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MSC: A polynomial conjecture, associated with rational solutions including rogue wave solutions of the KdV equation,
37K15 is presented. The conjecture can be used to show that for the bilinear KdV equation, an arbitrary linear
35Q55 combination of two Wronskian polynomial solutions with a difference two between the Wronskian orders
37K40 will again be a solution.
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1. Introduction

Integrable equations possess abundant exact solutions which exhibit
various nonlinear phenomena in complex systems.'~® Particularly, op-
tical solitons and rogue waves are of current importance and general
interest within the physical and engineering sciences.*® There are
plenty of studies on such nonlinear dispersive waves,” and their cor-
responding equations and even hierarchies of equations can be solved
through Wronskian or Casoratian formulations (see, e.g., Refs. 10, 11)
and Riemann-Hilbert problems (see, e.g., Ref. 12).

It is known!? that for the KdV equation

u, —6uu, +u,,, =0, 1.1

a Wronskian f = W (¢, ¢y, ....dn_;) presents a solution u = —2(In f),,,
if the entries satisfy that

N-1

~fix = D (Db, 0KI SN -1, 1.2)
j=1

and

bir = —4; vy TEWP;, 0PI N -1, (1.3)

where 4;; and ¢ are arbitrary functions of ¢. Rational solutions corre-
spond to the case of zero eigenvalues of the coefficient matrix A =
(4)o<ij<n-1-'0 One example of such rational solutions is u = X%
(see Ref. 13 for more examples). Through the x-translational invari-
ance: @(x,1) = u(x + c,t) and the Galilean invariance: i(x,t) = u(x +

6¢t, 1) + ¢, where ¢ is an arbitrary constant, we can generate a rogue
wave solution to the KdV equation:

2

i(x,t) = ———— +c,
(x + 6¢t + ai)?

1.4
where a # 0 and ¢ are arbitrary real constants. A special case of it with
a=1/2 and ¢ = —1 gives the rogue wave solution presented in Ref. 14:

. 8
i(x, 1) = ety 1. (1.5)
In this paper, we would like to present a polynomial conjecture
connected with rational solutions to the KdV equation within the
Wronskian formulation. Such rational solutions can lead to rogue
wave solutions to the KdV equation through the x-translational (or
t-translational) invariance and the Galilean invariance. In Section 2,
we will analyze the conjecture and present two illustrative examples.
Concluding remarks will be given in the last section.

2. A polynomial conjecture

Following Ref. 10, for a sequence of smooth functions of x: ¢; =
¢:(x), i >0, let us define

a ¢,

o= — o) =@ ... ¢ iz 0. @1
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For m,n > 1, we denote a Wronskian of order m by
(M =1)= W (g, 1o .o bpy) = det @D, @D, . @), 2.2)

and a generalized Wronskian of order m + n, by

—_ . SN (0) 1) (m=1) 501 pi2) (in)
(m—1,iy,iy,...,i,) = det(® [} e, @ D [} LD ),

m+n’> = m+n> m+n 7 m+n’ T m+n’ m+n

(2.3)

where m < iy < iy < -+ < i,. In a Wronskian of order m, we have a

square matrix of size m, and in a generalized Wronskian of order m+n,
we have a square matrix of size m + n.

Conjecture. Let N > 3 be an arbitrary natural number. If

¢0,xx = 0’ ¢i+l,xx = ¢i! i 0’ (24)
then we have an identity for generalized Wronskians:

(N—I)(N—1,N+2.N+3)+(N =3, NN+ (N + 1)
~(N=2,N)(N—L,N+1,N+3)=(N=3,N—1, N+ )(N,N +2)
+(N-2.N+D(N-LN+1,N+2)
+H(N=3,N—1,N)N,N +3)=0. (2.5)

Those conditions in (2.4) define a sequence of polynomials ¢;, i >
0, of the variable x. Therefore, the above conjecture is about the
polynomials of x which satisfy (2.4).

More symmetrically, the identity (2.5) can be written as

(N3, N=2N-D(N—1,N+2,N +3)
+(N-3, NN+ D(N—I,N,N+1)
~(N-3,N-2,N)(N—-L,N+1,N+3)
~(N=3,N=LLN+1)(N—1,N,N +2)
+(N-3,N-2N+D(N—-1,N+1,N +2)
+(N=3,N-1LLN)(N—1,N,N +3)
=0. (2.6)

This can be further expressed as a sum:

(=D (N -3, N+a,N+b(N -1, N +c,N +d)=0.

atbtc+d=2
—2<a<b<l, 0<c<d<3

2.7)

This sum exhibits a characteristic property of determinants. The ques-
tion for us is what it really reflects.

The identity (2.6) looks like the simplest case of the Pliicker
relations,” and it might be helpful in proving it to apply the Laplace
expansion for determinants and Jacobi’s identity for Wronskians:

W (g1-825 - 8m-1-M) W (81825 -+ &m)
—W(gi, 8- 8u_1- DWWV (g1, 8, - 8))x
=W(&, 8 8m-1IW (81825 -+ &m> N>

where g;,g,....8,.h are sufficiently differentiable functions and
W, ....8u-1)=1whenm=1.

Let us now illustrate the identity (2.5) (i.e., the identity (2.6)). We
take

o0
() = sinh(rx) = " ™!, (2.8)
i=0
where 7 is a free parameter. This analytic function satisfies v, = r?y
and thus the resulting sequence of polynomials ¢;, i > 0, satisfies the
conditions in (2.4), the first few of which read
R S R __ 1
= 5040 " % = 362880 %5 = 39016800
(2.9)

1
—XS, ¢3

_ _1l3 _
¢o—x»¢|—6xy¢2—120
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Then, it directly follows that when N = 3, we have
(N-3,N-2,N—-1)= %xﬁ, (N=3,N,N+1)=x%
(N-3,N-2,N)= %xi (N=3,N-1,N+1)=x3,

(N/—\S,N—Z,N+l)=%x4, (17—\3,N—1,N)=%x4,

and

(NSLN42LN+3)= —2x!, (NS LN, N+ 1) = — 1
’ ’ 28357 e 4465125

~ 3 | S 1 14

N-LN+L,N+3)= —x2 (N—I,N,N+2)= ,

( FLN+3) = msx s 2= 597675~

—_ 1 13 % 7 1 13

N-LN+1,N+2)= J(N—LN,N+3) = ——x3;

( )= o535 0 )= 555

and when N =4, we have

N_3 N — = L 10 v T3 1l

(N=3.N=2.N=1)= z=x', (N=3.N.N +1) = 5x°.

~ 3 2 9 %7 » 17 7

N-3,N-2,N)= - (N3, N-1,N+1)= —

( 3, ,N) 945)6,( 3, ,N+1) 355

~ 3 1 s v 3 1 3

N-3,N-2N+1)=—x5 (N-3,N—-1,N)= —x,

( )= 105~ )= 105~

and

~ 7 2 17

NI, N+2N+3)= —= _

( NHLN+I = o565~

(N—I,N,N‘Fl):m.XZI,

N —1 _ 26 18

(N=LN+LN+3) = 07375~

(N-LN,N+2)= 22102136875x20’

~ 5 2 19

N-LN+1,N+2)= —=—x!9,

( HLN+D = 07

(N—l,N,N+3)=mxl9.

Therefore, the identity (2.5) for generalized Wronskians with the en-
tries in (2.9) holds when N =3 and N = 4, indeed.

The identity (2.5) can be used to show an interesting property about
rational solutions, including rogue wave solutions, to the KdV equation.
The KdV equation (1.1) is transformed into a Hirota bilinear form

(Di+Dth)f'f=z(fxtf_ftfx+fxxxxf_4fxxxfx+3f,3x)=O’ (210)

under u = —2(In f),,.'° Obviously, a polynomial solution f to the
bilinear KdV equation (2.10) will lead to a rational solution to the
KdV equation (1.1) by the indicated transformation. Let N > 0 be an
arbitrary integer. Assume that f, is a polynomial solution, defined by
the Wronskian'?:

In= (N-1)= Wy b1, - bn_1),

where ¢;, i > 0, are polynomial functions of x and ¢, determined by

(2.11)

[s+]
w(n) = 2sinh(yx — 4ty = Y g1
i=0

(2.12)

The corresponding rational solutions can be used to generate rogue
wave solutions through the x-translational (or s-translational) invari-
ance and the Galilean invariance of the KdV equation, as illustrated in
the introduction.

Obviously, f| + f3 and f, + f; still present solutions to the bilinear
KdV equation (2.10). When N > 3, we can show that it is equivalent
to the identity in (2.5) that fy + fy,, is again a solution to the
bilinear KdV equation (2.10), or more generally, an arbitrary linear
combination of fy and fy,, is again a solution (see Refs. 13, 15 for
more illustrative examples). This is pretty rare, since (2.10) is bilinear,
not linear at all.

It is also direct to check by symbolic computation that the Boussi-
nesq equation does not have such a property for Wronskian rational
solutions (see, e.g., Ref. 16 for such solutions), and that more general
linear combinations fy +afy,(+bfni2+cfni3+dfy4 do not produce
any other solution than fy+bfy,, for the KdV equation, where a, b, c, d
are constants.
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3. Concluding remarks

We have discussed about a polynomial conjecture and exhibited
two illustrative examples of it. The conjecture is equivalent to say that
a linear combination of two Wronskian polynomial solutions with a
difference two between the Wronskian orders is again a solution to
the bilinear KdV equation. But there is no other solution among linear
combinations fy + afyy; + bfnyo + ¢fniz + dfnys, Where f, is the
Wronskian of order m defined by (2.11) and a, b, c,d are constants.

There exist various studies on lump solutions to nonlinear disper-
sive wave equations (see, e.g., Refs. 17, 18) and different nonlinear
terms can join together to formulate such interesting solutions.!%2°
Recently, N-soliton solutions have been extensively studied for (2+1)-
dimensional integrable equations by the Hirota bilinear method?!
and for nonlocal integrable equations by associated Riemann-Hilbert
problems.?>23 It would be extremely helpful in exploring soliton dy-
namics to establish clear connections between lump solutions and
N-soliton solutions for both local and nonlocal integrable equations.
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