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a b s t r a c t

Sasa–Satsuma type matrix integrable hierarchies are generated from taking two group reductions of
replacing the spectral parameter with its complex conjugate and its negative in the matrix AKNS
spectral problems. Based on the Lax pairs and the adjoint lax pairs, Riemann–Hilbert problems
and thus inverse scattering transforms are formulated for the resulting Sasa–Satsuma type matrix
integrable hierarchies, and their soliton solutions are generated from the associated reflectionless
Riemann–Hilbert problems.
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1. Introduction

Integrable equations are generated from matrix spectral
roblems and come in hierarchies. Under specific symmetric
eductions on potentials, we can obtain reduced integrable equa-
ions. Such typical examples include the nonlinear Schrödinger
NLS) equations and the modified Korteweg–de Vries (mKdV)
quations. Integrable equations can often be solved by the inverse
cattering transform [1,2], the Darboux transformation [3], and
he Hirota bilinear method [4], and their soliton solutions can
e presented explicitly [5,6]. The Riemann–Hilbert technique [7]
as also become a powerful approach to integrable equations
nd particularly to their soliton solutions. Various integrable
quations have been studied by formulating and analyzing their
iemann–Hilbert problems generated from the associated given
atrix spectral problems.
We consider the (1+1)-dimensional case. Let x and t be two

ndependent variables, and u = u(x, t), a column vector of
dependent variables. A Lax pair of spatial and temporal matrix
spectral problems is defined by

−iφx = Uφ = U(u, λ)φ, − iφt = Vφ = V (u, λ)φ, (1.1)

here i is the unit imaginary number, U and V are square ma-
trices from loop algebras, λ is the spectral parameter and φ is
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a square matrix eigenfunction. We assume that the compatibil-
ity condition of the two matrix spectral problems generates an
integrable equation

ut = K (u), (1.2)

rom the zero curvature equation

t − Vx + i[U, V ] = 0, (1.3)

here [·, ·] denotes the matrix commutator. There is a kind of Lie
lgebraic structures underlining zero curvature equations, which
uarantees the existence of infinitely many symmetries for the
ssociated integrable equations. The adjoint Lax pair of the matrix
pectral problems in (1.1) is defined as follows:

φ̃x = φ̃U = φ̃U(u, λ), iφ̃t = φ̃V = φ̃V (u, λ). (1.4)

he corresponding compatibility condition yields the same zero
urvature equation as (1.3), and so, it does not bring any ad-
itional equations. Both the Lax pair and the adjoint Lax pair
orm the basis for the subsequent analyses of Riemann–Hilbert
roblems.
A standard procedure for formulating Riemann–Hilbert prob-

ems can be described as follows. It starts from a pair of matrix
pectral problems in (1.1) with

= A(λ) + P(u, λ), V = B(λ) + Q (u, λ), (1.5)

here A, B are constant commuting square matrices, and P,Q
re trace-less square matrices satisfying deg (P) < deg (A) and
λ λ
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egλ(Q ) < degλ(B). To establish a Riemann–Hilbert problem for
he integrable equation (1.2), we adopt the following equivalent
ax pair of matrix spectral problems:

ψx = i[A(λ), ψ] + P̌(u, λ)ψ,

ψt = i[B(λ), ψ] + Q̌ (u, λ)ψ, P̌ = iP, Q̌ = iQ ,
(1.6)

here ψ is also a square matrix eigenfunction. The equivalence
etween the matrix spectral problems in (1.1) with (1.5) and the
atrix spectral problems in (1.6) follows from the commutativity
f A and B. The properties (detψ)x = (detψ)t = 0 are two
onsequences of tr P = trQ = 0. There exists a direct connection
between the matrix spectral problems in (1.1) with (1.5) and the
matrix spectral problems in (1.6):

φ = ψEg , Eg = eiA(λ)x+iB(λ)t . (1.7)

t is important to note that for the pair of matrix spectral prob-
ems in (1.6), we can impose the asymptotic conditions:

±
→ I, when x or t → ±∞, (1.8)

here I denotes the identity matrix. From those two matrix
igenfunctions ψ±, we can pick the entries to build two gener-
lized matrix Jost solutions T±(x, t, λ), which are analytic in the
pper and lower half-planes C+ and C− and continuous in the
losed upper and lower half-planes C̄+ and C̄−, respectively, and
stablish a Riemann–Hilbert problem on the real line:
+(x, t, λ) = G−(x, t, λ)G0(x, t, λ), λ ∈ R, (1.9)

here two unimodular generalized matrix Jost solutions G+ and
G− and the jump matrix G0 are all generated from T+ and T−, and
G+ and G− have the same analyticity properties as T+ and T−,
espectively. The jump matrix G0 carries all basic scattering data
rom the scattering matrix Sg (λ) of the associated matrix spectral
roblems, defined through
−Eg = ψ+EgSg (λ). (1.10)

Solutions to the resulting Riemann–Hilbert problem (1.9) gen-
rate the required generalized matrix Jost solutions to recover
he potential of the matrix spectral problems, and thus, solu-
ions to the corresponding integrable equation. Such solutions,
+ and G−, can be computed by applying the Sokhotski–Plemelj
ormula to the difference of G+ and G−. Upon observing asymp-
otic behaviors of the generalized matrix Jost solutions G± at
nfinity of λ, a recovery of the potential is obtained. This also
roduces the corresponding inverse scattering transforms. Soliton
olutions can be presented by solving the reflectionless Riemann–
ilbert problems, i.e., the ones with the identity jump matrix G0,
r computing the corresponding reflectionless inverse scattering
ransforms.

It is also known that integrable equations can be reduced
nder group reductions of matrix spectral problems (see, e.g., [8]).
he traditional class of such reductions takes the form
†(x, t, λ∗) = (U(x, t, λ∗))† = CU(x, t, λ)C−1, (1.11)

where † stands for the Hermitian transpose, C is a constant
invertible Hermitian matrix and λ∗ is the complex conjugate of
λ. In this condition, the crucial point is to replace the spectral
parameter λ with its complex conjugate, λ∗, and such reductions
ork for both the NLS equations and the mKdV equations. There

s the unusual class of integrable reductions, which works for the
KdV equations. This class of reductions replaces the spectral
arameter λ with its negative, −λ, in matrix spectral problems,
nd takes the form
T T −1
(x, t,−λ) = (U(x, t,−λ)) = −CU(x, t, λ)C , (1.12)

2

where T stands for the transpose of a matrix and C is a constant
invertible symmetric matrix. Such reductions do not work for the
NLS equations. Additionally, it is recognized that the other two
replacements λ → −λ∗ and λ → λ only generate nonlocal inte-
grable reductions, together with the reflection transformations of
x and t: (x, t) → (−x, t), (x, t) → (x,−t) and (x, t) → (−x,−t)
(see, e.g., [9]).

In this paper, we would like to consider two classes of inte-
grable reductions (1.11) and (1.12) simultaneously for the matrix
AKNS spectral problems, to generate Sasa–Satsuma type ma-
trix integrable hierarchies, and to formulate Riemann–Hilbert
problems and inverse scattering transforms for the resulting
reduced matrix integrable equations. We begin with arbitrary-
order matrix AKNS spectral problems. The obtained reflectionless
Riemann–Hilbert problems are applied to construction of soliton
solutions to the corresponding Sasa–Satsuma type matrix inte-
grable hierarchies. The conclusion is given in the last section,
together with a few concluding remarks.

2. Sasa–Satsuma type matrix integrable hierarchies

2.1. The matrix AKNS integrable hierarchies revisited

Let us recall the construction of the integrable hierarchies of
matrix AKNS equations (see, e.g., [10]).

Assume that m, n ≥ 1 are two given integers, p, q are two
matrix potentials:

p = p(x, t) = (pjk)m×n, q = q(x, t) = (qkj)n×m, (2.1)

Is denotes the identity matrix of size s, s ≥ 0, λ is a spectral
parameter, and α1, α2 and β1, β2 are two arbitrary pairs of dis-
tinct real constants. Each of the local matrix AKNS integrable
hierarchies is generated from the matrix AKNS spectral problems
with matrix potentials:

−iφx = Uφ = U(u, λ)φ, −iφt = V [r]φ = V [r](u, λ)φ, r ≥ 0,
(2.2)

where the Lax pair of spectral matrices read

U = λΛ+ P, V [r]
= λrΩ + Q [r], (2.3)

in which Λ and Ω are given by

Λ = diag(α1Im, α2In), Ω = diag(β1Im, β2In), (2.4)

and the other two involved square matrices of size m + n are
defined by

P = P(u) =

[
0 p
q 0

]
, (2.5)

which is called the potential matrix, and

Q [r]
=

r−1∑
s=0

λs
[

a[r−s] b[r−s]

c[r−s] d[r−s]

]
, (2.6)

where a[s], b[s], c[s] and d[s] will be defined recursively later.
It is clear that when m = 1, the matrix spectral problems

in (2.2) reduce to the multicomponent case, and if there are
just a pair of nonzero potentials, pjk and qkj, the matrix spectral
problems in (2.2) become the standard AKNS case [11].

As normal, to compute an associated matrix AKNS integrable
hierarchy, we first solve the stationary zero curvature equation

Wx = i[U,W ], (2.7)

for a given spectral matrix U defined as in (2.3). We look for a
solution W of the form

W =

[
a b

]
, (2.8)
c d
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here a, b, c, d are m × m, m × n, n × m, and n × n matrices, re-
pectively. The stationary zero curvature equation (2.7) precisely
resents

ax = i(pc − bq),
bx = i(αλb + pd − ap),
cx = i(−αλc + qa − dq),
dx = i(qb − cp),

(2.9)

here α = α1 − α2. We take W as a formal Laurent series:

W =

[
a b
c d

]
=

∞∑
s=0

Wsλ
−s,

Ws = Ws(p, q) =

[
a[s] b[s]

c[s] d[s]

]
, s ≥ 0,

(2.10)

and then, the system (2.9) leads equivalently to the following
recursion relations:

b[0]
= 0, c[0]

= 0, a[0]
x = 0, d[0]

x = 0, (2.11a)

[s+1]
=

1
α
(−ib[s]

x − pd[s]
+ a[s]p), s ≥ 0, (2.11b)

[s+1]
=

1
α
(ic[s]

x + qa[s]
− d[s]q), s ≥ 0, (2.11c)

[s]
x = i(pc[s]

− b[s]q), d[s]
x = i(qb[s]

− c[s]p), s ≥ 1. (2.11d)

Let us now take the initial values:
[0]

= β1Im, d[0]
= β2In, (2.12)

hich implies that

[r]
= (λW )+ :=

r∑
s=0

λr−sWs, r ≥ 0; (2.13)

nd zero constants of integration in (2.11d), which means that we
equire

s|p,q=0 = 0, s ≥ 1. (2.14)

n this way, with a[0] and d[0] given by (2.12), one can uniquely de-
ermine all matrices Ws, s ≥ 1, defined recursively. For example,
e can work out that

[1]
=
β

α
p, c[1]

=
β

α
q, a[1]

= 0, d[1]
= 0; (2.15a)

[2]
= −

β

α2 ipx, c[2]
=
β

α2 iqx, a[2]
= −

β

α2 pq, d[2]
=
β

α2 qp;

(2.15b)

b[3]
= −

β

α3 (pxx + 2pqp), c[3]
= −

β

α3 (qxx + 2qpq),

a[3]
= −

β

α3 i(pqx − pxq), d[3]
= −

β

α3 i(qpx − qxp);
(2.15c)

b[4]
=
β

α4 i(pxxx + 3pqpx + 3pxqp),

c[4]
= −

β

α4 i(qxxx + 3qxpq + 3qpqx),

a[4]
=
β

α4 [3(pq)2 + pqxx − pxqx + pxxq],

d[4]
= −

β

α4 [3(qp)2 + qpxx − qxpx + qxxp];

(2.15d)

where β = β1 − β2. Particularly, we can have

Q [1]
=
β

α

[
0 p
q 0

]
=
β

α
P, (2.16)

Q [2]
=
β
λ

[
0 p

]
−
β

2

[
pq ipx

]

α q 0 α −iqx −qp U

3

=
β

α
λP −

β

α2 Im,n(P
2
+ iPx), (2.17)

nd

[3]
=
β

α
λ2

[
0 p
q 0

]
−
β

α2 λ

[
pq ipx

−iqx −qp

]
−
β

α3

[
i(pqx − pxq) pxx + 2pqp
qxx + 2qpq i(qpx − qxp)

]
=
β

α
λ2P −

β

α2 λIm,n(P
2
+ iPx)

−
β

α3 (i[P, Px] + Pxx + 2P3), . (2.18)

n which Im,n = diag(Im,−In). Using (2.11d), we can derive, from
2.11b) and (2.11c), a recursion relation for determining b[s] and
[s]:

c[s+1]

b[s+1]

]
= Ψ

[
c[s]

b[s]

]
, s ≥ 1, (2.19)

where Ψ is a matrix operator

Ψ =
i
α

[
∂x + q∂−1

x (p ·) + [∂−1
x (· p)]q −q∂−1

x (· q) − [∂−1
x (q ·)]q

p∂−1
x (· p) + [∂−1

x (p ·)]p −∂x − p∂−1
x (q ·) − [∂−1

x (· q)]p

]
.

(2.20)

The compatibility conditions of the two matrix spectral prob-
lems in (2.2), i.e., the zero curvature equations

Ut − V [r]
x + i[U, V [r]

] = 0, r ≥ 0, (2.21)

yield one so-called matrix AKNS integrable hierarchy:

pt = iαb[r+1], qt = −iαc[r+1], r ≥ 0. (2.22)

The first two nonlinear integrable equations in the hierarchy give
us the AKNS matrix NLS equations:

pt = −
β

α2 i(pxx + 2pqp), qt =
β

α2 i(qxx + 2qpq), (2.23)

nd the AKNS matrix mKdV equations:

t = −
β

α3 (pxxx+3pqpx+3pxqp), qt = −
β

α3 (qxxx+3qxpq+3qpqx),

(2.24)

here the two matrix potentials, p and q, are defined by (2.1).
When m = 1 and n = 2, the matrix NLS equations (2.23) can

e reduced to the Manakov system [12], under a group reduction
f type (1.11).
By a Lax operator algebra theory and the trace identity [13],

e can directly show that (2.22) defines a hierarchy of commut-
ng flows, each of which possesses a bi-Hamiltonian structure and
hus infinitely many commuting conservation laws.

.2. Sasa–Satsuma type matrix integrable equations

Let us now construct a kind of Sasa–Satsuma type integrable
eductions of the general integrable matrix AKNS equations in
2.22).

We take a pair of constant invertible Hermitian matrices
1,Σ2 and another pair of constant invertible symmetric ma-

rices ∆1,∆2, and introduce two particular reductions for the
pectral matrix U defined as in (2.3):
†(x, t, λ∗) = (U(x, t, λ∗))† = ΣU(x, t, λ)Σ−1, (2.25)

nd
T (x, t,−λ) = (U(x, t,−λ))T = −∆U(x, t, λ)∆−1, (2.26)



W.X. Ma Physica D 446 (2023) 133672

w
l

Σ

a

∆

T

P

a

P

w

q

a

q

r
f
m

Σ

g{
w{

a{

w
i
∆

m
p
s
m
t
1

e
m

w

S
e

here Σ,∆ are two constant invertible matrices formed as fol-
ows:

=

[
Σ1 0
0 Σ2

]
, Σ

†
j = Σj, j = 1, 2, (2.27)

nd

=

[
∆1 0
0 ∆2

]
, ∆T

j = ∆j, j = 1, 2. (2.28)

hese two group reductions exactly demand
†(x, t) = ΣP(x, t)Σ−1, (2.29)

nd
T (x, t) = −∆P(x, t)∆−1, (2.30)

hich enable us to make the reductions for the matrix potentials:

(x, t) = Σ−1
2 p†(x, t)Σ1, (2.31)

nd

(x, t) = −∆−1
2 pT (x, t)∆1, (2.32)

espectively. It then follows that to satisfy both group reductions
or the spectral matrix U , we need an additional constraint for the
atrix potential p:
−1
2 p†(x, t)Σ1 = −∆−1

2 pT (x, t)∆1. (2.33)

Moreover, we notice that the reductions in (2.25) and (2.26)
uarantee that

W †(x, t, λ∗) = (W (x, t, λ∗))† = ΣW (x, t, λ)Σ−1,

W T (x, t,−λ) = (W (x, t,−λ))T = ∆W (x, t, λ)∆−1,
(2.34)

hich implies that

V [2s+1]†(x, t, λ∗) = (V [2s+1](x, t, λ∗))† = ΣV [2s+1](x, t, λ)Σ−1,

V [2s+1]T (x, t,−λ) = (V [2s+1](x, t,−λ))T = −∆V [2s+1](x, t, λ)∆−1,

(2.35)

nd

Q [2s+1]†(x, t, λ∗) = (Q [2s+1](x, t, λ∗))† = ΣQ [2s+1](x, t, λ)Σ−1,

Q [2s+1]T (x, t,−λ) = (Q [2s+1](x, t,−λ))T = −∆Q [2s+1](x, t, λ)∆−1,

(2.36)

where s ≥ 0, V [2s+1] is defined as in (2.3) and Q [2s+1] is defined
by (2.6).

Therefore, under the reductions (2.31) and (2.32), the inte-
grable matrix AKNS equations in (2.22) with r = 2s + 1, s ≥ 0,
reduce to a hierarchy of Sasa–Satsuma type integrable matrix
AKNS equations of odd order:

pt = iαb[2s+2]
|q=Σ−1

2 p†Σ1=−∆
−1
2 pT∆1

, s ≥ 0, (2.37)

here p = (pjl)m×n satisfies (2.33), Σ1,Σ2 are two arbitrary
nvertible Hermitian matrices of sizes m and n, respectively, and
1,∆2 are two arbitrary invertible symmetric matrices of sizes
and n, respectively. Each equation in the hierarchy (2.37)

ossesses a Lax pair of the reduced spatial and temporal matrix
pectral problems in (2.2) with r = 2s + 1, s ≥ 0, and infinitely
any symmetries and conservation laws reduced from those for

he integrable matrix AKNS equations in (2.22) with r = 2s +

, s ≥ 0.
Let us fix s = 1, i.e., r = 3. Then the reduced matrix integrable

quation in (2.37) gives the Sasa–Satsuma type integrable matrix
KdV equation:

pt = −
β

(pxxx + 3pΣ−1p†Σ1px + 3pxΣ−1p†Σ1p)

α3 2 2

4

= −
β

α3 (pxxx − 3p∆−1
2 pT∆1px − 3px∆−1

2 pT∆1p), (2.38)

here p is an m × n matrix potential satisfying (2.33).
In what follows, let us present a few examples of these Sasa–

atsuma type integrable matrix mKdV equations, by taking differ-
nt values for m, n and different choices for Σ,∆. If we consider

m = 1 and n = 2, and take

Σ1 = 1, Σ−1
2 =

[
σ 0
0 σ

]
, ∆1 = 1, ∆−1

2 =

[
0 δ

δ 0

]
,

(2.39)

where σ and δ are real constants and satisfy σ 2
= δ2 = 1. Then

the potential constraint (2.33) tells

p2 = −σδp∗

1, (2.40)

and so the corresponding potential matrix P reads

P =

⎡⎣ 0 p1 −σδp∗

1
σp∗

1 0 0
−δp1 0 0

⎤⎦ . (2.41)

Then, the corresponding Sasa–Satsuma type integrable mKdV
equations become

p1,t = −
β

α3 [p1,xxx + 6σ |p1|2p1,x + 3σp1(|p1|2)x], (2.42)

where σ = ±1 and |z| denotes the absolute value of z. The case
of σ = 1 exactly gives rise to the Sasa–Satsuma mKdV equation
studied in [14], whose dark solitons were presented in [15]. A
similar deduction with

Σ1 = 1, Σ−1
2 =

[
0 σ

σ 0

]
, ∆1 = 1, ∆−1

2 =

[
δ 0
0 δ

]
,

(2.43)

where σ and δ are real constants and satisfy σ 2
= δ2 = 1, yields

another pair of novel scalar integrable mKdV equations:

p1,t = −
β

α3 [p1,xxx − 6δp21p1,x − 3δp∗

1(|p1|
2)x], (2.44)

where δ = ±1.
If we consider m = 1 and n = 4, and take

Σ1 = 1, Σ−1
2 =

⎡⎢⎣ σ1 0 0 0
0 σ1 0 0
0 0 σ2 0
0 0 0 σ2

⎤⎥⎦ ,

∆1 = 1, ∆−1
2 =

⎡⎢⎣ 0 δ1 0 0
δ1 0 0 0
0 0 0 δ2
0 0 δ2 0

⎤⎥⎦ ,
(2.45)

where σj and δj are real constants and satisfy σ 2
j = δ2j = 1, j =

1, 2. Then the potential constraint (2.33) generates

p2 = −σ1δ1p∗

1, p4 = −σ2δ2p∗

3, (2.46)

and so the corresponding potential matrix P reads

P =

⎡⎢⎢⎢⎢⎣
0 p1 −σ1δ1p∗

1 p3 −σ2δ2p∗

3
σ1p∗

1 0 0 0 0
−δ1p1 0 0 0 0
σ2p∗

3 0 0 0 0

⎤⎥⎥⎥⎥⎦ . (2.47)
−δ2p3 0 0 0 0
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his enables us to obtain a class of two-component Sasa–Satsuma
ype integrable mKdV equations:

p1,t = −
β

α3 [p1,xxx + 6(σ1|p1|2 + σ2|p3|2)p1,x
+3(σ1|p1|2 + σ2|p3|2)xp1],

p3,t = −
β

α3 [p3,xxx + 6(σ1|p1|2 + σ2|p3|2)p3,x
+3(σ1|p1|2 + σ2|p3|2)xp3],

(2.48)

where σj are real constants and satisfy σ 2
j = 1, j = 1, 2. The

long-time asymptotics of the equation with σj = 1, j = 1, 2,
has been investigated by the nonlinear steepest descent method
in [16,17].

In a similar manner, we can obtain a class of N-component
Sasa–Satsuma type integrable mKdV equations. The three-
component ones read⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1,t = −
β

α3 [p1,xxx + 6(σ1|p1|2 + σ2|p3|2 + σ3|p5|2)p1,x
+3(σ1|p1|2 + σ2|p3|2 + σ3|p5|2)xp1],

p3,t = −
β

α3 [p3,xxx + 6(σ1|p1|2 + σ2|p3|2 + σ3|p5|2)p3,x
+3(σ1|p1|2 + σ2|p3|2 + σ3|p5|2)xp3],

p5,t = −
β

α3 [p5,xxx + 6(σ1|p1|2 + σ2|p3|2 + σ3|p5|2)p5,x
+3(σ1|p1|2 + σ2|p3|2 + σ3|p5|2)xp5],

(2.49)

here σj are real constants and satisfy σ 2
j = 1, j = 1, 2, 3.

This equation with σj = 1, j = 1, 2, 3, has been studied by the
iemann–Hilbert method in [18].

. Riemann–Hilbert problems

.1. Properties of eigenvalues and eigenfunctions

Note that the reduction in (2.25) (or (2.26)) guarantees that
is an eigenvalue of the matrix spectral problems in (2.2) if and
nly if λ̂ = λ∗ (or λ̂ = −λ) is an adjoint eigenvalue, i.e., it satisfies
he adjoint matrix spectral problems:

φ̃x = φ̃U = φ̃U(u, λ̂), iφ̃t = φ̃V [r]
= φ̃V [r](u, λ̂), (3.1)

here r = 2s + 1, s ≥ 0. Accordingly, we can assume to
ave eigenvalues λ : µ, −µ∗, iν, and adjoint eigenvalues λ∗

:
∗, −µ, −iν (or −λ : −µ, µ∗, −iν), where µ ̸∈ iR and ν ∈ R.
Suppose that all the potentials sufficiently rapidly vanish when

→ ±∞ or t → ±∞. For the matrix spectral problems in (2.2)
ith r = 2s + 1, s ≥ 0, we can impose the asymptotic behavior:
∼ eiλΛx+iλ2s+1Ωt , when x, t → ±∞. Therefore, if we take the

ransformation

= ψEg , Eg = eiλΛx+iλ2s+1Ωt , (3.2)

hen we can achieve the canonical asymptotic conditions: ψ →

m+n, when x, t → ∞ or − ∞. The equivalent pair of matrix
pectral problems to (2.2) with r = 2s + 1, s ≥ 0, reads

x = iλ[Λ, ψ] + P̌ψ, P̌ = iP, (3.3)

t = iλ2s+1
[Ω, ψ] + Q̌ [2s+1]ψ, Q̌ [2s+1]

= iQ [2s+1]. (3.4)

pplying a generalized Liouville’s formula [19], we can get

etψ = 1, (3.5)

ince (detψ) = 0 due to tr P̌ = tr Q̌ [2s+1]
= 0.
x

5

Recall that the adjoint equation of the x-part of (2.2) and the
djoint equation of (3.3) read

φ̃x = φ̃U, (3.6)

nd

ψ̃x = λ[ψ̃,Λ] + ψ̃P, (3.7)

espectively. Obviously, there exist the links: φ̃ = φ−1 and
˜ = ψ−1, and each pair of adjoint matrix spectral problems and
quivalent adjoint matrix spectral problems do not create any
dditional condition.
Let ψ(λ) be a matrix eigenfunction of the spatial spectral

roblem (3.3) associated with an eigenvalue λ. Then Σψ−1(λ)
nd ∆ψ−1(λ) are two matrix adjoint eigenfunctions associated
ith the same eigenvalue λ. Under the group reduction in (2.25),
e have
i[ψ†(λ∗)Σ]x = i[(ψx)†(λ∗)Σ]

= i{(−i)λ[ψ†(λ∗),Λ] + (−i)ψ†(λ∗)P†(−x, t)}Σ
= λ[ψ†(λ∗),Λ]Σ + ψ†(λ∗)Σ[Σ−1P†Σ]

= λ[ψ†(λ∗)Σ,Λ] + ψ†(λ∗)ΣP .

his implies that the matrix

˜ (λ) := ψ†(λ∗)Σ, (3.8)

resents another matrix adjoint eigenfunction associated with
he same original eigenvalue λ. That is to say that ψ†(λ∗)Σ
olves the adjoint spectral problem (3.7). Thus, upon observing
he asymptotic conditions for the matrix eigenfunction ψ , we see
hat by the uniqueness of solutions, ψ(λ) satisfies
†(λ∗) = Σψ−1(λ)Σ−1, (3.9)

hen ψ → Im+n, x or t → ∞ or − ∞.
Similarly, based on the group reduction in (2.26), we can find

hat

˜ (λ) = ψT (−λ)∆ (3.10)

ives a new matrix adjoint eigenfunction associated with λ and
atisfies
T (−λ) = ∆ψ−1(λ)∆−1. (3.11)

.2. Riemann–Hilbert problems

Let us now start to formulate a class of associated Riemann–
ilbert problems with the variable x. In order to describe the
roblems explicitly, let us make the assumptions:

= α1 − α2 < 0, β = β1 − β2 < 0. (3.12)

n the scattering problem, we first take the two matrix eigenfunc-
ions ψ±(x, λ) of (3.3) with the asymptotic conditions:
±

→ Im+n, when x → ±∞, (3.13)

espectively. Then from (3.5), it follows that detψ±
= 1 for all

∈ R. Since
±

= ψ±E, E = eiλΛx, (3.14)

re both matrix eigenfunctions of the x-part of (2.2), they must
e linearly dependent, and consequently, we have
−E = ψ+ES(λ), λ ∈ R, (3.15)

here S(λ) is the so-called scattering matrix. Note that det S(λ) =

, because of detψ±
= 1.

As normal, by the method of variation in parameters, we can
ransform the x-part of (2.2) into the following Volterra integral
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quations for ψ± [7]:

±(λ, x) = Im+n −

∫
±∞

x
eiλΛ(x−y)P̌(y)ψ±(λ, y)eiλΛ(y−x) dy, (3.16)

where the asymptotic conditions (3.13) have been applied. Now,
by the Neumann series [20] in the theory of Volterra integral
equations, we can show that the eigenfunctions ψ± exist and
allow analytic continuations off the real axis λ ∈ R as long as
the integrals on their right hand sides converge (see, e.g., [21]).
From the diagonal form of Λ and the first assumption in (3.12),
we can prove that the integral equation for the first m columns of
ψ− contains only the exponential factor e−iαλ(x−y), which decays
because of y < x in the integral, while λ takes values in the upper
half-plane C+, and the integral equation for the last n columns
of ψ+ contains only the exponential factor eiαλ(x−y), which also
decays because of y > x in the integral, while λ takes values in the
upper half-plane C+. As a consequence, we know that these m+n
columns are analytic in the upper half-plane C+ and continuous
in the closed upper half-plane C̄+. In a similar manner, we can see
that the last n columns of ψ− and the first m columns of ψ+ are
analytic in the lower half-plane C− and continuous in the closed
lower half-plane C̄−.

In what follows, we show how to prove the above statements.
Let us express

ψ±
= (ψ±

1 , ψ
±

2 , . . . , ψ
±

m+n), (3.17)

that is, ψ±

j denotes the jth column of φ± (1 ≤ j ≤ m + n). We
would like to prove that ψ−

j , 1 ≤ j ≤ m, and ψ+

j , m + 1 ≤ j ≤

+n, are analytic at λ ∈ C+ and continuous at λ ∈ C̄+; and ψ+

j ,
≤ j ≤ m, and ψ−

j , m + 1 ≤ j ≤ m + n, are analytic at λ ∈ C−

and continuous at λ ∈ C̄−. Below, we only to prove the result for
ψ+

j , 1 ≤ j ≤ m, and the proofs for the other eigenfunctions follow
analogously.

From the Volterra integral equation (3.16), we see that

ψ+

j (λ, x) = ej −
∫

∞

x
R1(λ, x, y)ψ+

j (λ, y) dy, 1 ≤ j ≤ m, (3.18)

and

ψ+

j (λ, x) = ej −
∫

∞

x
R2(λ, x, y)ψ+

j (λ, y) dy, m + 1 ≤ j ≤ m + n,

(3.19)

where ej, 1 ≤ j ≤ m + n, are standard basis vectors of Rm+n and
the matrices R1 and R2 are given by

R1(λ, x, y) = i
[

0 p(y)
e−iαλ(x−y)q(y) 0

]
,

R2(λ, x, y) = i
[

0 eiαλ(x−y)p(y)
q(y) 0

]
.

Let us prove that for each 1 ≤ j ≤ m, the solution to (3.18) is
determined by the Neumann series
∞∑
k=0

φ+

j,k(λ, x), (3.20)

where

φ+

j,0(λ, x) = ej, φ+

j,k+1(λ, x) = −

∫
∞

x
R1(λ, x, y)φ+

j,k(λ, y) dy, k ≥ 1.

(3.21)

This will be true if we can prove that the Neumann series con-
¯ −
verges uniformly for x ∈ R and λ ∈ C . Based on (3.21), an

6

application of the mathematical induction yields

|φ+

j,k(λ, x)| ≤
1
k!

(∫
∞

x
∥P(y)∥dy

)k
, 1 ≤ j ≤ m, k ≥ 0,

for x ∈ R and λ ∈ C̄−, where | · | denotes the Euclidean norm
for vectors and ∥ · ∥ stands for the Frobenius norm for square
matrices. By the Weierstrass M-test, this estimation guarantees
that

φ+

j (λ, x) =

∞∑
k=0

φ+

j,k(λ, x), 1 ≤ j ≤ m, (3.22)

uniformly converges for λ ∈ C̄− and x ∈ R, and all φ+

j (λ, x),
1 ≤ j ≤ m, are continuous with respect to λ in C̄−, since so are
all φ+

j,k(λ, x), 1 ≤ j ≤ m, k ≥ 0.
We now consider the differentiability of φ+

j (λ, x), 1 ≤ j ≤ m,
with respect to λ in C− (similarly, we can prove the differentiabil-
ity with respect to x in R). Fix an integer 1 ≤ j ≤ m and a complex
number µ in C−. Choose a disk Bρ(µ) = {λ ∈ C | |λ− µ| ≤ ρ}

with a radius ρ > 0 such that Bρ(µ) ⊆ C−, and then we can have
a constant C(ρ) > 0 such that |αxe−iαλx

| ≤ C(ρ) for λ ∈ Bρ(µ)
and x ≤ 0. We define the following Neumann series
∞

k=0

φ+

j,λ,k(λ, x) (3.23)

here φ+

j,λ,0 = 0 and φ+

j,λ,k = 0, k ≥ 1, are defined recursively by

φ+

j,λ,k+1(λ, x) = −

∫
∞

x
R1,λ(λ, x, y)φ+

j,k(λ, y) dy

−

∫
∞

x
R1(λ, x, y)φ+

j,λ,k(λ, y) dy, k ≥ 0, (3.24)

ith φ+

j,k, k ≥ 0, being defined by (3.21) and R1,λ being given by

1,λ(λ, x, y) =
∂

∂λ
R1(λ, x, y) =

[
0 0

α(x − y)e−iαλ(x−y)q(y) 0

]
.

We can easily verify by the mathematical induction that

|φ+

j,λ,k(λ, x)| ≤
1
k!

{[
C(ρ) + 1

] ∫
∞

x
∥P(y)∥dy

}k
, k ≥ 0,

for x ∈ R and λ ∈ Bρ(µ). Therefore, by the Weierstrass M-test,
he Neumann series defined by (3.23) converges uniformly for
∈ R and λ ∈ Bρ(µ), and by the term-by-term differentiability

heorem, it converges to the derivative of φ+

j with respect to λ,
ince ψ+

j,λ,k =
∂
∂λ
φ+

j,k, k ≥ 0. It follows that φ+

j is analytic at any
point λ ∈ Bρ(µ), and thus, particularly at the point µ. This tells
hat all φ+

j , 1 ≤ j ≤ m, are analytic with respect to λ in C−. The
equired proof is finished.

Now, based on these analyses, we can then define the gener-
lized matrix Jost solution T+ as follows:
+

= T+(x, λ) = (ψ−

1 , . . . , ψ
−

m , ψ
+

m+1, . . . , ψ
+

m+n)

= ψ−H1 + ψ+H2, (3.25)

here

1 = diag(Im, 0, . . . , 0  
n

), H2 = diag(0, . . . , 0  
m

, In ), (3.26)

nd know that T+ is analytic with respect to λ in C+ and con-
inuous with respect to λ in C̄+. The generalized matrix Jost
olution

ψ+

1 , . . . , ψ
+

m , ψ
−

m+1, . . . , ψ
−

m+n) = ψ+H1 + ψ−H2

is analytic with respect to λ in C− and continuous with respect
to λ in C̄−.
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To construct the other generalized matrix Jost solution T−,
e adopt the analytic counterpart of T+ in the lower half-plane
−, which can be generated from the adjoint counterparts of the
atrix spectral problems. Note that the inverse matrices φ̃±

=

φ±)−1 and ψ̃±
= (ψ±)−1 solve those two adjoint equations,

espectively. Thus, upon expressing ψ̃± as

ψ̃±
=

⎡⎢⎢⎢⎣
ψ̃±,1

ψ̃±,2

...

ψ̃±,m+n

⎤⎥⎥⎥⎦ , (3.27)

that is, ψ̃±,j denotes the jth row of ψ̃± (1 ≤ j ≤ m + n), we can
rove by similar arguments that we can define the generalized
atrix Jost solution T− as the adjoint matrix solution of (3.7), i.e.,

−
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ̃−,1

...

ψ̃−,m

ψ̃+,m+1

...

ψ̃+,m+n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= H1ψ̃

−
+ H2ψ̃

+
= H1(ψ−)−1

+ H2(ψ+)−1,

(3.28)

which is analytic with respect to λ in C− and continuous with
espect to λ in C̄−. The other generalized matrix Jost solution of
3.7),

ψ̃+,1

...

ψ̃+,m

ψ̃−,m+1

...

ψ̃−,m+n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= H1ψ̃

+
+ H2ψ̃

−
= H1(ψ+)−1

+ H2(ψ−)−1,

is analytic with respect to λ in C+ and continuous with respect
to λ in C̄+.

Further, directly from detψ±
= 1 and using the scattering

relation (3.15) between ψ+ and ψ−, we can have⎧⎪⎪⎨⎪⎪⎩
limx→∞ T+(x, λ) =

[
S11(λ) 0

0 In

]
, λ ∈ C̄+,

limx→−∞ T−(x, λ) =

[
Ŝ11(λ) 0

0 In

]
, λ ∈ C̄−,

(3.29)

and

det T+(x, λ) = det S11(λ), det T−(x, λ) = det Ŝ11(λ), (3.30)

where we split S(λ) and S−1(λ) as follows:

S(λ) =

[
S11(λ) S12(λ)
S21(λ) S22(λ)

]
,

S−1(λ) = (S(λ))−1
=

[
Ŝ11(λ) Ŝ12(λ)
Ŝ21(λ) Ŝ22(λ)

]
.

(3.31)

From (3.29), we know that S11, Ŝ11 are m × m matrices; and so,
S12, Ŝ12 are m × n matrices, S21, Ŝ21 are n × m matrices, and
S22, Ŝ22 are n × n matrices, because S(λ) is a square matrix of
size m + n. Based on the uniform convergence of the previous
Neumann series, we know that S11(λ) and Ŝ11(λ) are analytic in

+ and C−, respectively.
7

Now, we can define the following two unimodular generalized
matrix Jost solutions:⎧⎪⎪⎨⎪⎪⎩

G+(x, λ) = T+(x, λ)
[

S−1
11 (λ) 0
0 In

]
, λ ∈ C̄+

;

(G−)−1(x, λ) =

[
Ŝ−1
11 (λ) 0
0 In

]
T−(x, λ), λ ∈ C̄−.

(3.32)

These two generalized matrix Jost solutions enable us to establish
the required matrix Riemann–Hilbert problems on the real line
for the Sasa–Satsuma type matrix integrable equations (2.37):

G+(x, λ) = G−(x, λ)G0(x, λ), λ ∈ R, (3.33)

where, by (3.15), the jump matrix G0 reads

G0(x, λ) = E
[

Ŝ−1
11 (λ) 0
0 In

]
S̃(λ)

[
S−1
11 (λ) 0
0 In

]
E−1. (3.34)

The matrix S̃(λ) has the following factorization:

S̃(λ) = (H1 + H2S(λ))(H1 + S−1(λ)H2), (3.35)

which can be shown to be

S̃(λ) =

[
Im Ŝ12
S21 In

]
. (3.36)

Note that for the presented Riemann–Hilbert problems, the
canonical normalization conditions:

G±(x, λ) → Im+n, when λ ∈ C̄±
→ ∞, (3.37)

are consequences of the Volterra integral equations in (3.16). Also,
from the properties in (3.9) and (3.11), we can have

(G+)†(λ∗) = Σ(G−)−1(λ)Σ−1, (3.38)

and

(G+)T (−λ) = ∆(G−)−1(λ)∆−1. (3.39)

Therefore, the jump matrix G0 satisfies the following involution
properties:

G†
0(λ

∗) = ΣG0(λ)Σ−1, GT
0(−λ) = ∆G0(λ)∆−1, λ ∈ R. (3.40)

3.3. Evolution of the scattering data

In order to complete the direct scattering transforms, we take
the derivative of (3.15) with time t and use the temporal matrix
spectral problems:

ψ±

t = iλ2s+1
[Ω, ψ±

] + iQ [2s+1]ψ±, (3.41)

where s ≥ 0 is fixed. It then follows that the scattering matrix S
satisfies the following evolution law:

St = iλ2s+1
[Ω, S]. (3.42)

This yields the time evolution of the time-dependent scattering
coefficients:

S12 = S12(t, λ) = S12(0, λ) eiβλ
2s+1t ,

S21 = S21(t, λ) = S21(0, λ) e−iβλ2s+1t ,

(3.43)

and all other scattering coefficients are independent of time t .

3.4. Gelfand–Levitan–Marchenko type equations

To obtain Gelfand-Levitan-Marchenko type integral equations
to determine the generalized matrix Jost solutions, we trans-

form the associated Riemann–Hilbert problems in (3.33) into the
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ollowing problems:

G+
− G−

= G−v, v = G0 − Im+n, on R,
G±

→ Im+n as λ ∈ C̄±
→ ∞,

(3.44)

where each jump matrix G0 is defined by (3.34) and (3.36).
Let G(λ) = G±(λ) for λ ∈ C±. Suppose that G has simple

oles off R: {ξj}
R
j=1, to avoid the spectral singularity, where R is

an arbitrary natural number. Introduce

G̃±(λ) = G±(λ) −

R∑
j=1

Gj

λ− ξj
, λ ∈ C̄±

; G̃(λ) = G̃±(λ), λ ∈ C±,

(3.45)

here Gj is the residue of G at λ = ξj, i.e.,

j = res(G(λ), ξj) = lim
λ→ξj

(λ− ξj)G(λ). (3.46)

Obviously, we have{
G̃+

− G̃−
= G+

− G−
= G−v, on R,

G̃±
→ Im+n as λ ∈ C̄±

→ ∞.
(3.47)

Then by applying the Sokhotski–Plemelj formula [22], we obtain
the solution of each problem in (3.47):

G̃(λ) = Im+n +
1

2π i

∫
∞

−∞

(G−v)(ξ )
ξ − λ

dξ . (3.48)

Taking the limit as λ → ξl generates

LHS = lim
λ→ξl

G̃ = Fl −
R∑
j̸=l

Gj

ξl − ξj
,

RHS = Im+n +
1

2π i

∫
∞

−∞

(G−v)(ξ )
ξ − ξl

dξ,

(3.49)

here

l = lim
λ→ξl

(λ− ξl)G(λ) − Gl

λ− ξl
, 1 ≤ l ≤ R, (3.50)

and accordingly, we obtain

Im+n − Fl +
R∑
j̸=l

Gj

ξl − ξj
+

1
2π i

∫
∞

−∞

(G−v)(ξ )
ξ − ξl

dξ = 0, 1 ≤ l ≤ R,

(3.51)

which define the required Gelfand-Levitan-Marchenko type inte-
gral equations.

All these integral equations are used to determine solutions
to the associated Riemann–Hilbert problems and thus the gen-
eralized matrix Jost solutions. Yet, little is known regarding the
existence and uniqueness of solutions. In the reflectionless case,
a generalized formulation of solutions, where eigenvalues could
equal adjoint eigenvalues, will be presented for the Sasa–Satsuma
type matrix integrable equations in the following section.

3.5. Recovery of the potential

To recover the potential matrix P from the generalized matrix
Jost solutions, we make an asymptotic expansion

G+(x, t, λ) = Im+n +
1
λ
G+

1 (x, t) + O(
1
λ2

), λ → ∞. (3.52)

hen, inserting the above asymptotic expansion into the matrix
pectral problem (3.3) and comparing constant terms yields

= lim λ[G+(λ),Λ] = −[Λ,G+
]. (3.53)
λ→∞
1

8

hus, the potential matrix reads

=

[
0 −αG+

1,12

αG+

1,21 0

]
, (3.54)

where we have similarly partitioned the matrix G+

1 into four
locks as follows:

+

1 =

[
G+

1,11 G+

1,12
G+

1,21 G+

1,22

]
=

[
(G+

1,11)n×n (G+

1,12)n×m

(G+

1,21)m×n (G+

1,22)m×m

]
. (3.55)

Consequently, the solutions to the matrix AKNS equations (2.22)
read

p = −αG+

1,12, q = αG+

1,21. (3.56)

When the reduction conditions in (2.29) and (2.30) are satisfied,
the reduced matrix potential p solves the Sasa–Satsuma type
matrix integrable equations (2.37).

To conclude, this provides an inverse scattering procedure
for computing solutions to the Sasa–Satsuma type matrix inte-
grable equations (2.37), from the scattering matrix S(λ), through
the jump matrix G0(λ) and the solution {G+(λ),G−(λ)} of the
associated Riemann–Hilbert problems, to the potential matrix P .

4. Soliton solutions

4.1. General formulation

Let N ≥ 1 be another given integer. Assume that detS11(λ)
has N zeros {λ ∈ C, 1 ≤ k ≤ N} and detŜ11(λ) has N zeros
{λ̂ ∈ C, 1 ≤ k ≤ N}.

In order to compute soliton solutions explicitly, we addition-
ally assume that all these zeros, λk and λ̂k, 1 ≤ k ≤ N , are
geometrically simple. Thus, we know that each of ker T+(λk),
1 ≤ k ≤ N , contains only a single basis column vector, which
we denote by vk, 1 ≤ k ≤ N; and each of ker T−(λ̂k), 1 ≤ k ≤ N ,
a single basis row vector, which we denote by v̂k, 1 ≤ k ≤ N .
Therefore, we have

T+(λk)vk = 0, v̂kT−(λ̂k) = 0, 1 ≤ k ≤ N. (4.1)

Soliton solutions are associated with the situation where G0 =

Im+n is taken in each Riemann–Hilbert problem in (3.33). Such
a situation can be met if we take that S21 = Ŝ12 = 0, which
means that all the reflection coefficients are taken as zero in the
scattering problem.

This kind of special Riemann–Hilbert problems with the canon-
ical normalization conditions in (3.37) and the zero structures
given in (4.1) can be solved explicitly [7,23], in the case of

{λk|1 ≤ k ≤ N} ∩ {λ̂k|1 ≤ k ≤ N} = Ø, (4.2)

and therefore, we can present the potential matrix P exactly,
which generates soliton solutions. Also, without the condition
(4.2), the solutions to the special Riemann–Hilbert problem with
the identity jump matrix have been given recently as follows (see,
e.g., [24]):

G+(λ) = Im+n −

N∑
k,l=1

vk(M−1)klv̂l
λ− λ̂l

,

(G−)−1(λ) = Im+n +

N∑
k,l=1

vk(M−1)klv̂l
λ− λk

,

(4.3)

where M = (mkl)N×N is a square matrix with its entries deter-
mined by

mkl =

⎧⎨⎩
v̂kvl

λl − λ̂k
, if λl ̸= λ̂k,

ˆ

1 ≤ k, l ≤ N, (4.4)

0, if λl = λk,
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nd we require an orthogonal condition

ˆkvl = 0, if λl = λ̂k, 1 ≤ k, l ≤ N, (4.5)

o ensure that G+(λ) and G−(λ) solve the corresponding reflec-
ionless Riemann–Hilbert problem:

G−)−1(λ)G+(λ) = Im+n. (4.6)

Note that the zeros λk and λ̂k are constants, i.e., space and time
ndependent, and thus, we can readily determine the spatial and
emporal evolutions for the vectors, vk(x, t) and v̂k(x, t), 1 ≤ k ≤

N , in the kernels. For example, let us compute the x-derivative of
both sides of the first set of equations in (4.1). Applying (3.3) first
and then again the first set of equations in (4.1), we obtain

T+(x, λk)
(dvk

dx
− iλkΛvk

)
= 0, 1 ≤ k ≤ N.

onsequently, for each 1 ≤ k ≤ N , dvk
dx − iλkΛvk is in the kernel

f T+(x, λk), and hence, a constant multiple of vk, because λk is
eometrically simple. Without loss of generality, we can simply
ssume
dvk
dx

= iλkΛvk, 1 ≤ k ≤ N. (4.7)

he time dependence of vk:

dvk
dt

= iλ2s+1
k Ωvk, 1 ≤ k ≤ N, (4.8)

an be obtained similarly via applying the t-part of the associated
atrix spectral problem, i.e., (3.4). As a consequence of these
ifferential equations, we get

k(x, t) = eiλkΛx+iλ2s+1
k Ωtwk, 1 ≤ k ≤ N, (4.9)

nd completely similarly, we can obtain

ˆk(x, t) = ŵke−iλ̂kΛx−iλ̂2s+1
k Ωt , 1 ≤ k ≤ N, (4.10)

here wk and ŵk, 1 ≤ k ≤ N , are constant column and row
ectors, respectively, but need to satisfy an orthogonal condition:

ˆ kwl = 0, if λl = λ̂k, 1 ≤ k, l ≤ N, (4.11)

n consequence of (4.5).
Now, from the solutions in (4.3), we obtain

+

1 = −

N∑
k,l=1

vk(M−1)klv̂l, (4.12)

nd further, the presentations in (3.56) give the following N-
oliton solution to the matrix AKNS equations (2.22):

= α

N∑
k,l=1

v1k (M
−1)klv̂2l , q = −α

N∑
k,l=1

v2k (M
−1)klv̂1l . (4.13)

ere for each 1 ≤ k ≤ N , we split vk = ((v1k )
T , (v2k )

T )T and v̂k =

v̂1k , v̂
2
k ), where v1k and v̂1k are m-dimensional column and row

ectors, respectively, and v2k and v̂2k are n-dimensional column
nd row vectors, respectively.
To present N-soliton solutions for the Sasa–Satsuma type ma-

rix integrable equations (2.37), we need to check if G+

1 defined
y (4.12) satisfies the involution properties:

G+

1 )
†

= ΣG+

1 Σ
−1, (G+

1 )
T

= ∆G+

1 ∆
−1. (4.14)

hese mean that the potential matrix P determined by (3.54)
atisfies the reduction conditions in (2.29) and (2.30). In this way,
he N-soliton solution to the matrix AKNS equations (2.22) is
9

educed to the N-soliton solution:

= α

N∑
k,l=1

v1k (M
−1)klv̂2l , (4.15)

o the Sasa–Satsuma type matrix integrable equations (2.37).

.2. Realization

Let us now check how to realize the involution properties in
4.14).

Let N1,N2 ≥ 0 be a pair of integers such that N := 2N1 +N2 ≥

1. First, we take N distinct zeros of det T+(λ) (or eigenvalues of
the spectral problems under the zero potential):

{λk | 1 ≤ k ≤ N} = {µk, −µ∗

k, 1 ≤ k ≤ N1; iνk, 1 ≤ k ≤ N2}

(4.16)

nd N zeros of det T−(λ) (eigenvalues of the adjoint spectral
roblems under the zero potential):

λ̂k | 1 ≤ k ≤ N} = {µ∗

k, −µk, 1 ≤ k ≤ N1; −iνk, 1 ≤ k ≤ N2},

(4.17)

where µk ̸∈ iR and νk ∈ R, It is easy to see that ker T+(λk),
1 ≤ k ≤ N , are spanned by

vk = vk(x, t, λk) = eiλkΛx+iλ2s+1
k Ωtwk, 1 ≤ k ≤ N, (4.18)

respectively, where wk, 1 ≤ k ≤ N , are constant column vectors.
These column vectors in (4.18) are eigenfunctions of the spectral
problems under the zero potential associated with λk, 1 ≤ k ≤

N . Furthermore, following the previous analysis in Section 3.1,
ker T−(λk), 1 ≤ k ≤ N , are spanned by

v̂k = v
†
kΣ = vTN1+k∆, v̂N1+k = v

†
N1+kΣ = vTk∆, 1 ≤ k ≤ N1,

(4.19)

and

v̂k = v
†
kΣ = vTk∆, 2N1 + 1 ≤ k ≤ N, (4.20)

respectively. These row vectors v̂k, 1 ≤ k ≤ N , are eigenfunc-
tions of the adjoint spectral problems under the zero potential
associated with λ̂k, 1 ≤ k ≤ N , respectively. It is direct to
see that the choices in (4.19) and (4.20) yield the selections on
wk, 1 ≤ k ≤ N:⎧⎨⎩
wT

k (∆Σ
−1

−Σ∗∆∗−1) = 0, 1 ≤ k ≤ N1,

wk = ∆−1Σ∗w∗

k−N1
, N1 + 1 ≤ k ≤ 2N1,

w
†
kΣ = wT

k∆, 2N1 + 1 ≤ k ≤ N,
(4.21)

where ∗ denotes the complex conjugate of a matrix. We em-
phasize that all these selections aim to satisfy the reduction
conditions in (2.29) and (2.30).

To satisfy the orthogonal condition (4.11), we can check the
following equivalent orthogonal condition

w
†
kΣwl = 0, if λl = λ̂k, 1 ≤ k, l ≤ N, (4.22)

on the constant columns {wk | 1 ≤ k ≤ N}. Interestingly, the
situation of λk = λ̂k occurs only when λk = 0, 2N1 + 1 ≤ k ≤ N .
Since α1 ̸= α2 and β1 ̸= β2, we can easily observe that the
conditions in (4.22) are equivalent to

(w1
k )

†Σ1w
1
l = 0, (w2

k )
†Σ2w

2
l = 0, if λl = λ̂k,

where 1 ≤ k, l ≤ N, (4.23)

in which we split wk = ((w1
k )

T , (w2
k )

T )T , 1 ≤ k ≤ N , as we did for
vk before. All these create the conditions for the orthogonality re-
quirements, which can also be expressed by using the symmetric
matrix ∆.
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Now, note that if the solutions to the specific Riemann–Hilbert
problems, determined by (4.3) and (4.4), satisfy the involution
properties in (3.38) and (3.39), then the corresponding matrix G+

1
possesses the involution properties in (4.14), generated from the
group reductions in (2.25) and (2.26). Therefore, when the selec-
tions in (4.21) are made and the conditions in (4.23) are satisfied,
the formula (4.15), together with (4.3), (4.4), (4.18), (4.19) and
(4.20), gives rise to N-soliton solutions to the Sasa–Satsuma type
matrix integrable equations (2.37).

When m = N = 1 and n = 4, let us fix α = α1 − α2 = −1,
take λ1 = iν, λ̂1 = −iν, ν ∈ R, ν ̸= 0, and due to the last
requirement in (4.21), choose

w1 = (w1,1, w1,2, σ1δ1w
∗

1,2, w1,4, σ2δ2w
∗

1,4)
T ,

where w1,1 is real and σ 2
j = δ2j = 1, j = 1, 2. Then we can

obtain the following one-soliton solution to the two-component
Sasa–Satsuma type integrable mKdV equations in (2.48):

p1 = −
iσ1w1,1w

∗

1,2 e
νx+(β1−β2)ν3t

ν[|w1,1|
2 e−2να1x+2ν3β1t + 2(σ1|w1,2|

2
+ σ2|w1,4|

2) e−2να2x+2ν3β2t ]
,

(4.24)

nd

3 = −
iσ2w1,1w

∗

1,4 e
νx+(β1−β2)ν3t

ν[|w1,1|
2 e−2να1x+2ν3β1t + 2(σ1|w1,2|

2
+ σ2|w1,4|

2) e−2να2x+2ν3β2t ]
,

(4.25)

here ν, w1,2 and w1,4 need to satisfy

1 − 16ν4)(σ1|w1,2|
2
+ σ2|w1,4|

2) = 0, (4.26)

hich comes from the involution properties in (4.14). When there
s no σ2 and w1,4, one can reduce this solution to get a one-soliton
o the Sasa–Satsuma type mKdV equations in (2.42).

. Concluding remarks

The paper has explored Sasa–Satsuma type matrix integrable
quations, by use of two group reductions of the matrix AKNS
pectral problem of arbitrary order, and presented Riemann–
ilbert problems for the resulting Sasa–Satsuma type matrix
ntegrable equations, by taking advantage of the Lax pair and
he adjoint Lax pair of matrix spectral problems. The obtained
iemann–Hilbert problems have been applied to soliton solutions
f the Sasa–Satsuma type matrix integrable equations, which
mends the binary Darboux transformation theory for the Sasa–
atsuma type matrix mKdV equations [25,26].
The crucial step in our analysis is to use two local group

eductions simultaneously to generate reduced integrable equa-
ions, which also forms the basis for studying the Sasa–Satsuma
KdV equation. In our formulation of Riemann–Hilbert prob-

ems, we have taken advantage of a generalized M-matrix, where
igenvalues could be equal to adjoint eigenvalues. Such an intro-
uction of generalized M-matrices is motivated by recent studies
n Riemann–Hilbert problems of nonlocal integrable equations
see, for example, [24,27]). The associated generalized formula-
ion of Riemann–Hilbert problems can be applied to both local
nd nonlocal integrable equations (see, for example, [24,27–31]
or nonlocal cases). We point out that there are only those two
inds of group reductions for the matrix AKNS spectral prob-
ems which produce reduced local integrable equations. It should
e interesting to apply the idea of adopting two group reduc-
ions to other matrix spectral problems to explore reduced local
ntegrable equations.

The Riemann–Hilbert technique, which is very effective in
enerating soliton solutions (see also, e.g., [32–34]), has been
10
ecently generalized to solve various initial–boundary value prob-
ems of continuous integrable equations on the half-line and
he finite interval [35,36]. There are many other powerful ap-
roaches to soliton solutions, among which are the Hirota di-
ect method [4], the generalized bilinear technique [37], the
ronskian technique [38,39] and the Darboux transformation

3,40]. It would be significantly important to look for connec-
ions among different approaches to exhibit dynamical charac-
eristics of soliton solutions. We would also like to emphasize
hat it would be particularly interesting to compute various
inds of exact solutions other than solitons to integrable equa-
ions, for example, positon and complexiton solutions [41,42],
ump and rogue wave solutions [43–51], solitonless solutions
52–54] and algebro-geometric solutions [55,56], in a perspec-
ive of Riemann–Hilbert problems. It is another interesting topic
or future study to link Riemann–Hilbert problems to gener-
lized integrable counterparts, including integrable couplings,
uper-symmetric integrable equations and fractional spacetime
nalogous equations.
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