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1. Introduction

Integrable equations are generated from matrix spectral
problems and come in hierarchies. Under specific symmetric
reductions on potentials, we can obtain reduced integrable equa-
tions. Such typical examples include the nonlinear Schroédinger
(NLS) equations and the modified Korteweg-de Vries (mKdV)
equations. Integrable equations can often be solved by the inverse
scattering transform [1,2], the Darboux transformation [3], and
the Hirota bilinear method [4], and their soliton solutions can
be presented explicitly [5,6]. The Riemann-Hilbert technique [7]
has also become a powerful approach to integrable equations
and particularly to their soliton solutions. Various integrable
equations have been studied by formulating and analyzing their
Riemann-Hilbert problems generated from the associated given
matrix spectral problems.

We consider the (1+1)-dimensional case. Let x and t be two
independent variables, and u = u(x,t), a column vector of
dependent variables. A Lax pair of spatial and temporal matrix
spectral problems is defined by

—igy = Up = U, \)p, — iy = Vop = V(u, 1), (1.1)

where i is the unit imaginary number, U and V are square ma-
trices from loop algebras, A is the spectral parameter and ¢ is
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a square matrix eigenfunction. We assume that the compatibil-
ity condition of the two matrix spectral problems generates an
integrable equation

u = K(u), (1.2)
from the zero curvature equation
U — Vi +i[U,V] =0, (1.3)

where [-, -] denotes the matrix commutator. There is a kind of Lie
algebraic structures underlining zero curvature equations, which
guarantees the existence of infinitely many symmetries for the
associated integrable equations. The adjoint Lax pair of the matrix
spectral problems in (1.1) is defined as follows:

idy = U = QU(u, 1), igy = dV = dV(u, A). (1.4)

The corresponding compatibility condition yields the same zero
curvature equation as (1.3), and so, it does not bring any ad-
ditional equations. Both the Lax pair and the adjoint Lax pair
form the basis for the subsequent analyses of Riemann-Hilbert
problems.

A standard procedure for formulating Riemann-Hilbert prob-
lems can be described as follows. It starts from a pair of matrix

spectral problems in (1.1) with
U=AR)+P(u,A), V=BK)+Q(u,1r), (1.5)

where A, B are constant commuting square matrices, and P, Q
are trace-less square matrices satisfying deg, (P) < deg,(A) and
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deg, (Q) < deg,(B). To establish a Riemann-Hilbert problem for
the integrable equation (1.2), we adopt the following equivalent
Lax pair of matrix spectral problems:

U = i[AV), Y1+ P(u, M)y,
Ve = i[B(A), ¥] + Q(u, M)y, P = iP, Q =iQ,

where ¥ is also a square matrix eigenfunction. The equivalence
between the matrix spectral problems in (1.1) with (1.5) and the
matrix spectral problems in (1.6) follows from the commutativity
of A and B. The properties (dety), = (dety), = 0 are two
consequences of tr P = trQ = 0. There exists a direct connection
between the matrix spectral problems in (1.1) with (1.5) and the
matrix spectral problems in (1.6):

(p — wEga Eg — eiA()»)X-I—I‘B()»)t.

(1.6)

(1.7)

It is important to note that for the pair of matrix spectral prob-
lems in (1.6), we can impose the asymptotic conditions:

¥* — I, when x or t - o0, (1.8)

where | denotes the identity matrix. From those two matrix
eigenfunctions 1+, we can pick the entries to build two gener-
alized matrix Jost solutions T*(x, t, A), which are analytic in the
upper and lower half-planes C* and C~ and continuous in the
closed upper and lower half-planes C* and C—, respectively, and
establish a Riemann-Hilbert problem on the real line:

GT(x,t,A) =G (x,t, A)Go(x, £, A), A €R, (1.9)

where two unimodular generalized matrix Jost solutions G* and
G~ and the jump matrix G are all generated from T+ and T~, and
G' and G~ have the same analyticity properties as T+ and T,
respectively. The jump matrix Gy carries all basic scattering data
from the scattering matrix Sg(1) of the associated matrix spectral
problems, defined through

V¥ Eg = YT EgSg(M).

Solutions to the resulting Riemann-Hilbert problem (1.9) gen-
erate the required generalized matrix Jost solutions to recover
the potential of the matrix spectral problems, and thus, solu-
tions to the corresponding integrable equation. Such solutions,
G' and G, can be computed by applying the Sokhotski-Plemelj
formula to the difference of Gt and G~. Upon observing asymp-
totic behaviors of the generalized matrix Jost solutions G* at
infinity of A, a recovery of the potential is obtained. This also
produces the corresponding inverse scattering transforms. Soliton
solutions can be presented by solving the reflectionless Riemann-
Hilbert problems, i.e., the ones with the identity jump matrix G,
or computing the corresponding reflectionless inverse scattering
transforms.

It is also known that integrable equations can be reduced
under group reductions of matrix spectral problems (see, e.g., [8]).
The traditional class of such reductions takes the form

UT(x, £, %) = (U(x, t, A*)T = CU(x, £, A)C ",

(1.10)

(1.11)

where t stands for the Hermitian transpose, C is a constant
invertible Hermitian matrix and A* is the complex conjugate of
A. In this condition, the crucial point is to replace the spectral
parameter A with its complex conjugate, A*, and such reductions
work for both the NLS equations and the mKdV equations. There
is the unusual class of integrable reductions, which works for the
mKdV equations. This class of reductions replaces the spectral
parameter A with its negative, —J, in matrix spectral problems,
and takes the form

UT(x,t, —1) = (U(x, t, —A))T = —CU(x, t, A)C Y, (1.12)
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where T stands for the transpose of a matrix and C is a constant
invertible symmetric matrix. Such reductions do not work for the
NLS equations. Additionally, it is recognized that the other two
replacements A — —A* and A — A only generate nonlocal inte-
grable reductions, together with the reflection transformations of
xand t: (x,t) > (—x,t), (x,t) = (x, —t) and (x, t) = (—x, —t)
(see, e.g., [9]).

In this paper, we would like to consider two classes of inte-
grable reductions (1.11) and (1.12) simultaneously for the matrix
AKNS spectral problems, to generate Sasa-Satsuma type ma-
trix integrable hierarchies, and to formulate Riemann-Hilbert
problems and inverse scattering transforms for the resulting
reduced matrix integrable equations. We begin with arbitrary-
order matrix AKNS spectral problems. The obtained reflectionless
Riemann-Hilbert problems are applied to construction of soliton
solutions to the corresponding Sasa-Satsuma type matrix inte-
grable hierarchies. The conclusion is given in the last section,
together with a few concluding remarks.

2. Sasa-Satsuma type matrix integrable hierarchies
2.1. The matrix AKNS integrable hierarchies revisited

Let us recall the construction of the integrable hierarchies of
matrix AKNS equations (see, e.g., [10]).

Assume that m,n > 1 are two given integers, p, q are two
matrix potentials:

p = p(x, t) = Pjt)mxn> 4 = q(X, t) = (Qidnxm, (2.1)

I denotes the identity matrix of size s, s > 0, A is a spectral
parameter, and a1, @y and B1, B, are two arbitrary pairs of dis-
tinct real constants. Each of the local matrix AKNS integrable
hierarchies is generated from the matrix AKNS spectral problems
with matrix potentials:

—igy = U = U(u, 1)¢, —ipe = V"p = VI"l(u, 1)¢, r >0,

(2.2)
where the Lax pair of spectral matrices read
U=2A+P, VIT=)"2+Ql", (2.3)
in which A and £2 are given by
A = diag(aqly, only), 2 = diag(B1ln, B21y), (2.4)

and the other two involved square matrices of size m + n are
defined by

— _| 0P
which is called the potential matrix, and
r—1
qlr—=s1 plr=sl
Q" = ZAS[ clrsl  glr—sl } (26)
s=0

where a¥!, b1 ¢l and d"! will be defined recursively later.

It is clear that when m = 1, the matrix spectral problems
in (2.2) reduce to the multicomponent case, and if there are
just a pair of nonzero potentials, pjx and qy;, the matrix spectral
problems in (2.2) become the standard AKNS case [11].

As normal, to compute an associated matrix AKNS integrable
hierarchy, we first solve the stationary zero curvature equation

Wy = i[U, W], (2.7)

for a given spectral matrix U defined as in (2.3). We look for a
solution W of the form

a b
W=|:c d]’

(2.8)
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where a, b, c,d are m x m, m x n, n x m, and n x n matrices, re-
spectively. The stationary zero curvature equation (2.7) precisely
presents

ay = i(pc — bq),
by = i(aAb + pd — ap),
¢y = i(—aic + qa — dq), (2.9)
dy = i(gb — cp),
where o = a1 — a. We take W as a formal Laurent series:
o0
| a b |_ —s
W_[C d]_ZWSA ,
s=0 (2.10)

alsl  plsl
Ws = Wi(p, q) = clsl (sl , §>0,

and then, the system (2.9) leads equivalently to the following
recursion relations:

b =0, =0, d” =0, d” =0, (2.11a)
1
pist1 = &(—ib)[f] — pd*! 4 d"lp), s >0, (2.11b)
1
s+l = ;(icx[sl +qa® — d¥q), s> 0, (2.11¢)
a = i(pc¥ — bilq), di! = i(gb'! — clp), s > 1. (2.11d)
Let us now take the initial values:
d% = Bily, d® = Boly, (2.12)
which implies that
.
VIl = (w), =) AW, T > 0 (2.13)

s=0

and zero constants of integration in (2.11d), which means that we
require

Wslpg=0 =0, s > 1. (2.14)

In this way, with a/® and d' given by (2.12), one can uniquely de-
termine all matrices W;, s > 1, defined recursively. For example,
we can work out that

b = gp, M = gq, a =0, d" =o0; (2.15a)
B . B . B B
b = —~Zip,, ¢ = —iqy, a¥ = —=pq, ¥ = —qp;
(2.15b)
B B
P = — = (P + 2pap), ' = == (qu + 2qp9),
o “ (2.15¢)

B . B .
aP® = —=i(pqy — pxq), d®' = —=i(gpx — ¢up);
o o

B .
pl4l — y,(pxxx + 3pqpx + 3pxqp).

B .
4 — — (@00 + 34,04 + 30pqy),
, (2.15d)

a®' = = [3(pq)* + Pgux — Pxlx + Pxedl.

ot
g4 - _ P

- E dxPx + qxxP];

[3(gp)* + qpxx —

where 8 = 81 — B,. Particularly, we can have

m_Bl 0O p|_B
Q== 0 |= 2P (2.16)
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=P ﬁzzm,nuﬂ + iPy), (2.17)
o o
and
s _B,2{ 0 p|_B, [ pa ip
¢ o [ q 0 ] o? —lqx —qp
_ B | i(pax—pq)  Pu+2pgp
o3 | 9w +2qpq  i(qpx — qxp)
_FPp_ ﬁzum,n(P2 +iPy)
o o
b (ilP, Py] + P + 2P%), . (2.18)

Cod
in which I, , = diag(ly, —In,). Using (2.11d), we can derive, from

(2.11b) and (2.11c), a recursion relation for determining b**! and
[s].
bl

C[s+l] C[s]
st | = s |1

where ¥ is a matrix operator

(2.19)

_ i[ A+ qa ' (p-) + (9,1 p)lg

—qd; (- q
o pa'(-p)+ (8 (p)lp ¢

— [0, (g )]q
—dx — pd, ’

)
q-) =7 qlp
(2.20)

The compatibility conditions of the two matrix spectral prob-
lems in (2.2), i.e., the zero curvature equations

U — Vvl +iu, vl =o, r >0, (2.21)
yield one so-called matrix AKNS integrable hierarchy:
pe = iab"™ Y, g, = —iac™Y, r > 0. (2.22)

The first two nonlinear integrable equations in the hierarchy give
us the AKNS matrix NLS equations:

pe= —%i(pxx +2pgp), qr = gi(‘hx + 2qpq), (2.23)

and the AKNS matrix mKdV equations:

pe= —%(pm+3pqpx+3pxqp), qe = —g(qxxx+3qqu+3qpqx),
(2.24)

where the two matrix potentials, p and g, are defined by (2.1).

When m = 1 and n = 2, the matrix NLS equations (2.23) can
be reduced to the Manakov system [12], under a group reduction
of type (1.11).

By a Lax operator algebra theory and the trace identity [13],
we can directly show that (2.22) defines a hierarchy of commut-
ing flows, each of which possesses a bi-Hamiltonian structure and
thus infinitely many commuting conservation laws.

2.2. Sasa-Satsuma type matrix integrable equations

Let us now construct a kind of Sasa-Satsuma type integrable
reductions of the general integrable matrix AKNS equations in
(2.22).

We take a pair of constant invertible Hermitian matrices
X1, X» and another pair of constant invertible symmetric ma-
trices A4, Ay, and introduce two particular reductions for the
spectral matrix U defined as in (2.3):

Ut(x, t, 2*) = (Ux, t, )T = ZUx, t, )X 71, (2.25)
and
UT(x,t, —1) = (U(x, t, —A))T = —AU(x, £, 1)A7 Y, (2.26)
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where X, A are two constant invertible matrices formed as fol-
lows:

2=[%1 gz},zj=2j,j=1,2, (2.27)
and

A=|:AO1 AOZ],A].TzAj,JeLz. (2.28)
These two group reductions exactly demand

Pi(x, t) = ZP(x, )21, (2.29)
and

PT(x,t) = —AP(x, t)A™!, (2.30)

which enable us to make the reductions for the matrix potentials:

qx, t) = 2, 'pi(x, £) 24, (2.31)
and
qx, t) = —A5'p"(x, )A, (2.32)

respectively. It then follows that to satisfy both group reductions
for the spectral matrix U, we need an additional constraint for the

matrix potential p:
27N (x, 0) 2 = — A 'pT(x, 0)A. (2.33)

Moreover, we notice that the reductions in (2.25) and (2.26)
guarantee that

Wihx, t, A%) = (W(x, t, \*) = TW(x, t, )21,
WT(x, t, —1) = (W(x, t, =) = AW(x, t, 1)A™ Y,

which implies that

(2.34)

VIR (x, £, 0%) = (VBT U(x, £, M) = DV (R )27
VBT (x ¢, —2) = (V=G 1, 1) = —avIEHl(x, e, 0047,

(2.35)

and
QBT (x, £, 2%) = (Q= T (x, £, A*))f = 2= (x, t, 1) 271,
QBT (x ¢, —2) = (Q& T H(x, £, —1))T = —AQ=H(x, ¢, 1)A,
(2.36)

where s > 0, V%1 js defined as in (2.3) and Q>+ is defined
by (2.6).

Therefore, under the reductions (2.31) and (2.32), the inte-
grable matrix AKNS equations in (2.22) withr =2s+ 1, s > 0,
reduce to a hierarchy of Sasa-Satsuma type integrable matrix
AKNS equations of odd order:

pe = fab®+2)| s> 0,

_ _ 2.37
q=3; 'ptZy=—a7"pTa> > = ( )

where p = (pji)mxn satisfies (2.33), ¥y, ¥, are two arbitrary
invertible Hermitian matrices of sizes m and n, respectively, and
A1, A, are two arbitrary invertible symmetric matrices of sizes
m and n, respectively. Each equation in the hierarchy (2.37)
possesses a Lax pair of the reduced spatial and temporal matrix
spectral problems in (2.2) with r = 2s + 1, s > 0, and infinitely
many symmetries and conservation laws reduced from those for
the integrable matrix AKNS equations in (2.22) with r = 2s +
1, s> 0.

Let us fix s = 1, i.e,, r = 3. Then the reduced matrix integrable
equation in (2.37) gives the Sasa-Satsuma type integrable matrix
mKdV equation:

B _ _
Pt = = —5(Pox +3p%; 'p' Zipy + 3pe T 'pT Z1p)
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= _%(Pxxx —3pA;'pT Aipx — 3p:4; P Arp), (2.38)
where p is an m x n matrix potential satisfying (2.33).

In what follows, let us present a few examples of these Sasa-
Satsuma type integrable matrix mKdV equations, by taking differ-
ent values for m, n and different choices for X, A. If we consider
m=1and n = 2, and take

_ 0 _ 0 §
21=1,221=[(6 0],A1=1,A21=[5 0]’
(2.39)

where o and § are real constants and satisfy o2 = §2 = 1. Then
the potential constraint (2.33) tells

p2 = —odp7, (2.40)
and so the corresponding potential matrix P reads
0 p1 —odp}
p=| op; O 0 (2.41)
—Sp; O 0

Then, the corresponding Sasa-Satsuma type integrable mKdV
equations become

B
Pre=——5[Pro+ 60 p11°p1x + 3opi(Ip1l* k. (242)

where 0 = £1 and |z| denotes the absolute value of z. The case
of o = 1 exactly gives rise to the Sasa-Satsuma mKdV equation
studied in [14], whose dark solitons were presented in [15]. A
similar deduction with

_ 0 _ § 0
21:1,221:[0 g],Alzl,A21:[0 8]’
(2.43)

where ¢ and § are real constants and satisfy o2 = §? = 1, yields
another pair of novel scalar integrable mKdV equations:

B "
D1t = _E[pl,xxx - 65P%p1,x - 36p1(|P1|2)x], (2.44)
where § = £1.
If we consider m = 1 and n = 4, and take
op 0 0 O
_ -1 _ 0 01 0 0
=125 =19 0 o o0 |
0 0 0 o
(2.45)
0 & 0 O
_ 1_| 86 0 0 O
A=l A =10 0 0 5 |
0 0 45 O
where oj and §; are real constants and satisfy o7 = 87 = 1, j =
1, 2. Then the potential constraint (2.33) generates
P2 = —0181p], Pa = —0282P3, (2.46)
and so the corresponding potential matrix P reads
0 p1 —0181p] Pz —020:p;
op; 0 0 0 0
oop; O 0 0 0
—8ps O 0 0 0
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This enables us to obtain a class of two-component Sasa-Satsuma
type integrable mKdV equations:

B
Pic = —E[Pl.xxx + 6(o11p1l* + 021p3*)p1x

+3(o4Ip1 1> + %P1l
(o11p11” + 021p31 " )kp1] (2.48)

B
P3¢ = _E[plxxx + 6(c11p11* + 021p31*)p3.x
+3(o11p11* + o2lp31*)ps],

where o; are real constants and satisfy ojz =1, j = 1,2. The
long-time asymptotics of the equation with o; = 1, j = 1,2,
has been investigated by the nonlinear steepest descent method
in [16,17].

In a similar manner, we can obtain a class of N-component
Sasa-Satsuma type integrable mKdV equations. The three-
component ones read

B
Pt = _ﬁ[pl,xxx + 6(c11p1l* + 021ps|* + o3lps1*)p1x
+3(o11p1l* + 02ps|* + o31ps1* b1l

B
D3t = _ﬁ[pixxx + 6(o11p1l* + 021ps|* + o3lps 1 )p3.x
+3(o11p11* + 021ps|* + o31ps*)ps],

B
D5t = _E[ps.xxx + 6(011p11* + 021p3)* + o31ps|*)ps «
+3(o11p1l* + o2lpsI* + o31ps |1 )ps ],

(2.49)

where o; are real constants and satisfy o> =1,j = 1,2,3.
This equation with o; = 1, j = 1, 2, 3, has been studied by the
Riemann-Hilbert method in [18].

3. Riemann-Hilbert problems
3.1. Properties of eigenvalues and eigenfunctions

Note that the reduction in (2.25) (or (2.26)) guarantees that
A is an eigenvalue of the matrix spectral problems in (2.2) if and

only if A = A* (or A = —21) is an adjoint eigenvalue, i.e., it satisfies
the adjoint matrix spectral problems:

iy = U = U, ), i = V" = gV(u, i), (3.1)
where r = 2s + 1, s > 0. Accordingly, we can assume to

have eigenvalues A : u, —u*, iv, and adjoint eigenvalues A* :
w*, —p, —iv (or —A : —u, p*, —iv), where u € iR and v € R.

Suppose that all the potentials sufficiently rapidly vanish when
X — 400 or t — =oo. For the matrix spectral problems in (2.2)
withr =2s4 1, s > 0, we can impose the asymptotic behavior:
¢ ~ eraHFTIRt \when x t — +oo. Therefore, if we take the
transformation

¢ — wEg’ Eg — ei)»AX+ik25+1.Qt, (32)

then we can achieve the canonical asymptotic conditions: ¥ —
Imin, wWhen x,t — oo or — oo. The equivalent pair of matrix
spectral problems to (2.2) withr =2s+ 1, s > 0, reads

Yy = iA[A, Y]+ Py, P =P, (3.3)
Yo = A2, g+ QP QT =i (34)
Applying a generalized Liouville’s formula [19], we can get

dety =1, (3.5)

since (det ), = 0 due to trP = trQ>+1 = 0.
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Recall that the adjoint equation of the x-part of (2.2) and the
adjoint equation of (3.3) read

ig, = U, (3.6)
and

i =AY, A1+ P, (37)
respectively. Obviously, there exist the links: ¢ = ¢! and

¥ = ¢!, and each pair of adjoint matrix spectral problems and
equivalent adjoint matrix spectral problems do not create any
additional condition.

Let ¥(A) be a matrix eigenfunction of the spatial spectral
problem (3.3) associated with an eigenvalue A. Then v ~!(1)
and Ay ~!(1) are two matrix adjoint eigenfunctions associated
with the same eigenvalue A. Under the group reduction in (2.25),
we have

iy (M) 2] = il(¥) (M) 2]

= {(—DA[YT(WF), Al + (=D T(A*)PT(—x, t)} X
= AYT(A), A1Z 4+ ¢ () Z[Z P X]
=AYt E, A1+ ¢i(*)ZP.

This implies that the matrix
V() =905, (38)

presents another matrix adjoint eigenfunction associated with
the same original eigenvalue A. That is to say that ¢f(A*)X
solves the adjoint spectral problem (3.7). Thus, upon observing
the asymptotic conditions for the matrix eigenfunction v, we see
that by the uniqueness of solutions, ¥(A) satisfies

Yo =Dy vz (3.9)

when ¥ — [y, X OF't — 00 OF — 00.
Similarly, based on the group reduction in (2.26), we can find
that

Y1) =y (=14

gives a new matrix adjoint eigenfunction associated with A and
satisfies

vi(=2) = Ay ')Al

(3.10)

(3.11)
3.2. Riemann-Hilbert problems

Let us now start to formulate a class of associated Riemann-
Hilbert problems with the variable x. In order to describe the
problems explicitly, let us make the assumptions:

a=a1—ay; <0, B=81—p5,<0. (3.12)

In the scattering problem, we first take the two matrix eigenfunc-
tions ¥ ¥ (x, 1) of (3.3) with the asymptotic conditions:

¥E — Ipin, When x — oo, (3.13)

respectively. Then from (3.5), it follows that dety* = 1 for all
x € R. Since

¢* = y*E, E =™, (3.14)

are both matrix eigenfunctions of the x-part of (2.2), they must
be linearly dependent, and consequently, we have

Y E =¢TES(A), X eR, (3.15)

where S(A) is the so-called scattering matrix. Note that det S(A) =
1, because of det Y+ = 1.

As normal, by the method of variation in parameters, we can
transform the x-part of (2.2) into the following Volterra integral
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equations for ¢ [7]:

+o0
V20 X) = I — f MNPy (h, ) A0 dy, (3.16)
X

where the asymptotic conditions (3.13) have been applied. Now,
by the Neumann series [20] in the theory of Volterra integral
equations, we can show that the eigenfunctions ¥* exist and
allow analytic continuations off the real axis A € R as long as
the integrals on their right hand sides converge (see, e.g., [21]).
From the diagonal form of A and the first assumption in (3.12),
we can prove that the integral equation for the first m columns of
¥~ contains only the exponential factor e=**=¥) which decays
because of y < x in the integral, while A takes values in the upper
half-plane C*, and the integral equation for the last n columns
of ¥+ contains only the exponential factor e®**=¥) which also
decays because of y > x in the integral, while A takes values in the
upper half-plane C*. As a consequence, we know that these m+n
columns are analytic in the upper half-plane C* and continuous
in the closed upper half-plane C™. In a similar manner, we can see
that the last n columns of ¥y~ and the first m columns of ¥ are
analytic in the lower half-plane C~ and continuous in the closed
lower half-plane C~.

In what follows, we show how to prove the above statements.
Let us express

UE = Y U),

that is, wji denotes the jth column of ¢* (1 <j < m + n). We
would like to prove that ", 1 <j <m,and ", m+1<j <
m+n, are analytic at » € C* and continuous at A € C*; and ",
1<j<m, and 1/fj_,m—|—1 <j < m+n, are analytic at L € C~
and continuous at A € C™. Below, we only to prove the result for
1/fj+, 1 < j < m, and the proofs for the other eigenfunctions follow
analogously.
From the Volterra integral equation (3.16), we see that

(3.17)

G0 =g = [ RO O TSIz G18)

and

w,-+(x,x)=ej—/ Ra(h X, Y5 G y)dy, m+1<j<mn,
(3.19)

where ej, 1 <j < m+ n, are standard basis vectors of R™" and
the matrices Ry and R, are given by

Ri(A,x,y) = i|: e—iax(xo—y)q(y) p(g/) ] ,

0 el Vp(y)
qy) 0 '

Let us prove that for each 1 < j < m, the solution to (3.18) is
determined by the Neumann series

Z F(hx),

where

Ry(A, x,y) =1 |:

(3.20)

5ok 0= & B00) == [ RO IO, k= 1
(3.21)

This will be true if we can prove that the Neumann series con-
verges uniformly for x € R and A € C~. Based on (3.21), an
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application of the mathematical induction yields

1 0 k
3001 = ([ o) L 1< m k=0,
. X

for x € R and A € C~, where | - | denotes the Euclidean norm
for vectors and | - || stands for the Frobenius norm for square
matrices. By the Weierstrass M-test, this estimation guarantees
that

o0

Z (A, %), 1<j<m,

k=0

(3.22)

uniformly converges for A € C~ and x € R, and all qu*()\,x),
1 <j < m, are continuous with respect to A in C~, since so are
all (A X,1<j<mk=>0.

We now consider the differentiability of ¢j+()», x),1<j<m,
with respect to A in C™ (similarly, we can prove the differentiabil-
ity with respect to x in R). Fix an integer 1 < j < m and a complex
number p in C~. Choose a disk Bo(u) = {A € C | [A — | < p}
with a radius p > 0 such that B,() € C~, and then we can have
a constant C(p) > 0 such that |axe | < C(p) for A € B,(u)
and x < 0. We define the following Neumann series

Z«m,k(x, X)

where ¢/, ; = 0 and

(3.23)

! x « =0, k> 1, are defined recursively by

O a0 ) = — f Rz (% V)00 ) dy

—/ Rl(k,x,y)quxk( y)dy, k>0, (3.24)

with qu w k=0, being defined by (3.21) and R; , being given by

9
Ria(h x,y) = —Ri(A, x,y) = [

Q 0
N alx —y)e 0 Vgly) 0 |-
We can easily verify by the mathematical induction that

1 [e¢]
SH{[C(MH]/ IP(y )Ildy}, k>0,

for x € R and A € B,(u). Therefore, by the Weierstrass M-test,
the Neumann series defined by (3.23) converges uniformly for
x € Rand A € B,(u), and by the term-by-term differentiability
theorem, it converges to the derivative of q>j+ with respect to A,
since ¥, = ¢l k > 0.1t follows that ¢;" is analytic at any
point A € B,(u), and thus, particularly at the point w. This tells
that all dbj*, 1 <j < m, are analytic with respect to A in C™. The
required proof is finished.

Now, based on these analyses, we can then define the gener-
alized matrix Jost solution T* as follows:

|¢j_,'—)»,k()\" X)|

T =T "\ =W U Ygs s Ui
=Y Hi+ Yy H,, (3.25)
where
Hy = diag(I,,0,...,0), H, = diag(0,...,0,1,), (3.26)
——— ———

n m

and know that T™ is analytic with respect to A in C* and con-
tinuous with respect to A in C*. The generalized matrix Jost
solution

Wi Vs Vg oo Yimg) = ¥ HL + Y7 H

is analytic with respect to A in C™ and continuous with respect
toAinC™.
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To construct the other generalized matrix Jost solution T,
we adopt the analytic counterpart of T in the lower half-plane
C~, which can be generated from the adjoint counterparts of the
matrix spectral problems. Note that the inverse matrices ot =
(@) " and y* = (y*)7! solve those two adjoint equations,
respectively. Thus, upon expressing ¥+ as

l"&:t,]
&i,Z
. . (3.27)

1/~/ﬁ:.m+n

that is, ¥ */ denotes the jth row of ¥+ (1 <j < m + n), we can
prove by similar arguments that we can define the generalized
matrix Jost solution T~ as the adjoint matrix solution of (3.7), i.e.,

w—,l

&—.m

grme | = Hiy™ + Hyt = Hi(y ™) "+ Ho(y )7,

¢+,m+n

(3.28)

which is analytic with respect to A in C~ and continuous with
respect to A in C~. The other generalized matrix Jost solution of
(3.7),

S AR

gome | = Hiy™ + Hoy ™ = Hi(y ") + Ha(y 7)1,

l’b*,m#»n

is analytic with respect to A in C* and continuous with respect
to A in C*.

Further, directly from dety* = 1 and using the scattering
relation (3.15) between ¥ and v, we can have

limy 0o TH(x, 1) = [ Sllom 10 ] reCt,
. " (3.29)
lim, o T~(X, 1) = [ Su(a) 0 ] reC,
0 I,
and
detTH(x, A) = detSy1(A), detT (x, A) = det§11(x), (3.30)
where we split S(A) and S~1(1) as follows:
S11(A)  S2()
)\‘ =
S(4) [ Sa(d) Sn() |
(3.31)

Sy [ S Snm)
ST = (SO) —[§ ]

From (3.29), we know that Sy, §11Aare m x m matrices; and so,
S12,S12 are m x n matrices, Sy, S;; are n x m matrices, and
S22, S22 are n x n matrices, because S(1) is a square matrix of
size m + n. Based on the uniform convergence of the previous
Neumann series, we know that S;;(1) and S;1()1) are analytic in
C* and C~, respectively.
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Now, we can define the following two unimodular generalized
matrix Jost solutions:

_l _
Gt M) =THx a) | S 0 ] et

0o I,
(G)M(x, ) = [ 51—1;(“ 10 ]T—(x,x), red .

n

(3.32)

These two generalized matrix Jost solutions enable us to establish
the required matrix Riemann-Hilbert problems on the real line

for the Sasa-Satsuma type matrix integrable equations (2.37):
GT(x,A) = G (x, \)Go(x, 1), X €R, (333)

where, by (3.15), the jump matrix Gy reads

Go(x,k):E|: §ﬁ;(k) 1(,)1 ]5@)[ 51_1:)(” Ion ]E‘l. (3.34)

The matrix S(1) has the following factorization:

S(.) = (Hy + HoS(A)(Hy + ST (A)Hy), (3.35)

which can be shown to be

S(A) = ln 512 (3.36)
Sa In

Note that for the presented Riemann-Hilbert problems, the

canonical normalization conditions:
GE(x, 1) = Ipyn, when 1 € CF — o0, (3.37)

are consequences of the Volterra integral equations in (3.16). Also,
from the properties in (3.9) and (3.11), we can have

G =G ) 'z (3.38)
and
(G (=1 =AG ) 'Wa (3.39)

Therefore, the jump matrix Gy satisfies the following involution
properties:

GHA") = ZGo(M)Z 7!, Gh(—A) = AGo(M)A™!, A € R, (3.40)

3.3. Evolution of the scattering data

In order to complete the direct scattering transforms, we take
the derivative of (3.15) with time t and use the temporal matrix
spectral problems:

,lpti — i)\ZS‘Fl[Q’ _(pi] + iQ[25+1]1//i,

where s > 0 is fixed. It then follows that the scattering matrix S
satisfies the following evolution law:

(3.41)

Se = ix¥H1[R2, S]. (3.42)

This yields the time evolution of the time-dependent scattering
coefficients:

Sia = Spa(t, &) = Spa(0, 1) P
12 = S12(t, 1) = 512(0, A) (3.43)

Sa1 = Sx1(t, &) = S21(0, )t)e_imzmt,
and all other scattering coefficients are independent of time t.

3.4. Gelfand-Levitan-Marchenko type equations

To obtain Gelfand-Levitan-Marchenko type integral equations
to determine the generalized matrix Jost solutions, we trans-
form the associated Riemann-Hilbert problems in (3.33) into the
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following problems:

{ Gt —G =G v, v=Gy—Intn, ONR,

Gt = Ipynas A e CF — oo, (3.44)

where each jump matrix Gy is defined by (3.34) and (3.36).

Let G(A) = G*(A) for A e C*. Suppose that G has simple
poles off R: {éj}le, to avoid the spectral singularity, where R is
an arbitrary natural number. Introduce

R
- G - -
G*) =G0 - Y ——, 1 eCH G =G 1), reCH,
Pl
(3.45)
where G;j is the residue of G at A = §;, i.e,
Gy = res(G(1). &) = Jim (3 — §)G(1). (3.46)
—§

Obviously, we have

Ctr—C =Cr—C =C

gi G G G_i G v, on R, (3.47)

GT = Ipypas A € CC — oo.

Then by applying the Sokhotski-Plemelj formula [22], we obtain
the solution of each problem in (3.47):

1 [ (G v)E)

GA) =1 — 2 . 3.48
()=t 5z | =8 (3.48)
Taking the limit as A — & generates
R G
LHS = limf}:Fl—Z .
A= — & =&
]O;Zl (349)
1 G~
RHS = Inin + -— wdf,
2mi —00 S - él
where
A —&)G(A) — G
F= fim A T8O —=G e (3.50)
A—>§) A — é}_l
and accordingly, we obtain
R
G;j 1 [ (G v)§)
Inn — Fi + T+ — [ ——Zdt=0, 1<I<R
e ga—sj i) o E—&
(3.51)

which define the required Gelfand-Levitan-Marchenko type inte-
gral equations.

All these integral equations are used to determine solutions
to the associated Riemann-Hilbert problems and thus the gen-
eralized matrix Jost solutions. Yet, little is known regarding the
existence and uniqueness of solutions. In the reflectionless case,
a generalized formulation of solutions, where eigenvalues could
equal adjoint eigenvalues, will be presented for the Sasa-Satsuma
type matrix integrable equations in the following section.

3.5. Recovery of the potential

To recover the potential matrix P from the generalized matrix
Jost solutions, we make an asymptotic expansion

1 1
Gr(x,t,A) = Inyn + XG;f(x, t)+0(—), A — oo. (3.52)

22
Then, inserting the above asymptotic expansion into the matrix
spectral problem (3.3) and comparing constant terms yields

P = lim AGT (M), Al = —[A, GI 1. (3.53)
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Thus, the potential matrix reads

b 0 —otG;f12
aGly, 0

where we have similarly partitioned the matrix GT into four
blocks as follows:

G+ G+ (G+ ) (G+ )
GF = 111 Y12 | 1,11/nxn Liz/nxm |3 es
i [ iy G } [ (GEydmen (Gigghmenm |° 3

1,22
Consequently, the solutions to the matrix AKNS equations (2.22)
read

(3.54)

(3.56)

When the reduction conditions in (2.29) and (2.30) are satisfied,
the reduced matrix potential p solves the Sasa-Satsuma type
matrix integrable equations (2.37).

To conclude, this provides an inverse scattering procedure
for computing solutions to the Sasa-Satsuma type matrix inte-
grable equations (2.37), from the scattering matrix S(1), through
the jump matrix Go(A) and the solution {G*T(A), G"(1)} of the
associated Riemann-Hilbert problems, to the potential matrix P.

o+ ot
p=—aGj,, q=0aG],.

4. Soliton solutions
4.1. General formulation

Let N > 1 be another given integer. Assume that detSy((A)
has N zeros {A € C, 1 < k < N} and detS;(A) has N zeros
{AeC, 1<k<N}

In order to compute soliton solutions explicitly, we addition-
ally assume that all these zeros, Ay and A, 1 < k < N, are
geometrically simple. Thus, we know that each of ker T*(A),
1 < k < N, contains only a single basis columq vector, which
we denote by v, 1 < k < N; and each of kerT~(A¢), 1 < k <N,
a single basis row vector, which we denote by v, 1 < k < N.
Therefore, we have

T (MJue =0, 9T () =0, 1<k <N. (4.1)

Soliton solutions are associated with the situation where Gy =
I;m+n is taken in each Riemann-Hilbert problemA in (3.33). Such
a situation can be met if we take that S,y = Si;; = 0, which
means that all the reflection coefficients are taken as zero in the
scattering problem.

This kind of special Riemann-Hilbert problems with the canon-
ical normalization conditions in (3.37) and the zero structures
given in (4.1) can be solved explicitly [7,23], in the case of

Dall <k <NyN{A/1 <k <N} =0, (4.2)

and therefore, we can present the potential matrix P exactly,
which generates soliton solutions. Also, without the condition
(4.2), the solutions to the special Riemann-Hilbert problem with
the identity jump matrix have been given recently as follows (see,
e.g., [24]):

N

(M)
G+()~) = Inin — ,(12_1 ﬁv
o (4.3)
L My
(G = Inen + Z k—ikk’

k,I=1

where M = (my)nxn iS @ square matrix with its entries deter-
mined by
v . N
S i # A
Al — Ak R
0, if Aj = Ay,

my = 1<k I<N, (4.4)
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and we require an orthogonal condition
Do =0, if Ay =Aip, 1<kI<N, (4.5)

to ensure that G*(A) and G~(A) solve the corresponding reflec-
tionless Riemann-Hilbert problem:

(GT)')GT(A) = - (4.6)

Note that the zeros A, and )A»k are constants, i.e., space and time
independent, and thus, we can readily determine the spatial and
temporal evolutions for the vectors, vi(x, t) and vy(x,t), 1 <k <
N, in the kernels. For example, let us compute the x-derivative of
both sides of the first set of equations in (4.1). Applying (3.3) first
and then again the first set of equations in (4.1), we obtain

T*+(x, xk)(% - ikkAvk) —0, 1<k<N.
dx

Consequently, for each 1 < k < N, ‘% — il Avy is in the kernel

of T™(x, Ax), and hence, a constant multiple of vy, because A is

geometrically simple. Without loss of generality, we can simply

assume

d

ﬂ = iA,<Avk, 1<k<N. (47)
dx

The time dependence of vy:

d

% =2 Qu, 1<k <N, (4.8)

can be obtained similarly via applying the t-part of the associated
matrix spectral problem, i.e., (3.4). As a consequence of these
differential equations, we get

Ve(x, ) = eHAHETIR0, g <k <N, (4.9)
and completely similarly, we can obtain
Bi(x, 1) = i T < k<N, (4.10)

where wy and Wy, 1 < k < N, are constant column and row
vectors, respectively, but need to satisfy an orthogonal condition:

w; =0, if A=A, 1<k <N, (4.11)
in consequence of (4.5).
Now, from the solutions in (4.3), we obtain
N
Gl =-— Z (M~ ), (4.12)
k=1

and further, the presentations in (3.56) give the following N-
soliton solution to the matrix AKNS equations (2.22):

N N
1 —1y A2 2 -1y Al
p=a) viM b, q=—a Yy viM )b/
ki=1 k=1

(4.13)

Here for each 1 < k < N, we split v, = ((v})", (v})")" and ¥ =
(94, d2), where v} and 9] are m-dimensional column and row
vectors, respectively, and vZ and 9} are n-dimensional column
and row vectors, respectively.

To present N-soliton solutions for the Sasa-Satsuma type ma-
trix integrable equations (2.37), we need to check if GT defined
by (4.12) satisfies the involution properties:
(GH = 26F 27!, (GH)' = AGTa™. (4.14)
These mean that the potential matrix P determined by (3.54)
satisfies the reduction conditions in (2.29) and (2.30). In this way,
the N-soliton solution to the matrix AKNS equations (2.22) is
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reduced to the N-soliton solution:

N
p=a ) viM it (4.15)
k,I=1

to the Sasa-Satsuma type matrix integrable equations (2.37).

4.2. Realization

Let us now check how to realize the involution properties in
(4.14).

Let N1, N, > 0 be a pair of integers such that N := 2N; +N, >
1. First, we take N distinct zeros of det T™()) (or eigenvalues of
the spectral problems under the zero potential):

(A1 <k <N} ={m, —pg, 1 <k <Ny; iy, 1<k <Ny}
(4.16)

and N zeros of detT—(A) (eigenvalues of the adjoint spectral
problems under the zero potential):

(el 1<k <N}y ={u}, —px, 1 <k<Ny; —iv, 1<k<Ny},
(4.17)

where pu; ¢ iR and v, € R, It is easy to see that ker T*(Ay),
1 <k <N, are spanned by

i Ax+iAET 2t

wg, 1<k <N, (4.18)

respectively, where wy, 1 < k < N, are constant column vectors.
These column vectors in (4.18) are eigenfunctions of the spectral
problems under the zero potential associated with A, 1 < k <
N. Furthermore, following the previous analysis in Section 3.1,
ker T~ (Ag), 1 < k < N, are spanned by

Ve = (X, £, M) = e

D=0 = vy A =) T =4, 1<k=<N,
(4.19)
and

hk=v/X =014, 2N +1<k<N, (4.20)

respectively. These row vectors o, 1 < k < N, are eigenfunc-
tions of the adjoint spectral problems under the zero potential
associated with Ay, 1 < k < N, respectively. It is direct to
see that the choices in (4.19) and (4.20) yield the selections on
wg, 1<k<N:
wp(AZ P = 2*A* ) =0, 1<k <N,
we=AT"Z wi y, Ni+ 1<k < 2N,
wiZ =wlA, 2Ny +1<k<N,
where *x denotes the complex conjugate of a matrix. We em-
phasize that all these selections aim to satisfy the reduction
conditions in (2.29) and (2.30).

To satisfy the orthogonal condition (4.11), we can check the
following equivalent orthogonal condition

wiZw =0, if \y=hy, 1<k <N,

(4.21)

(4.22)

on the constant columns {wy|1 < k < N}. Interestingly, the
situation of A, = Ay occurs only when Ay =0, 2N;+1 <k <N.
Since 1 # oy and B; # By, we can easily observe that the
conditions in (4.22) are equivalent to

(w)f Zyw] =0, (w)! Zyw! =0, if A = A,

where 1 <k, <N, (4.23)

in which we split wy = ((w})", (w})")', 1 < k <N, as we did for
vy before. All these create the conditions for the orthogonality re-
quirements, which can also be expressed by using the symmetric
matrix A.
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Now, note that if the solutions to the specific Riemann-Hilbert
problems, determined by (4.3) and (4.4), satisfy the involution
properties in (3.38) and (3.39), then the corresponding matrix GT
possesses the involution properties in (4.14), generated from the
group reductions in (2.25) and (2.26). Therefore, when the selec-
tions in (4.21) are made and the conditions in (4.23) are satisfied,
the formula (4.15), together with (4.3), (4.4), (4.18), (4.19) and
(4.20), gives rise to N-soliton solutions to the Sasa-Satsuma type
matrix integrable equations (2.37).

Whenm =N =1andn =4, letusfixa = a; —ap = —1,
take Ay = iv, Ay = —iv, v € R, v # 0, and due to the last
requirement in (4.21), choose

* * \T
wy = (w1, W12, 0161W7 5, W14, 0282w 4)

where w1 is real and 6? = 62 = 1, j = 1,2. Then we can
obtain the following one-soliton solution to the two-component
Sasa-Satsuma type integrable mKdV equations in (2.48):

3
; B3t
ioyw w}, e A=A

p1=—
V[lwiq]? e 2t 2Bt 4 20wy |2 + 0z we 4|?) e 2ot 203 har]]

(4.24)
and

3
; - t
IO'ZWI,]wTA evx+H(B1=F2)v

p3 = —
v[Jwy 1|2 e 2vext 203818 4 2y |w 5|2 + 07 |w 4]?) e 2ve2x 203 far ]

(4.25)

where v, wy 2 and w; 4 need to satisfy

(1= 16v*)(o1|wi2|* + o2|wr41*) = 0, (4.26)

which comes from the involution properties in (4.14). When there
is no o3 and w1 4, one can reduce this solution to get a one-soliton
to the Sasa-Satsuma type mKdV equations in (2.42).

5. Concluding remarks

The paper has explored Sasa-Satsuma type matrix integrable
equations, by use of two group reductions of the matrix AKNS
spectral problem of arbitrary order, and presented Riemann-
Hilbert problems for the resulting Sasa-Satsuma type matrix
integrable equations, by taking advantage of the Lax pair and
the adjoint Lax pair of matrix spectral problems. The obtained
Riemann-Hilbert problems have been applied to soliton solutions
of the Sasa-Satsuma type matrix integrable equations, which
amends the binary Darboux transformation theory for the Sasa-
Satsuma type matrix mKdV equations [25,26].

The crucial step in our analysis is to use two local group
reductions simultaneously to generate reduced integrable equa-
tions, which also forms the basis for studying the Sasa-Satsuma
mKdV equation. In our formulation of Riemann-Hilbert prob-
lems, we have taken advantage of a generalized M-matrix, where
eigenvalues could be equal to adjoint eigenvalues. Such an intro-
duction of generalized M-matrices is motivated by recent studies
on Riemann-Hilbert problems of nonlocal integrable equations
(see, for example, [24,27]). The associated generalized formula-
tion of Riemann-Hilbert problems can be applied to both local
and nonlocal integrable equations (see, for example, [24,27-31]
for nonlocal cases). We point out that there are only those two
kinds of group reductions for the matrix AKNS spectral prob-
lems which produce reduced local integrable equations. It should
be interesting to apply the idea of adopting two group reduc-
tions to other matrix spectral problems to explore reduced local
integrable equations.

The Riemann-Hilbert technique, which is very effective in
generating soliton solutions (see also, e.g., [32-34]), has been
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recently generalized to solve various initial-boundary value prob-
lems of continuous integrable equations on the half-line and
the finite interval [35,36]. There are many other powerful ap-
proaches to soliton solutions, among which are the Hirota di-
rect method [4], the generalized bilinear technique [37], the
Wronskian technique [38,39] and the Darboux transformation
[3,40]. It would be significantly important to look for connec-
tions among different approaches to exhibit dynamical charac-
teristics of soliton solutions. We would also like to emphasize
that it would be particularly interesting to compute various
kinds of exact solutions other than solitons to integrable equa-
tions, for example, positon and complexiton solutions [41,42],
lump and rogue wave solutions [43-51], solitonless solutions
[52-54] and algebro-geometric solutions [55,56], in a perspec-
tive of Riemann-Hilbert problems. It is another interesting topic
for future study to link Riemann-Hilbert problems to gener-
alized integrable counterparts, including integrable couplings,
super-symmetric integrable equations and fractional spacetime
analogous equations.
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