectral problems under zero potentials
generate

𝑣𝑘(𝑥, 𝑡) = e𝑖𝜆𝑘𝛬𝑥+𝑖𝜆
𝑙
𝑘𝛺𝑡𝑤𝑘, 1 ≤ 𝑘 ≤ 𝑁, (5.5)

and

𝑣̂𝑘(𝑥, 𝑡) = 𝑤̂𝑘e
−𝑖𝜆̂𝑘𝛬𝑥−𝑖𝜆̂𝑙𝑘𝛺𝑡𝐶, 1 ≤ 𝑘 ≤ 𝑁, (5.6)

where 𝑤𝑘 and 𝑤̂𝑘, 1 ≤ 𝑘 ≤ 𝑁 , are arbitrary column and row vectors.
The orthogonal conditions for 𝑤𝑘 and 𝑤̂𝑘, 1 ≤ 𝑘 ≤ 𝑁 , are

𝑤̂𝑘𝐶𝑤𝑙 = 0, if 𝜆𝑙 = 𝜆̂𝑘, 1 ≤ 𝑘, 𝑙 ≤ 𝑁. (5.7)

To express soliton solutions, we expand 𝐺+ at 𝜆 = ∞ as

𝐺+(𝑥, 𝜆) = 𝐼𝑚+𝑛 +
1
𝜆
𝐺+
1 (𝑥) + O( 1

𝜆2
), 𝜆 → ∞, (5.8)

nd then obtain

= −[𝛬,𝐺+
1 ] = lim

𝜆→∞
𝜆[𝐺+(𝜆), 𝛬]. (5.9)

n other words,

𝜇𝜈 = −𝛼(𝐺+
1 )𝜇,𝜈+𝑚, 1 ≤ 𝜇 ≤ 𝑚, 1 ≤ 𝜈 ≤ 𝑛, (5.10)

here 𝐺+
1 = ((𝐺+

1 )𝜇𝜈 )(𝑚+𝑛)×(𝑚+𝑛).
Observing 𝐺+

1 , we know

𝐺+
1 = −

𝑁
∑

𝑗,𝑙=1
𝑣𝑗 (𝑀−1)𝑗𝑙 𝑣̂𝑙 , (5.11)

which need to satisfy

(𝐺+(−𝑥, 𝑡))† = 𝐶𝐺+(𝑥, 𝑡)𝐶−1, (5.12)
1 1
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a

𝑖

(𝐺+
1 (𝑥,−𝑡))

𝑇 = 𝐶𝐺+
1 (𝑥, 𝑡)𝐶

−1, (5.13)

or

(𝐺+
1 (−𝑥,−𝑡))

𝑇 = −𝐶𝐺+
1 (𝑥, 𝑡)𝐶

−1, (5.14)

in the three reduction cases.
Then, 𝑁-soliton solutions to the resulting nonlocal integrable equa-

tions are given as follows:

𝑝𝜇𝜈 = 𝛼
𝑁
∑

𝑗,𝑙=1
𝑣𝑗,𝜇(𝑀−1)𝑗𝑙 𝑣̂𝑙,𝑚+𝜈 , (5.15)

where 𝑣𝑘 = (𝑣𝑘,1,… , 𝑣𝑘,𝑚+𝑛)𝑇 and 𝑣̂𝑘 = (𝑣̂𝑘,1,… , 𝑣̂𝑘,𝑚+𝑛) are assumed.
We point out that 𝑁-soliton solutions can be systematically gener-

ated by the Hirota bilinear method, and we refer the reader to36–38 for
some novel examples in (2+1)-dimensions.

6. Concluding remarks

We have constructed all nonlocal reduced integrable equations
in the cases of nonlinear Schrödinger (NLS) equations and modi-
fied Korteweg–de Vries (mKdV) equations, and classified them into
three categories of nonlocal PT-symmetric complex reverse-space, real
reverse-time and real reverse-spacetime NLS equations and two cate-
gories of nonlocal PT-symmetric complex and real reverse-spacetime
mKdV equations.

Applications to other spectral matrices could also be developed.
For example, one example in the continuous case is the Kaup–Newell
spectral matrix8:

𝑈 =
[

−𝜆2 𝜆𝑝
𝜆𝑞 𝜆2

]

,

and one example in the discrete case is the Ablowitz–Ladik spectral
matrix39:

𝑈 =
[

𝜆 𝑝
𝑞 𝜆−1

]

,

including a vector case40. Applications to (2+1)-dimensional cases
could as well be made, for example, to a class of (2+1)-dimensional
spectral problems41:

𝐿𝜓 = 𝜆𝜓, 𝐿 = 𝐿(𝜕𝑥, 𝜕𝑦, 𝑢), 𝑢 = 𝑢(𝑥, 𝑦, 𝑡),

which includes the hyperbolic case:

𝐿 = 𝜕𝑥 + 𝜎3𝜕𝑦 + 𝑢,

and the elliptic case:

𝐿 = 𝜕𝑥 + 𝑖𝜎3𝜕𝑦 + 𝑢,

where

𝑢 =
[

0 𝑝
𝑞 0

]

, 𝜎3 =
[

1 0
0 −1

]

.

Similarly, we can formulate other nonlocal reduced equations, not
from reducing matrix spectral problems. For example, we can have
nonlocal real reverse-space NLS equations:

𝑝𝑡 = −
𝛽
𝛼2
𝑖[𝑝𝑥𝑥 − 2𝑝𝛴−1

2 𝑝𝑇 (−𝑥, 𝑡)𝛴1𝑝], 𝛴𝑇
𝑖 = 𝛴𝑖, 𝑖 = 1, 2,

nonlocal complex reverse-time NLS equations:

𝑝𝑡 = −
𝛽
𝛼2
𝑖[𝑝𝑥𝑥 − 2𝑝𝛴−1

2 𝑝†(𝑥,−𝑡)𝛴1𝑝], 𝛴
†
𝑖 = 𝛴𝑖, 𝑖 = 1, 2,

and nonlocal complex reverse-spacetime NLS equations:

𝑝𝑡 = −
𝛽
𝛼2
𝑖[𝑝𝑥𝑥 + 2𝑝𝛴−1

2 𝑝†(−𝑥,−𝑡)𝛴1𝑝], 𝛴
†
𝑖 = 𝛴𝑖, 𝑖 = 1, 2.

They are all PT-symmetric, too. But how about their integrability? This
is an interesting question to ask. There are other cases to generate
4

nonlocal equations: two-step reductions, pantograph modeling, and
general linear combinations of space and time variables, including
reverse-space and/or reverse-time variables with shifts.

There are also nonlocal PT-symmetric group reductions associated
with the special orthogonal Lie algebra so(3, R):

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2.

An AKNS type spectral problem associated with so(3, R)42 is

−𝑖𝜙𝑥 = 𝑈𝜙, 𝑈 = 𝜆e1 + 𝑝e2 + 𝑞e2 =
⎡

⎢

⎢

⎣

0 −𝑞 −𝜆
𝑞 0 −𝑝
𝜆 𝑝 0

⎤

⎥

⎥

⎦

.

We can have similar nonlocal group reductions to obtain a nonlocal
reverse-space NLS type equation:

𝑖𝑝𝑡 = 𝑝∗𝑥𝑥(−𝑥, 𝑡) −
1
2
𝑝2𝑝∗(−𝑥, 𝑡) − 1

2
(𝑝∗(−𝑥, 𝑡))3,

a nonlocal reverse-time NLS type equation:

𝑖𝑝𝑡 = 𝑝𝑥𝑥(𝑥,−𝑡) +
1
2
𝑝2𝑝(𝑥,−𝑡) − 1

2
(𝑝(𝑥,−𝑡))3,

nd a nonlocal reverse-spacetime NLS type equation:

𝑝𝑡 = −𝑝𝑥𝑥(−𝑥,−𝑡) +
1
2
𝑝2𝑝(−𝑥,−𝑡) + 1

2
(𝑝(−𝑥,−𝑡))3.

They are all PT-symmetric and Liouville integrable.
Nevertheless, just based on the matrix spectral problem

−𝑖
⎡

⎢

⎢

⎣

𝜙1
𝜙2
𝜙3

⎤

⎥

⎥

⎦𝑥

=
⎡

⎢

⎢

⎣

0 −𝑞 −𝜆
𝑞 0 −𝑝
𝜆 𝑝 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝜙1
𝜙2
𝜙3

⎤

⎥

⎥

⎦

,

we still do not know how to formulate the associated Riemann–Hilbert
problems for the above nonlocal NLS type equations. The eigenfunc-
tions of matrix spectral problems associated with so(3, R) exhibit a very
different feature of analyticity with respect to the spectral parameter 𝜆.
Further investigation is definitely needed.
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