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a b s t r a c t

We would like to propose a kind of nonlocal real reverse-spacetime integrable hierarchies of PT-
symmetric matrix AKNS equations through nonlocal symmetry reductions on the potential matrix,
and formulate their associated Riemann–Hilbert problems to determine generalized Jost solutions of
arbitrary-order matrix spectral problems. The Sokhotski–Plemelj formula is applied in transforming
the associated Riemann–Hilbert problems into Gelfand–Levitan–Marchenko type integral equations.
The Riemann–Hilbert problems corresponding to the reflectionless case are solved explicitly, where
eigenvalues could equal adjoint eigenvalues, and thus, soliton solutions are presented for the resulting
nonlocal real reverse-spacetime integrable PT-symmetric matrix AKNS equations.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

It is known that non-Hermitian Hamiltonians endowed with
n unbroken PT symmetry can possess a real spectrum, and
uch Hamiltonians form a new kind of quantum mechanics [1,
]. PT symmetries also play an important role in mathematical
hysics, and can keep integrability of equations of mathematical
hysics. An equation in (1+1)-dimensions is called to be PT-
ymmetric, if it is invariant under a parity-time transformation
e.g., x → −x, t → −t, i → −i). Recently, in soliton
theory, PT symmetries are extensively applied to matrix spectral
problems, and PT-symmetric zero curvature equations present
nonlocal integrable equations, which have already become one
of active research areas. A PT-symmetric reduction is called to be
real (or complex) if it does not involve (or involves) the complex
conjugate of the potential. Based on zero curvature equations,
PT-symmetric reductions can be classified into four types of real
reverse-time, real reverse-spacetime, complex reverse-space and
complex reverse-spacetime.

Notably, five examples of scalar nonlocal integrable nonlinear
Schrödinger (NLS) equations and modified Korteweg–de Vries
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(mKdV) equations have been identified as significant models for
understanding nonlocal nonlinear physical phenomena in nonlin-
ear PT-symmetric media. Those are the nonlocal real reverse-time
NLS equation, the nonlocal real reverse-spacetime NLS equation,
the nonlocal complex reverse-space NLS equation, the nonlocal
real reverse-spacetime mKdV equation and the nonlocal complex
reverse-spacetime mKdV equation [3,4]. The inverse scattering
technique has been successfully used to solve nonlocal nonlin-
ear integrable equations, under either zero or nonzero boundary
conditions [5–8]. Moreover, the Hirota bilinear method [9,10]
and Darboux transformations [11,12], are shown to be effective
in constructing N-soliton solutions of nonlocal models. Some
multicomponent [8,13] and higher dimensional [14] generaliza-
tions of nonlocal integrable equations and hierarchies of nonlocal
integrable equations [7] have also been proposed and studied.

Riemann–Hilbert problems are another powerful approach in
soliton theory and are used to generate soliton solutions to in-
tegrable equations, which are closely connected with Darboux
transformations and the inverse scattering transforms of asso-
ciated integrable equations. Indeed, many integrable equations,
both local and nonlocal, have been studied through the corre-
sponding Riemann–Hilbert problems systematically. Interesting
examples include the multiple wave interaction equations [15],
the general coupled nonlinear Schrödinger equations [16], the
Harry Dym equation [17], the generalized Sasa–Satsuma equation

[18], and multicomponent mKdV equations [19] in the local case;
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nd the nonlocal scalar NLS equations [20], nonlocal multicom-
onent NLS equations [8,21] and hierarchies [7], and nonlocal
ulticomponent mKdV equations [22] in the nonlocal case.
In this paper, we would like to propose and analyze a class

f nonlocal real reverse-spacetime integrable hierarchies of PT-
ymmetric matrix AKNS equations by nonlocal symmetry re-
uctions for the AKNS matrix spectral problems with matrix
otentials, and formulate their associated Riemann–Hilbert prob-
ems, which generate their inverse scattering transforms and
oliton solutions. Two of the nonlocal integrable matrix AKNS
quations that we will analyze are

pt (x, t) = pxx(x, t) + 2γ p(x, t)pT (−x,−t)p(x, t), (1.1)

and

pt (x, t) = pxxx(x, t) + 3γ p(x, t)pT (−x,−t)px(x, t)

+ 3γ px(x, t)pT (−x,−t)p(x, t), (1.2)

in which p = (pjk)m×n is a matrix potential and γ ̸= 0 is
an arbitrary constant. Here m and n are two arbitrary natural
numbers.

The rest of the paper is organized as follows. In Section 2,
we generate nonlocal real reverse-spacetime integrable hierar-
chies of PT-symmetric matrix AKNS equations from the clas-
sical integrable hierarchies of matrix AKNS equations by mak-
ing nonlocal symmetry reductions on the potential matrix. In
Section 3, we explore a property of eigenfunctions under the
nonlocal symmetry reductions, establish associated Riemann–
Hilbert problems to determine generalized Jost solutions, and
transform the resulting Riemann–Hilbert problems into systems
of Gelfand–Levitan–Marchenko type integral equations through
the Sokhotski–Plemelj formula. In Section 4, we present a solution
formulation, where eigenvalues could equal adjoint eigenvalues,
for the Riemann–Hilbert problems with the identity jump matrix,
corresponding to the reflectionless inverse scattering transforms,
and consequently generate N-soliton solutions to the resulting
nonlocal integrable matrix AKNS equations. In the last section, we
give a few concluding remarks.

2. Nonlocal integrable matrix AKNS hierarchies

Let m, n ≥ 1 be two arbitrary integers as in the introduction.
Assume that λ is a spectral parameter, and p, q, two matrix
potentials:

p = p(x, t) = (pjk)m×n, q = q(x, t) = (qkj)n×m. (2.1)

The local integrable hierarchies of matrix AKNS equations are
generated from the AKNS matrix spectral problems with matrix
potentials

−iφx = Uφ = U(u, λ)φ, −iφt = V [r]φ = V [r](u, λ)φ, r ≥ 0,
(2.2)

where the Lax pair reads

U = λΛ+ P, V [r]
= λrΩ + Q [r], Λ = diag(α1Im, α2In),

Ω = diag(β1Im, β2In),
(2.3)

where Is is the identity matrix of size s, and α1, α2, β1 and β2
are arbitrary constants. The involved other two square matrices
of size m + n are given by

P =

[
0 p
q 0

]
, (2.4)

which is called the potential matrix, and

Q [r]
=

r−1∑
λs

[
a[s] b[s]

c[s] d[s]

]
, (2.5)
s=0 P

2

where a[s], b[s], c[s], d[s] are recursively defined by

b[0]
= 0, c[0]

= 0, a[0]
= β1Im, d[0]

= β2In, (2.6a)

b[s+1]
=

1
α
(−ib[s]

x − pd[s]
+ a[s]p), s ≥ 0, (2.6b)

c[s+1]
=

1
α
(ic[s]

x + qa[s]
− d[s]q), s ≥ 0, (2.6c)

a[s]
x = i(pc[s]

− b[s]q), d[s]
x = i(qb[s]

− c[s]p), s ≥ 1, (2.6d)

in which α = α1 − α2, β = β1 − β2, and we take zero constants
of integration to determine the differential polynomials uniquely.
In particular, we can work out

Q [1]
=
β

α

[
0 p
q 0

]
,

Q [2]
=
β

α
λ

[
0 p
q 0

]
−
β

α2

[
pq ipx

−iqx −qp

]
,

(2.7)

nd

[3]
=
β

α
λ2

[
0 p
q 0

]
−
β

α2 λ

[
pq ipx

−iqx −qp

]
−

β

α3

[
i(pqx − pxq) pxx + 2pqp
qxx + 2qpq i(qpx − qxp)

]
. (2.8)

Obviously, when m = 1, the matrix spectral problems in (2.2)
educe to the multicomponent case [23], and when there are
ust a pair of nonzero potentials, pjk and qkj, the matrix spectral
roblems in (2.2) become the standard AKNS case [24].
It is direct to check that for each pair of fixed integers, m and

, the compatibility conditions of the matrix spectral problems in
2.2), i.e., the zero curvature equations

t − V [r]
x + i[U, V [r]

] = 0, r ≥ 0, (2.9)

ead to an integrable hierarchy of local matrix AKNS equations

t = iαb[r+1], qt = −iαc[r+1], r ≥ 0. (2.10)

y a Lax operator algebra theory [25] and the trace identity [26],
e can prove that (2.10) defines a hierarchy of commuting flows,
hich possesses infinitely many conservation laws. The first two
onlinear systems of integrable matrix AKNS equations are the
atrix NLS equations (r = 2):

pt = −
β

α2 i(pxx + 2pqp),

qt =
β

α2 i(qxx + 2qpq),
(2.11)

nd the matrix mKdV equations (r = 3):

pt = −
β

α3 (pxxx + 3pqpx + 3pxqp),

qt = −
β

α3 (qxxx + 3qxpq + 3qpqx).
(2.12)

To derive nonlocal integrable counterparts, let us introduce a
roup of specific nonlocal symmetry reductions for the spectral
atrix U:
T (−x,−t, λ) = CU(x, t, λ)C−1, (2.13)

here T stands for the matrix transpose and the constant matrix
is a block matrix

=

[
Σ1 0
0 Σ2

]
, (2.14)

n which Σ1,2 are two arbitrary invertible and symmetric matri-
es of sizes m and n, respectively. By (2.3), each nonlocal sym-
etry reduction means the following reduction on the potential
atrix:
T (−x,−t) = CP(x, t)C−1, (2.15)
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hich leads equivalently to the reverse-spacetime reduction on
he two matrix potentials:

(x, t) = Σ−1
2 pT (−x,−t)Σ1. (2.16)

t follows directly from this potential reduction that

(V [r])T (−x,−t, λ) = CV [r](x, t, λ)C−1,

(Q [r])T (−x,−t, λ) = CQ [r](x, t, λ)C−1.
(2.17)

where r ≥ 0.
Now, we can see that all those imply that the nonlocal sym-

metry reductions in (2.13) do not cause any conflict in the zero
curvature Eq. (2.9). Therefore, the local matrix AKNS Eqs. (2.10)
reduces to the following hierarchy of nonlocal real reverse-
spacetime matrix AKNS equations:

pt = iαb[r+1]
|q=Σ−1

2 pT (−x,−t)Σ1
, r ≥ 0, (2.18)

which defines a hierarchy of commuting flows possessing in-
finitely many conservation laws as well. Two examples are the
nonlocal real reverse-spacetime matrix NLS equations

ipt (x, t) =
β

α2 [pxx(x, t)+ 2p(x, t)Σ−1
2 pT (−x,−t)Σ1p(x, t)], (2.19)

and the nonlocal real reverse-spacetime matrix mKdV equations

pt (x, t) = −
β

α3 [pxxx(x, t) + 3p(x, t)Σ−1
2 pT (−x,−t)Σ1px(x, t)

+ 3px(x, t)Σ−1
2 pT (−x,−t)Σ1p(x, t)], (2.20)

where Σ1,2 are two arbitrary invertible and symmetric matri-
ces, and p is the matrix potential defined as in (2.1). Up taking
special values for α, β and Σ1,2, those two equations are re-
duced to the equations in (1.1) and (1.2). When m = 1 and
Σ1 = 1, the two Eqs. (2.18) and (2.20) become the nonlo-
cal real reverse-spacetime multicomponent NLS equations [22]
and the nonlocal real reverse-spacetime multicomponent mKdV
equations [8], respectively. Two difficulties in solving the nonlin-
ear systems in (2.18) are the reverse-spacetime nonlocality and
the higher-dimension of the systems, and will overcome those
difficulties through applying the Riemann–Hilbert technique.

3. Riemann-Hilbert problems and inverse scattering

In what follows, we propose a kind of Riemann–Hilbert prob-
lems associated with the matrix spectral problems in (2.2) for
the integrable hierarchies of nonlocal real reverse-spacetime ma-
trix AKNS Eqs. (2.18) (see, e.g., [15,27,28] for local equations).
Solutions to the resulting Riemann–Hilbert problems with the
identity jump matrix, corresponding to the reflectionless inverse
scattering transforms, generate soliton solutions for the nonlocal
matrix AKNS equations in the following section.

3.1. Property of eigenfunctions under the nonlocal reductions

Suppose that all the potentials rapidly vanish when x or t →

or − ∞ so that there is no convergence problem involved.
et us consider an equivalent pair of matrix spectral problems to
2.2):

x = iλ[Λ, ψ] + P̌ψ, P̌ = iP, (3.1)

t = iλr [Ω, ψ] + Q̌ [r]ψ, Q̌ [r]
= iQ [r], (3.2)

hich ψ = φ e−iλΛx−iλrΩt satisfies if φ solves (2.2). Applying a
generalized Liouville’s formula [29], we can have (detψ)x = 0,
because of tr(P̌) = tr(Q̌ [r]) = 0. To establish associated Riemann–
3

Hilbert problems whose jump matrices can be easily worked out,
we adopt the following adjoint spectral problems, besides the
spectral problems. The adjoint counterparts of the x-part problem
of (2.2) and the spectral problem (3.1) are defined as

iφ̃x = φ̃U, (3.3)

and

iψ̃x = λ[ψ̃,Λ] + ψ̃P, (3.4)

which φ̃ = φ−1 and ψ̃ = ψ−1 satisfy, respectively.
Let ψ(λ) be a matrix eigenfunction of the spatial spectral

problem (3.1) associated with an eigenvalue λ. First, it is easy
to see that Cψ−1(x, t, λ) is a matrix adjoint eigenfunction asso-
ciated with the same eigenvalue λ. Second, under the nonlocal
symmetry reductions in (2.13), we can compute that

i[ψT (−x,−t, λ)C]x = i[−(ψx)T (−x,−t, λ)C]

= i{−iλ[Λ, ψ(−x,−t, λ)] − P̌(−x,−t)ψ(−x,−t, λ)}TC

= i{−iλ[ψT (−x,−t, λ),Λ] − ψT (−x,−t, λ)P̌T (−x,−t)}C
= λ[ψT (−x,−t, λ)C,Λ] + ψT (−x,−t, λ)C[C−1PT (−x,−t)C]

= λ[ψT (−x,−t, λ)C,Λ] + ψT (−x,−t, λ)CP(x, t).

This implies that the matrix function

ψ̃(x, t, λ) := ψT (−x,−t, λ)C (3.5)

presents another matrix adjoint eigenfunction associated with
the same original eigenvalue λ, namely, ψT (−x,−t, λ)C solves
the adjoint spectral problem (3.4).

Now, upon imposing the asymptotic conditions thatψ → In+1,
as x or t → ∞ or −∞, the uniqueness of solutions tells that

ψT (−x,−t, λ) = Cψ−1(x, t, λ)C−1 (3.6)

holds for a matrix eigenfunction ψ that solves the spectral prob-
lem (3.1). This enables us to conclude that the spectral problem
(3.1) has the property (3.6) for its eigenfunctions with the asymp-
totic condition imposed above, under the nonlocal symmetry
reductions in (2.13).

3.2. Associated Riemann-Hilbert problems

Let us now formulate a class of associated Riemann–Hilbert
problems with the space variable x. The whole procedure is really
the same as the one for the local case [19], since the nonlocal
symmetry reductions in (2.13) do not present any problem in
reducing the associated Riemann–Hilbert problems in the local
unreduced case. However, we present it below for the sake of
clarity.

In order to facilitate the expression in our analysis, we assume
that

α = α1 − α2 < 0, β = β1 − β2 < 0, (3.7)

as usual. To establish the scattering problem, let us take the
two matrix eigenfunctions ψ±(x, λ) of (3.1) with the asymptotic
conditions

ψ±
→ In+1, when x → ±∞, (3.8)

respectively. From (detψ)x = 0, we obtain that detψ±
= 1 for

all x ∈ R. Observing that
± ± iλΛx
φ = ψ E, E = e , (3.9)
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re both matrix eigenfunctions of the spectral problems (2.2),
hey must be linearly dependent, and consequently, we can
ave
−E = ψ+ES(λ), λ ∈ R, (3.10)

for some matrix S(λ), which is commonly called the scattering
matrix. Further, it follows from detψ±

= 1 that we obtain
det S(λ) = 1.

Based on the matrix spectral problems in (2.2), we know
that the matrix eigenfunctions ψ± satisfy the following Volterra
integral equations:

ψ−(λ, x) = Im+n +

∫ x

−∞

eiλΛ(x−y)P̌(y)ψ−(λ, y)eiλΛ(y−x) dy, (3.11)

ψ+(λ, x) = Im+n −

∫
∞

x
eiλΛ(x−y)P̌(y)ψ+(λ, y)eiλΛ(y−x) dy, (3.12)

where the asymptotic conditions (3.8) have been imposed. It
therefore follows from the theory of Volterra integral equations
that the eigenfunctions ψ± can exist and allow analytical contin-
uations off the real line λ ∈ R as long as the integrals on the right
hand sides converge.

Clearly from the diagonal form of Λ, we can observe that the
integral equation for the last n columns of ψ+ contains only the
exponential factor eiαλ(x−y), which decays exponentially because
of y > x in the integral, when λ takes values in the upper half-
plane C+, and the integral equation for the first m columns of
ψ− contains only the exponential factor e−iαλ(x−y), which decays
exponentially because of y < x in the integral, when λ takes
values in the upper half-plane C+. In this way, those m + n
columns are analytical in the upper half-plane C+ and continuous
in the closed upper half-plane C̄+. By a similar argument, we can
show that the last n columns of ψ− and the first m columns of
ψ+ are analytical in the lower half-plane C− and continuous in
the closed lower half-plane C̄−.

In order to generate two generalized matrix Jost solutions,
denoted by T+ and T−, which are analytic in C+ and C− and
continuous in C̄+ and C̄−, respectively, let us write

ψ±
= (ψ±

1 , ψ
±

2 , . . . , ψ
±

m+n), (3.13)

where ψ±

j denote the jth columns of φ± (1 ≤ j ≤ m + n), and

ψ̃±
=

⎡⎢⎢⎢⎢⎣
ψ̃±,1

ψ̃±,2

...

ψ̃±,m+n

⎤⎥⎥⎥⎥⎦ , (3.14)

where ψ̃±,j denote the jth rows of ψ̃± (1 ≤ j ≤ m + n). We also
denote

H1 = diag(Im, 0, . . . , 0  
n

), H2 = diag( 0, . . . , 0  
m

, In). (3.15)

Then, we can take the generalized matrix Jost solution T+ as

T+
= T+(x, λ) = (ψ−

1 , . . . , ψ
−

m , ψ
+

m+1, . . . , ψ
+

m+n) = ψ−H1 + ψ+H2,

(3.16)

which is analytic in λ ∈ C+ and continuous in λ ∈ C̄+.
To define the other generalized matrix Jost solution T−, i.e., the

analytic counterpart of T+ in the lower half-plane C−, we use
the adjoint matrix spectral problems. We remark that when φ
and ψ solve the two spectral problems, the inverse matrices φ̃ =

φ−1 and ψ̃ = ψ−1 solve the corresponding two adjoint spectral
4

problems, respectively. It is advantageous for an explicit formu-
lation of Riemann–Hilbert problems to take the other generalized
matrix Jost solution T− as the adjoint matrix solution of (3.4), i.e.,

T−
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ̃−,1

...

ψ̃−,m

ψ̃+,m+1

...

ψ̃+,m+n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= H1ψ̃

−
+ H2ψ̃

+
= H1(ψ−)−1

+ H2(ψ+)−1,

(3.17)

which is analytic for λ ∈ C− and continuous for λ ∈ C̄−.
It further follows from detψ±

= 1, the above definitions of
T±, the asymptotic conditions in (3.8) assumed from the outset,
and the scattering relation (3.10) between ψ+ and ψ− that

lim
x→∞

T+(x, λ) =

[
S11(λ) 0

0 In

]
, λ ∈ C̄+,

lim
x→∞

T−(x, λ) =

[
Ŝ11(λ) 0

0 In

]
, λ ∈ C̄−,

(3.18)

and

det T+(x, λ) = S11(λ), det T−(x, λ) = Ŝ11(λ), (3.19)

where we split S(λ) and S−1(λ) as follows:

S(λ) =

[
S11(λ) S12(λ)
S21(λ) S22(λ)

]
,

S−1(λ) = (S(λ))−1
=

[
Ŝ11(λ) Ŝ12(λ)

Ŝ21(λ) Ŝ22(λ)

]
,

(3.20)

S11, Ŝ11 beingm×mmatrices, S12, Ŝ12 beingm×nmatrices, S21, Ŝ21
being n × m matrices, and S22, Ŝ22 being n × n matrices.

Now making use of the particular forms of T+ and T−, we
can take the following two unimodular generalized matrix Jost
solutions:⎧⎪⎪⎪⎨⎪⎪⎪⎩

G+(x, λ) = T+(x, λ)
[

S−1
11 (λ) 0
0 In

]
, λ ∈ C̄+

;

(G−)−1(x, λ) =

[
Ŝ−1
11 (λ) 0
0 In

]
T−(x, λ), λ ∈ C̄−.

(3.21)

Those two generalized matrix Jost solutions present the required
matrix Riemann–Hilbert problems on the real line for the nonlo-
cal real reverse-spacetime matrix AKNS Eqs. (2.18):

G+(x, λ) = G−(x, λ)G0(x, λ), λ ∈ R, (3.22)

where based on (3.10) and (3.21), the jump matrix G0 reads

G0(x, λ) = E

[
Ŝ−1
11 (λ) 0
0 In

]
S̃(λ)

[
S−1
11 (λ) 0
0 In

]
E−1, (3.23)

in which from the definition of G+ and G−, we know that the
matrix S̃(λ) has the following factorization:

S̃(λ) = (H1 + H2S(λ))(H1 + S−1(λ)H2). (3.24)

A direct computation leads to

S̃(λ) =

[
Im Ŝ12

]
. (3.25)
S21 In
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Finally, directly from the Volterra integral Eqs. (3.11) and
(3.12), we can have the canonical normalization conditions for the
associated Riemann–Hilbert problems:

G±(x, λ) → In+1, when λ ∈ C̄±
→ ∞. (3.26)

Moreover, based on the involution property (3.6), we can directly
show that

(G+)T (−x,−t, λ) = C(G−)−1(x, t, λ)C−1, (3.27)

and thus, the jump matrix G0 satisfies the corresponding involu-
tion property

GT
0(−x,−t, λ) = CG0(x, t, λ)C−1. (3.28)

It is also worth noting that the jump matrix G0, defined by (3.23)
nd (3.25), carries all basic scattering data from the scattering
atrix S(λ) that we need to construct the inverse scattering

ransforms.

.3. Evolution law of the scattering data

To present the direct scattering transforms, let us compute the
erivative of Eq. (3.10) with the time variable t , and utilize the
emporal spectral problem (3.2) for ψ±:

ψ±

t = iλr [Ω, ψ±
] + Q̌ [r]ψ±, r ≥ 0. (3.29)

Then, a direct computation shows that the scattering matrix S
has to obey a matrix evolution law:

St = iλr [Ω, S], (3.30)

where Ω is defined as in (2.3). This precisely yields the time
dependence of the scattering coefficients:

S12 = S12(t, λ) = S12(0, λ)eiβλ
r t , S21 = S21(t, λ) = S21(0, λ)e−iβλr t ,

(3.31)

nd tells that all other scattering coefficients are independent
f the time variable t . Further, we can immediately drive the
volution law for the inverse matrix of S(λ), Ŝ(λ), and thus, for
he jump matrix G0(λ).

.4. Gelfand–Levitan–Marchenko type integral equations

In order to derive Gelfand–Levitan–Marchenko type integral
quations for the generalized matrix Jost solutions, we transform
he Riemann–Hilbert problems in (3.22) as follows:

G+
− G−

= G−v, v = G0 − In+1, on R,
G±

→ In+1 as λ ∈ C̄±
→ ∞,

(3.32)

here G0 is determined by (3.23) and (3.25). Define G(λ) = G±(λ)
f λ ∈ C±. Assume that G has R simple poles: {µj}

R
j=1, where R is

n arbitrary natural number, and that the poles are off the real
ine R to avoid spectral singularities. Further, let us introduce

˜±(λ) = G±(λ) −

R∑
j=1

Gj

λ− µj
, λ ∈ C̄±, G̃(λ) = G̃±(λ), λ ∈ C±,

(3.33)

here Gj is the residue of G(λ) at λ = µj, i.e.,

j = res(G(λ), µj) = lim
λ→µj

(λ− µj)G(λ). (3.34)

n this way, we have

G̃+
− G̃−

= G+
− G−

= G−v, on R,
˜± ±

(3.35)

G → In+1 as λ ∈ C̄ → ∞.

5

Through the Sokhotski–Plemelj formula [30], we obtain the
olution to (3.35):

˜ (λ) = In+1 +
1

2π i

∫
∞

−∞

(G−v)(ξ )
ξ − λ

dξ . (3.36)

ow taking the limit as λ → µl, we obtain

hs = lim
λ→µl

G̃ = Fl −
R∑
j̸=l

Gj

µl − µj
,

hs = In+1 +
1

2π i

∫
∞

−∞

(G−v)(ξ )
ξ − µl

dξ,

where

Fl = lim
λ→µl

(λ− µl)G(λ) − Gl

λ− µl
, 1 ≤ l ≤ R. (3.37)

hen all this is carried through, we arrive at the following
elfand–Levitan–Marchenko type integral equations:

n+1 − Fl +
R∑
j̸=l

Gj

µl − µj
+

1
2π i

∫
∞

−∞

(G−G0)(ξ )
ξ − µl

dξ

−
1

2π i

∫
∞

−∞

G−(ξ )
ξ − µl

dξ = 0, 1 ≤ l ≤ R. (3.38)

These integral equations are used to determine solutions to the
associated Riemann–Hilbert problems by (3.32), and hence, pro-
duce the generalized matrix Jost solutions. However, little was
yet known about the general theory of existence and uniqueness
of solutions. Only in the case of identity jump matrices, we will
be able to present a specific solution formulation explicitly in the
next section.

3.5. Recovery of the potential

As the last part of the inverse scattering transforms, we re-
trieve the potential matrix P from the generalized matrix Jost
solutions. Let us begin with an asymptotic expansion for the
generalized matrix Jost solution G+:

G+(x, t, λ) = In+1 +
1
λ
G+

1 (x, t) + O(
1
λ2

), λ → ∞, (3.39)

where we have used the canonical normalization condition for
G+. Then, inserting the asymptotic expansion into the matrix
spectral problem (3.1) and comparing the O(1) terms engender

P = lim
λ→∞

λ[G+(λ),Λ] = −[Λ,G+

1 ]. (3.40)

To get the potential for the nonlocal equations, one needs to
check if an involution property (2.15) holds for P or equivalently
if the following involution property holds for G+

1 :

(G+

1 )
T (−x,−t) = −CG+

1 (x, t)C
−1. (3.41)

Then if the answer is yes, we immediately obtain the solutions
to the nonlocal real reverse-spacetime integrable matrix AKNS
Eqs. (2.18):

p = −αG+

1,12, (3.42)

where we have similarly partitioned the matrix G+

1 into four
blocks as follows:

G+

1 =

[
G+

1,11 G+

1,12

G+

1,21 G+

1,22

]
=

[
(G+

1,11)n×n (G+

1,12)n×m

(G+

1,21)m×n (G+

1,22)m×m

]
. (3.43)

Once the solutions {G+(λ),G−(λ)} to the associated Riemann–
Hilbert problems are determined, the potential matrix P de-
fined by (3.42), provides solutions to the nonlocal real reverse-
spacetime integrable PT-symmetric matrix AKNS Eqs. (2.18).
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. Soliton solutions

In this section, we would like to construct soliton solutions
o the nonlocal real reverse-spacetime integrable matrix AKNS
qs. (2.18). As usual, we avoid solving Gelfand–Levitan–
archenko type integral equations, and instead, we solve the
ssociated linear systems with the Riemann–Hilbert problems
irectly. In our analysis, eigenvalues could equal adjoint eigen-
alues, which never happened before in the local theory.
Let N ≥ 1 be another arbitrary integer. Assume that det S11(λ)

has N geometrically simple zeros {λk ∈ C, 1 ≤ k ≤ N}, and
det Ŝ11(λ) has N geometrically simple zeros {λ̂k ∈ C, 1 ≤ k ≤ N}.
hen, each of ker T+(λk), 1 ≤ k ≤ N , contains only one single
asis column vector, denoted by vk, 1 ≤ k ≤ N; and each of
er T−(λ̂k), 1 ≤ k ≤ N , one single basis row vector, denoted by

ˆk, 1 ≤ k ≤ N . Beginning with the two equations,

T+(λk)vk = 0, v̂kT−(λ̂k) = 0, 1 ≤ k ≤ N, (4.1)

e can determine the kernel vectors vk, v̂k, 1 ≤ k ≤ N , by
making use of the associated spectral problems that T+ and T−

atisfy (see, e.g., [19] for the local case).
It is known that when taking the identity jump matrix, the

iemann–Hilbert problems, by (3.22) and (3.23), with the canon-
cal normalization conditions in (3.26) and the zero structures
iven in (4.1), can be solved explicitly [15,31,32], and then, we
an determine the potential matrix P that provides solutions
o the nonlocal real reverse-spacetime integrable matrix AKNS
quations.

.1. Solutions to special Riemann-Hilbert problems

As usual, soliton solutions are constructed from the Riemann–
ilbert problems in (3.22) with the identity jump matrix G0 =

m+n, which can be achieved if we assume the zero reflection
oefficient conditions

21 = Ŝ12 = 0, (4.2)

n the inverse scattering problem. Note that in the case of non-
ocal integrable equations, we often do not have the condition

λk|1 ≤ k ≤ N} ∩ {λ̂k|1 ≤ k ≤ N} = Ø, (4.3)

nd thus, we need to establish a new solution formulation, which
eneralizes the one for the local case in the literature [15,31,32].
direct computation shows that solutions to a kind of special
iemann–Hilbert problems without the condition (4.3) can be
resented as follows.
To incorporate the indicated requirements, let us define G+

and G− by

G+(λ) = Im+n −

N∑
k,l=1

vk(M−1)klv̂l
λ− λ̂l

, (G−)−1(λ) = Im+n +

N∑
k,l=1

vk(M−1)klv̂l
λ− λk

,

(4.4)

here M = (mkl)N×N is a square matrix with its entries:

kl =

⎧⎨⎩
v̂kvl

λl − λ̂k
, when λl ̸= λ̂k,

0, when λl = λ̂k,

1 ≤ k, l ≤ N. (4.5)

his M-matrix is different from the traditional one in the litera-
ure, since we included the case of λl = λ̂k, which often occurs
n the case of nonlocal integrable equations. We can now show
6

hat
N∏
l=1

(λ− λ̂l)G+

)
(λk)vk = 0, v̂k

( N∏
l=1

(λ−λl)(G−)−1
)
(λ̂k) = 0, 1 ≤ k ≤ N,

(4.6)

nd G+ and G− satisfy

G−)−1(λ)G+(λ) = Im+n, (4.7)

f we additionally require an orthogonal condition

ˆkvl = 0, when λl = λ̂k, 1 ≤ k, l ≤ N. (4.8)

Obviously, if the condition (4.3) holds, then the above result
educes to the one presented in the literature (see, e.g., [15,31,
2]). If λk ∈ C+ and λ̂k ∈ C−, 1 ≤ k ≤ N , then the above
wo matrices G+ and G− are meromorphic in the upper and
ower half-planes, respectively, and thus, they present solutions
o the Riemann–Hilbert problems with the identity jump matrix
n the real line. However, the general case provides more diverse
olutions.

.2. Soliton solutions

To compute soliton solutions to the nonlocal real reverse-
pacetime integrable matrix AKNS Eqs. (2.18), we have to check
f the involution condition (2.15) or (3.41) is satisfied. To im-
lement this condition, motivated by the previous property of
igenfunctions in Section 3.1, we can assume [19] that ker T+(λk)
nd ker T−(λk), 1 ≤ k ≤ N , are spanned by

k(x, t) = vk(x, t, λk) = eiλkΛx+iλrkΩtwk, 1 ≤ k ≤ N, (4.9)

nd

ˆk(x, t) = v̂k(x, t, λ̂k) = ŵke−iλ̂kΛx−iλ̂rkΩtC, 1 ≤ k ≤ N, (4.10)

espectively. Here wk and ŵk, 1 ≤ k ≤ N , are arbitrary column
nd row vectors, but the orthogonal condition (4.8) requires

ˆ kCwl = 0, when λl = λ̂k, 1 ≤ k, l ≤ N. (4.11)

Now, based on the above construction, we can directly verify
nder (4.11) that G+

1 satisfies the involution property (3.41),
.e., the solution to the special Riemann–Hilbert problem, de-
ermined by (4.4) and (4.5), satisfies (3.27), and thus, the ma-
rix potential defined by (3.42) presents soliton solutions to the
onlocal real reverse-spacetime integrable PT-symmetric matrix
KNS Eqs. (2.18):

= α

N∑
k,l=1

vk,1(M−1)klv̂l,2, (4.12)

here M = (mkl)N×N is defined by (4.5), and we split vk and v̂k,
etermined by (4.9) and (4.10), as vk = ((vk,1)T , (vk,2)T )T and v̂k =

v̂k,1, v̂k,2), with vk,1 and v̂k,1 being m-dimensional column and
ow vectors, respectively, and vk,2 and v̂k,2 being n-dimensional
olumn and row vectors, respectively.

. Concluding remarks

Nonlocal integrable hierarchies of real reverse-spacetime
T-symmetric matrix AKNS equations were presented from a
roup of nonlocal symmetry reductions, and their associated
iemann–Hilbert problems were formulated via the matrix AKNS
pectral problems and adjoint matrix AKNS spectral problems.
he Sokhotski–Plemelj formula was used to transform the as-
ociated Riemann–Hilbert problems into systems of Gelfand–
evitan–Marchenko type integral equations. Soliton solutions to
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he nonlocal real reverse-spacetime integrable matrix AKNS equa-
ions were generated from the Riemann–Hilbert problems with
he identity jump matrix (or equivalently the reflectionless in-
erse scattering transforms).
It is also worth remarking that it would be particularly in-

eresting to find a certain kind of connections among different
olution approaches, including the Hirota direct method [33],
he Wronskian technique [34,35] and the Darboux transforma-
ion [36]. Moreover, various recent studies have exhibited great
ichness of other kinds of solutions to nonlinear dispersive wave
quations, including lump and rogue wave solutions and their in-
eraction solutions [37–42], algebro–geometric solutions [43,44]
nd solitonless solutions [45,46]. Absolutely, it would be very
ntriguing to explore those exact solutions to nonlinear dispersive
ave equations, particularly, lump and rogue wave solutions,
hrough the Riemann–Hilbert technique. The kinetic mechanism
f soliton propagation and interaction in the nonlocal theory also
ertainly deserves further investigations.
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