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A B S T R A C T

A polynomial conjecture, associated with rational solutions including rogue wave solutions of the KdV equation,
is presented. The conjecture can be used to show that for the bilinear KdV equation, an arbitrary linear
combination of two Wronskian polynomial solutions with a difference two between the Wronskian orders
will again be a solution.
. Introduction

Integrable equations possess abundant exact solutions which exhibit
arious nonlinear phenomena in complex systems.1–3 Particularly, op-
ical solitons and rogue waves are of current importance and general
nterest within the physical and engineering sciences.4–6 There are
lenty of studies on such nonlinear dispersive waves,7–9 and their cor-
esponding equations and even hierarchies of equations can be solved
hrough Wronskian or Casoratian formulations (see, e.g., Refs. 10, 11)
nd Riemann–Hilbert problems (see, e.g., Ref. 12).

It is known10 that for the KdV equation

𝑡 − 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0, (1.1)

Wronskian 𝑓 = 𝑊 (𝜙0, 𝜙1,… , 𝜙𝑁−1) presents a solution 𝑢 = −2(ln𝑓 )𝑥𝑥,
f the entries satisfy that

𝜙𝑖,𝑥𝑥 =
𝑁−1
∑

𝑗=1
𝜆𝑖𝑗 (𝑡)𝜙𝑗 , 0 ≤ 𝑖 ≤ 𝑁 − 1, (1.2)

nd

𝑖,𝑡 = −4𝜙𝑖,𝑥𝑥𝑥 + 𝜉(𝑡)𝜙𝑖, 0 ≤ 𝑖 ≤ 𝑁 − 1, (1.3)

here 𝜆𝑖𝑗 and 𝜉 are arbitrary functions of 𝑡. Rational solutions corre-
pond to the case of zero eigenvalues of the coefficient matrix 𝛬 =
𝜆𝑖𝑗 )0≤𝑖,𝑗≤𝑁−1.10 One example of such rational solutions is 𝑢 = 2

𝑥2
see Ref. 13 for more examples). Through the 𝑥-translational invari-
nce: 𝑢̃(𝑥, 𝑡) = 𝑢(𝑥 + 𝑐, 𝑡) and the Galilean invariance: 𝑢̃(𝑥, 𝑡) = 𝑢(𝑥 +

∗ Correspondence to: Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA.
E-mail address: mawx@cas.usf.edu.

6𝑐𝑡, 𝑡) + 𝑐, where 𝑐 is an arbitrary constant, we can generate a rogue
wave solution to the KdV equation:

𝑢̃(𝑥, 𝑡) = 2
(𝑥 + 6𝑐𝑡 + 𝑎𝑖)2

+ 𝑐, (1.4)

where 𝑎 ≠ 0 and 𝑐 are arbitrary real constants. A special case of it with
𝑎 = 1∕2 and 𝑐 = −1 gives the rogue wave solution presented in Ref. 14:

𝑢̃(𝑥, 𝑡) = 8
(2𝑥 − 12𝑡 + 𝑖)2

− 1. (1.5)

In this paper, we would like to present a polynomial conjecture
connected with rational solutions to the KdV equation within the
Wronskian formulation. Such rational solutions can lead to rogue
wave solutions to the KdV equation through the 𝑥-translational (or
𝑡-translational) invariance and the Galilean invariance. In Section 2,
we will analyze the conjecture and present two illustrative examples.
Concluding remarks will be given in the last section.

2. A polynomial conjecture

Following Ref. 10, for a sequence of smooth functions of 𝑥: 𝜙𝑖 =
𝜙𝑖(𝑥), 𝑖 ≥ 0, let us define

𝜙(𝑗)
𝑖 =

𝑑𝑗𝜙𝑖
𝑑𝑥𝑗

, 𝛷(𝑗)
𝑖 = (𝜙(𝑗)

0 , 𝜙
(𝑗)
1 ,… , 𝜙(𝑗)

𝑖−1)
𝑇 , 𝑖, 𝑗 ≥ 0. (2.1)
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For 𝑚, 𝑛 ≥ 1, we denote a Wronskian of order 𝑚 by

(𝑚 − 1) = 𝑊 (𝜙0, 𝜙1,… , 𝜙𝑚−1) = det(𝛷(0)
𝑚 , 𝛷(1)

𝑚 ,… , 𝛷(𝑚−1)
𝑚 ), (2.2)

and a generalized Wronskian of order 𝑚 + 𝑛, by

(𝑚 − 1, 𝑖1, 𝑖2,… , 𝑖𝑛) = det(𝛷(0)
𝑚+𝑛, 𝛷

(1)
𝑚+𝑛,… , 𝛷(𝑚−1)

𝑚+𝑛 , 𝛷(𝑖1)
𝑚+𝑛, 𝛷

(𝑖2)
𝑚+𝑛,… , 𝛷(𝑖𝑛)

𝑚+𝑛),

(2.3)

here 𝑚 ≤ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑛. In a Wronskian of order m, we have a
quare matrix of size 𝑚, and in a generalized Wronskian of order 𝑚+ 𝑛,
e have a square matrix of size 𝑚 + 𝑛.

onjecture. Let 𝑁 ≥ 3 be an arbitrary natural number. If

0,𝑥𝑥 = 0, 𝜙𝑖+1,𝑥𝑥 = 𝜙𝑖, 𝑖 ≥ 0, (2.4)

hen we have an identity for generalized Wronskians:

(𝑁 − 1)(𝑁 − 1, 𝑁 + 2, 𝑁 + 3) + (𝑁 − 3, 𝑁,𝑁 + 1)(𝑁 + 1)

(𝑁 − 2, 𝑁)(𝑁 − 1, 𝑁 + 1, 𝑁 + 3) − (𝑁 − 3, 𝑁 − 1, 𝑁 + 1)(𝑁̂,𝑁 + 2)

(𝑁 − 2, 𝑁 + 1)(𝑁 − 1, 𝑁 + 1, 𝑁 + 2)

(𝑁 − 3, 𝑁 − 1, 𝑁)(𝑁̂,𝑁 + 3) = 0. (2.5)

Those conditions in (2.4) define a sequence of polynomials 𝜙𝑖, 𝑖 ≥
, of the variable 𝑥. Therefore, the above conjecture is about the
olynomials of 𝑥 which satisfy (2.4).

More symmetrically, the identity (2.5) can be written as

(𝑁 − 3, 𝑁 − 2, 𝑁 − 1)(𝑁 − 1, 𝑁 + 2, 𝑁 + 3)

(𝑁 − 3, 𝑁,𝑁 + 1)(𝑁 − 1, 𝑁,𝑁 + 1)

(𝑁 − 3, 𝑁 − 2, 𝑁)(𝑁 − 1, 𝑁 + 1, 𝑁 + 3)

(𝑁 − 3, 𝑁 − 1, 𝑁 + 1)(𝑁 − 1, 𝑁,𝑁 + 2)

(𝑁 − 3, 𝑁 − 2, 𝑁 + 1)(𝑁 − 1, 𝑁 + 1, 𝑁 + 2)

(𝑁 − 3, 𝑁 − 1, 𝑁)(𝑁 − 1, 𝑁,𝑁 + 3)

0. (2.6)

his can be further expressed as a sum:
∑

𝑎+𝑏+𝑐+𝑑=2
−2≤𝑎<𝑏≤1, 0≤𝑐<𝑑≤3

(−1)𝑎+𝑏+1(𝑁 − 3, 𝑁 + 𝑎,𝑁 + 𝑏)(𝑁 − 1, 𝑁 + 𝑐,𝑁 + 𝑑) = 0.

(2.7)

his sum exhibits a characteristic property of determinants. The ques-
ion for us is what it really reflects.

The identity (2.6) looks like the simplest case of the Plücker
elations,7 and it might be helpful in proving it to apply the Laplace
xpansion for determinants and Jacobi’s identity for Wronskians:

𝑊 (𝑔1, 𝑔2,… , 𝑔𝑚−1, ℎ))𝑥𝑊 (𝑔1, 𝑔2,… , 𝑔𝑚)

−𝑊 (𝑔1, 𝑔2,… , 𝑔𝑚−1, ℎ)(𝑊 (𝑔1, 𝑔2,… , 𝑔𝑚))𝑥
= 𝑊 (𝑔1, 𝑔2,… , 𝑔𝑚−1)𝑊 (𝑔1, 𝑔2,… , 𝑔𝑚, ℎ),

here 𝑔1, 𝑔2,… , 𝑔𝑚, ℎ are sufficiently differentiable functions and
(𝑔1,… , 𝑔𝑚−1) = 1 when 𝑚 = 1.
Let us now illustrate the identity (2.5) (i.e., the identity (2.6)). We

ake

(𝜂) = sinh(𝜂𝑥) =
∞
∑

𝑖=0
𝜙𝑖𝜂

2𝑖+1, (2.8)

here 𝜂 is a free parameter. This analytic function satisfies 𝜓𝑥𝑥 = 𝜂2𝜓
nd thus the resulting sequence of polynomials 𝜙𝑖, 𝑖 ≥ 0, satisfies the
onditions in (2.4), the first few of which read

0 = 𝑥, 𝜙1 =
1
6
𝑥3, 𝜙2 =

1
120

𝑥5, 𝜙3 =
1

5040
𝑥7, 𝜙4 =

1
362880

𝑥9, 𝜙5 =
1

39916800
𝑥11.

(2.9)
2

Then, it directly follows that when 𝑁 = 3, we have

(𝑁 − 3, 𝑁 − 2, 𝑁 − 1) = 1
45
𝑥6, (𝑁 − 3, 𝑁,𝑁 + 1) = 𝑥2,

(𝑁 − 3, 𝑁 − 2, 𝑁) = 2
15
𝑥5, (𝑁 − 3, 𝑁 − 1, 𝑁 + 1) = 𝑥3,

(𝑁 − 3, 𝑁 − 2, 𝑁 + 1) = 1
3
𝑥4, (𝑁 − 3, 𝑁 − 1, 𝑁) = 1

3
𝑥4,

and

(𝑁 − 1, 𝑁 + 2, 𝑁 + 3) = 2
2835

𝑥11, (𝑁 − 1, 𝑁,𝑁 + 1) = 1
4465125

𝑥15,

(𝑁 − 1, 𝑁 + 1, 𝑁 + 3) = 1
4725

𝑥12, (𝑁 − 1, 𝑁,𝑁 + 2) = 1
297675

𝑥14,

(𝑁 − 1, 𝑁 + 1, 𝑁 + 2) = 1
42525

𝑥13, (𝑁 − 1, 𝑁,𝑁 + 3) = 1
42525

𝑥13;

nd when 𝑁 = 4, we have

(𝑁 − 3, 𝑁 − 2, 𝑁 − 1) = 1
4725

𝑥10, (𝑁 − 3, 𝑁,𝑁 + 1) = 1
9
𝑥6,

(𝑁 − 3, 𝑁 − 2, 𝑁) = 2
945

𝑥9, (𝑁 − 3, 𝑁 − 1, 𝑁 + 1) = 17
315

𝑥7,

(𝑁 − 3, 𝑁 − 2, 𝑁 + 1) = 1
105

𝑥8, (𝑁 − 3, 𝑁 − 1, 𝑁) = 1
105

𝑥8,

and

(𝑁 − 1, 𝑁 + 2, 𝑁 + 3) = 2
7016625

𝑥17,

(𝑁 − 1, 𝑁,𝑁 + 1) = 1
46414974375𝑥

21,

(𝑁 − 1, 𝑁 + 1, 𝑁 + 3) = 26
442047375

𝑥18,

(𝑁 − 1, 𝑁,𝑁 + 2) = 1
2210236875𝑥

20,

(𝑁 − 1, 𝑁 + 1, 𝑁 + 2) = 2
442047375

𝑥19,

(𝑁 − 1, 𝑁,𝑁 + 3) = 2
442047375𝑥

19.

Therefore, the identity (2.5) for generalized Wronskians with the en-
tries in (2.9) holds when 𝑁 = 3 and 𝑁 = 4, indeed.

The identity (2.5) can be used to show an interesting property about
rational solutions, including rogue wave solutions, to the KdV equation.
The KdV equation (1.1) is transformed into a Hirota bilinear form

(𝐷4
𝑥 +𝐷𝑥𝐷𝑡)𝑓 ⋅ 𝑓 = 2(𝑓𝑥𝑡𝑓 − 𝑓𝑡𝑓𝑥 + 𝑓𝑥𝑥𝑥𝑥𝑓 − 4𝑓𝑥𝑥𝑥𝑓𝑥 + 3𝑓 2

𝑥𝑥) = 0, (2.10)

under 𝑢 = −2(ln 𝑓 )𝑥𝑥.10 Obviously, a polynomial solution 𝑓 to the
bilinear KdV equation (2.10) will lead to a rational solution to the
KdV equation (1.1) by the indicated transformation. Let 𝑁 ≥ 0 be an
arbitrary integer. Assume that 𝑓𝑁 is a polynomial solution, defined by
the Wronskian10:

𝑓𝑁 = (𝑁 − 1) = 𝑊 (𝜙0, 𝜙1,… , 𝜙𝑁−1), (2.11)

where 𝜙𝑖, 𝑖 ≥ 0, are polynomial functions of 𝑥 and 𝑡, determined by

𝜓(𝜂) = 2 sinh(𝜂𝑥 − 4𝜂3𝑡) =
∞
∑

𝑖=0
𝜙𝑖𝜂

2𝑖+1. (2.12)

The corresponding rational solutions can be used to generate rogue
wave solutions through the 𝑥-translational (or 𝑡-translational) invari-
ance and the Galilean invariance of the KdV equation, as illustrated in
the introduction.

Obviously, 𝑓1 + 𝑓3 and 𝑓2 + 𝑓4 still present solutions to the bilinear
KdV equation (2.10). When 𝑁 ≥ 3, we can show that it is equivalent
to the identity in (2.5) that 𝑓𝑁 + 𝑓𝑁+2 is again a solution to the
bilinear KdV equation (2.10), or more generally, an arbitrary linear
combination of 𝑓𝑁 and 𝑓𝑁+2 is again a solution (see Refs. 13, 15 for
more illustrative examples). This is pretty rare, since (2.10) is bilinear,
not linear at all.

It is also direct to check by symbolic computation that the Boussi-
nesq equation does not have such a property for Wronskian rational
solutions (see, e.g., Ref. 16 for such solutions), and that more general
linear combinations 𝑓𝑁+𝑎𝑓𝑁+1+𝑏𝑓𝑁+2+𝑐𝑓𝑁+3+𝑑𝑓𝑁+4 do not produce
any other solution than 𝑓𝑁+𝑏𝑓𝑁+2 for the KdV equation, where 𝑎, 𝑏, 𝑐, 𝑑
are constants.
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3. Concluding remarks

We have discussed about a polynomial conjecture and exhibited
two illustrative examples of it. The conjecture is equivalent to say that
a linear combination of two Wronskian polynomial solutions with a
difference two between the Wronskian orders is again a solution to
the bilinear KdV equation. But there is no other solution among linear
combinations 𝑓𝑁 + 𝑎𝑓𝑁+1 + 𝑏𝑓𝑁+2 + 𝑐𝑓𝑁+3 + 𝑑𝑓𝑁+4, where 𝑓𝑚 is the
Wronskian of order 𝑚 defined by (2.11) and 𝑎, 𝑏, 𝑐, 𝑑 are constants.

There exist various studies on lump solutions to nonlinear disper-
sive wave equations (see, e.g., Refs. 17, 18) and different nonlinear
terms can join together to formulate such interesting solutions.19,20

Recently, 𝑁-soliton solutions have been extensively studied for (2+1)-
dimensional integrable equations by the Hirota bilinear method21

and for nonlocal integrable equations by associated Riemann–Hilbert
problems.22,23 It would be extremely helpful in exploring soliton dy-
namics to establish clear connections between lump solutions and
𝑁-soliton solutions for both local and nonlocal integrable equations.
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