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INVERSE SCATTERING AND SOLITON SOLUTIONS

OF NONLOCAL REVERSE-SPACETIME NONLINEAR

SCHRÖDINGER EQUATIONS
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(Communicated by Mourad E. H. Ismail)

Abstract. The paper presents nonlocal reverse-spacetime PT-symmetric mul-
ticomponent nonlinear Schrödinger (NLS) equations under a specific nonlocal
group reduction, and generates their inverse scattering transforms and soliton
solutions by the Riemann-Hilbert technique. The Sokhotski-Plemelj formula is
used to determine solutions to a class of associated Riemann-Hilbert problems
and transform the systems that generalized Jost solutions need to satisfy. A
formulation of solutions is developed for the Riemann-Hilbert problems associ-
ated with the reflectionless transforms, and the corresponding soliton solutions
are constructed for the presented nonlocal reverse-spacetime PT-symmetric

NLS equations.

1. Introduction

Nonlocal integrable equations are one of new hot topics in soliton theory. Par-
ticularly, a couple of scalar nonlocal nonlinear Schrödinger (NLS) equations and
modified Korteweg-de Vries (mKdV) equations have been primary models which
are identified as significant to understanding nonlocal nonlinear phenomena and
providing a foundation for fostering more innovative research that advances the
theory [1, 2]. The inverse scattering technique has been shown to be powerful in
solving those nonlocal nonlinear equations, under either zero or nonzero bound-
ary conditions [3–5]. Moreover, Darboux transformations [6–8] and the Hirota
bilinear method [9] are used to construct their N -soliton solutions. A few higher-
dimensional [10] and multicomponent [5, 11] generalizations of nonlocal integrable
equations have also been proposed and studied. Such nonlinear integrable equations
share the PT symmetry, i.e., they are invariant under the parity-time transforma-
tion (x → −x, t → −t, i → −i).

Riemann-Hilbert problems have been successfully used to formulate the inverse
scattering transforms and generate soliton solutions to both local and nonlocal
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integrable equations. Various integrable equations have been studied by analyz-
ing the associated Riemann-Hilbert problems systematically. Illustrative exam-
ples include the multiple wave interaction equations [12], the general coupled non-
linear Schrödinger equations [13], the Harry Dym equation [14], the generalized
Sasa-Satsuma equation [15], multicomponent mKdV equations [16], the nonlocal
reverse-space scalar NLS equation [17], and nonlocal reverse-time multicomponent
NLS equations [5]. In this paper, we would like to present a class of nonlocal
reverse-spacetime PT-symmetric multicomponent integrable NLS equations under
a specific nonlocal group symmetry reduction, and analyze their inverse scattering
transforms and soliton solutions within the formulation of Riemann-Hilbert prob-
lems.

The rest of the paper is organized as follows. In Section 2, we make a non-
local group reduction to generate nonlocal reverse-spacetime PT-symmetric NLS
equations from the multicomponent AKNS matrix spectral problems. In Section 3,
we analyze their inverse scattering transforms by establishing a class of associated
Riemann-Hilbert problems. In Section 4, we develop a formulation of solutions to
the Riemann-Hilbert problems with the identity jump matrix and construct N -
soliton solutions from the reflectionless inverse scattering transforms. The final
section presents a conclusion and a few concluding remarks.

2. Nonlocal reverse-spacetime NLS equations

Let n be an arbitrary natural number. Assume that λ stands for a spectral
parameter, and u is a 2n-dimensional potential

(2.1) u = u(x, t) = (p, qT )T , p = (p1, p2, . . . , pn), q = (q1, q2, . . . , qn)
T .

It is known that the multicomponent local NLS equations are associated with the
multicomponent AKNS matrix spectral problems (see, e.g., [18]):

(2.2) −iφx = Uφ = U(u, λ)φ, −iφt = V φ = V (u, λ)φ,

with the Lax pair

(2.3) U = λΛ + P, V = λ2Ω+Q.

The involved four matrices are defined by Λ = diag(α1, α2In), Ω = diag(β1, β2In),
and

(2.4) P =

[
0 p

q 0

]
, Q =

β

α
λ

[
0 p

q 0

]
− β

α2

[
pq ipx

−iqx −qp

]
,

where In is the identity matrix of size n, α1, α2, β1, and β2 are arbitrary constants,
and α = α1 − α2 and β = β1 − β2. It is obvious that if pj = qj = 0, 2 ≤ j ≤ n,
the matrix spectral problems in (2.2) reduce to the original AKNS ones [19]. The
compatibility condition of (2.2), i.e., the zero curvature equation

(2.5) Ut − Vx + i[U, V ] = 0,

presents the following multicomponent local NLS equations:

(2.6) pt = − β

α2
i(pxx + 2pqp), qt =

β

α2
i(qxx + 2qpq).
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NONLOCAL REVERSE-SPACETIME NLS EQUATIONS 253

To introduce nonlocal counterparts, we make a specific nonlocal group reduction
for the spectral matrix

(2.7) UT (−x,−t, λ) = CU(x, t, λ)C−1, C =

[
1 0
0 Σ

]
, ΣT = Σ,

where T stands for the matrix transpose and Σ is an arbitrary constant invertible
symmetric matrix. This group reduction means that

(2.8) PT (−x,−t) = CP (x, t)C−1,

which equivalently leads to

(2.9) q(x, t) = Σ−1pT (−x,−t).

Under this potential reduction, we have

(2.10) V T (−x,−t, λ) = CV (x, t, λ)C−1, QT (−x,−t, λ) = CQ(x, t, λ)C−1.

All those certainly imply that the group reduction in (2.7) agrees with the zero
curvature equation (2.5). Therefore, from the multicomponent local NLS equations
(2.6), we obtain the following multicomponent nonlocal reverse-spacetime integrable
NLS equations:

(2.11) ipt(x, t) =
β

α2
[pxx(x, t) + 2p(x, t)Σ−1pT (−x,−t)p(x, t)],

where Σ is an arbitrary invertible symmetric matrix. When n = 1, we can obtain
two scalar examples (see, e.g., [2]):

(2.12) ipt(x, t) = −pxx(x, t) + 2σp2(x, t)p(−x,−t), σ = ±1.

Those equations possess the PT symmetry: if p(x, t) is a solution, so is p∗(−x,−t),
where ∗ denotes the complex conjugate.

3. Inverse scattering transforms

In this section, we discuss the scattering and inverse scattering for the nonlocal
reverse-spacetime NLS equations (2.11) by developing Riemann-Hilbert problems
associated with the spectral problems in (2.2) [12] (see also [20, 21]). The results
will provide the basis for generating soliton solutions in the next section.

3.1. Property of eigenfunctions. Assume that all the potentials satisfy

(3.1)

∫ ∞

−∞

∫ ∞

−∞
|x|m1 |t|m2

n∑
j=1

|pj | dxdt < ∞, m1,m2 = 0, 1.

Upon setting P̌ = iP and Q̌ = iQ, an equivalent pair of matrix spectral problems
to (2.2) is given by

(3.2) ψx = iλ[Λ, ψ] + P̌ψ,

(3.3) ψt = iλ2[Ω, ψ] + Q̌ψ,

which are connected with (2.2) via ψ = φe−iλΛx. Applying a generalized Liouville’s
formula [22], we can have (detψ)x = 0, since tr(P̌ ) = 0. To develop associated
Riemann-Hilbert problems, we adopt the following adjoint equation of the x-part
of (2.2) and the adjoint equation of (3.2):

(3.4) iφ̃x = φ̃U
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and

(3.5) iψ̃x = λ[ψ̃,Λ] + ψ̃P,

between which there is a link: ψ̃ = eiλΛxφ̃.
Let ψ(λ) be a matrix eigenfunction of the spatial spectral problem (3.2) associ-

ated with an eigenvalue λ. On one hand, it is clear that Cψ−1(x, t, λ) is a matrix
adjoint eigenfunction associated with the same eigenvalue λ. On the other hand,
under the nonlocal potential reduction (2.8), we can have

i[ψT (−x,−t, λ)C]x = i[−(ψx)
T (−x,−t, λ)C]

= i{−iλ[Λ, ψ(−x,−t, λ)]− P̌ (−x,−t)ψ(−x,−t, λ)}TC

= i{−iλ[ψT (−x,−t, λ),Λ]− ψT (−x,−t, λ)P̌T (−x,−t)}C
= λ[ψT (−x,−t, λ)C,Λ] + ψT (−x,−t, λ)C[C−1PT (−x,−t)C]

= λ[ψT (−x,−t, λ)C,Λ] + ψT (−x,−t, λ)CP (x, t),

and thus, the matrix function

(3.6) ψ̃(x, t, λ) := ψT (−x,−t, λ)C

presents another matrix adjoint eigenfunction associated with the same original
eigenvalue λ, i.e., ψT (−x,−t, λ)C solves the adjoint spectral problem (3.5).

Now, by checking the asymptotic properties of adjoint eigenfunctions, the unique-
ness of solutions tells us

(3.7) ψT (−x,−t, λ) = Cψ−1(x, t, λ)C−1

for a matrix eigenfunction ψ that satisfies ψ → In+1, when x or t → ∞ or −∞.
This implies that the spectral problem (3.2) (or the adjoint spectral problem (3.5))
has the involution property (3.7) for its eigenfunctions, under the group reduction
in (2.7).

3.2. Riemann-Hilbert problems. Let us now formulate a class of associated
Riemann-Hilbert problems with the space variable x. The procedure is actually
the same as the one for the local case [16], but we present it below for ease of
reference.

In order to facilitate the expression below, we assume that

(3.8) α = α1 − α2 < 0, β = β1 − β2 < 0.

Otherwise, some changes are needed in determining generalized Jost solutions (a
kind of combinations of Jost solutions). To establish the scattering problem, we
take the two matrix eigenfunctions ψ±(x, λ) of (3.2) with the asymptotic conditions

(3.9) ψ± → In+1, when x → ±∞,

respectively. Since (detψ)x = 0, we see that detψ± = 1 for all x ∈ R. Because

(3.10) φ± = ψ±E, E = eiλΛx,

are both matrix eigenfunctions of the spectral problems (2.2), they must be linearly
dependent, and accordingly, we have

(3.11) ψ−E = ψ+ES(λ), λ ∈ R,
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where S(λ) = (sjl)(n+1)×(n+1) is traditionally called the scattering matrix. Note

that detS(λ) = 1 since detψ± = 1; and that by (3.7), we have (ψ±)T (−x,−t, λ) =
C(ψ±)−1(x, t, λ)C−1, and further

(3.12) ST (λ) = CS(λ)C−1.

It is known that we can turn the x-part of (2.2) into the following Volterra
integral equations for ψ± [12]:

ψ−(x, λ) = In+1 +

∫ x

−∞
eiλΛ(x−y)P̌ (y)ψ−(λ, y)eiλΛ(y−x) dy,(3.13)

ψ+(x, λ) = In+1 −
∫ ∞

x

eiλΛ(x−y)P̌ (y)ψ+(λ, y)eiλΛ(y−x) dy,(3.14)

where the asymptotic conditions (3.9) have been applied. Now, the theory of
Volterra integral equations shows that the eigenfunctions ψ± could exist and al-
low analytical continuations off the real line λ ∈ R as long as the integrals on the
right-hand sides converge, which can be observed on the basis of (3.1).

First, in order to determine two generalized Jost solutions, denoted by T+ and
T−, which are analytic in C

+ and C
− (the upper and lower half-planes) and con-

tinuous in C̄+ and C̄− (the closed upper and lower half-planes), respectively, we
express

(3.15) ψ± = (ψ±
1 , ψ

±
2 , . . . , ψ

±
n+1),

where ψ±
j denotes the jth column of φ± (1 ≤ j ≤ n + 1). Then, we take the

generalized matrix Jost solution T+ as

(3.16) T+ = T+(x, λ) = (ψ−
1 , ψ

+
2 , . . . , ψ

+
n+1) = ψ−H1 + ψ+H2,

which is analytic in λ ∈ C+ and continuous in λ ∈ C̄+. Here we denote

(3.17) H1 = diag(1, 0, . . . , 0︸ ︷︷ ︸
n

), H2 = diag(0, 1, . . . , 1︸ ︷︷ ︸
n

).

Second, to determine the other generalized Jost solution T−, i.e., the analytic
counterpart of T+ in the lower half-plane C−, we adopt the adjoint matrix spectral
problems. Notice that the inverse matrices φ̃± = (φ±)−1 and ψ̃± = (ψ±)−1 solve

those two adjoint equations, respectively. Therefore, upon writing ψ̃± as

(3.18) ψ̃± =

⎡
⎢⎢⎢⎣

ψ̃±,1

ψ̃±,2

...

ψ̃±,n+1

⎤
⎥⎥⎥⎦ ,

where ψ̃±,j denotes the jth row of ψ̃± (1 ≤ j ≤ n+1), we can take the generalized
Jost solution T− as the adjoint matrix solution of (3.5), i.e.,

(3.19) T− =

⎡
⎢⎢⎢⎣

ψ̃−,1

ψ̃+,2

...

ψ̃+,n+1

⎤
⎥⎥⎥⎦ = H1ψ̃

− +H2ψ̃
+ = H1(ψ

−)−1 +H2(ψ
+)−1,

which is analytic for λ ∈ C− and continuous for λ ∈ C̄−.
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256 WEN-XIU MA

From detψ± = 1, the definitions of T±, and the scattering relation between ψ+

and ψ−, we see that

(3.20) detT+(x, λ) = s11(λ), detT−(x, λ) = ŝ11(λ),

where S−1(λ) = (S(λ))−1 = (ŝjl)(n+1)×(n+1), and thus

lim
x→∞

T+(x, λ) =

[
s11(λ) 0

0 In

]
, λ ∈ C̄

+;(3.21)

lim
x→∞

T−(x, λ) =

[
ŝ11(λ) 0

0 In

]
, λ ∈ C̄

−.

Now we can define the following two unimodular generalized Jost solutions:

G+(x, λ) = T+(x, λ)

[
s−1
11 (λ) 0

0 In

]
, λ ∈ C̄

+;(3.22)

(G−)−1(x, λ) =

[
ŝ−1
11 (λ) 0

0 In

]
T−(x, λ), λ ∈ C̄

−.

The required class of matrix Riemann-Hilbert problems on the real line for the
nonlocal reverse-spacetime NLS equations (2.11) reads

(3.23) G+(x, λ) = G−(x, λ)G0(x, λ), λ ∈ R,

where by (3.11), the jump matrix G0 is

G0(x, λ) = E

[
ŝ−1
11 (λ) 0

0 In

]
S̃(λ)

[
s−1
11 (λ) 0

0 In

]
E−1,(3.24)

with S̃(λ) = (H1 +H2S(λ))(H1 + S−1(λ)H2).

In this jump matrix G0, the matrix S̃(λ) = (s̃jl)(n+1)×(n+1) can be worked out as
follows:

s̃1,j+1 = ŝ1,j+1, s̃j+1,1 = sj+1,1, 1 ≤ j ≤ n;(3.25)

s̃jj = 1, 1 ≤ j ≤ n+ 1; s̃jl = 0, otherwise.

Also, under (3.1), the Volterra integral equations (3.13) and (3.14) generate the
canonical normalization conditions:

(3.26) G±(x, λ) → In+1, when λ ∈ C̄
± → ∞,

for the associated Riemann-Hilbert problems, and the nonlocal reduction (2.7) leads
to the involution property:

(3.27) (G+)T (−x,−t, λ) = CG−(x, t, λ)C−1.

It is worth noting that the jump matrix G0 carries all basic scattering data from the
scattering matrix S(λ). Solutions to the above Riemann-Hilbert problems depend
on poles of s11(λ) and ŝ11(λ), and kernels of T+ and T− at those zeros [12], and

can be computed, particularly in the reflectionless case, i.e., S̃ = In+1, to obtain
soliton solutions [23].
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3.3. Evolution of the scattering data. To complete the direct scattering trans-
forms, we compute the derivative of the equation (3.11) with the time variable t,
and use the temporal spectral problem (3.3) that ψ± satisfy. It then follows that
the scattering matrix S needs to satisfy an evolution matrix equation:

(3.28) St = iλ2[Ω, S].

This exactly tells us that the time-dependent scattering coefficients obey the fol-
lowing evolution laws:
(3.29){

s12 = s12(0, λ)e
iβλ2t, s13 = s13(0, λ)e

iβλ2t, . . . , s1,n+1 = s1,n+1(0, λ)e
iβλ2t,

s21 = s21(0, λ)e
−iβλ2t, s31 = s31(0, λ)e

−iβλ2t, . . . , sn+1,1 = sn+1,1(0, λ)e
−iβλ2t,

and that all other scattering coefficients are independent of the time variable t.

3.4. Transforming the Riemann-Hilbert problems. To determine the gener-
alized matrix Jost solutions, we change the Riemann-Hilbert problems in (3.23) as
follows:

(3.30)

{
G+ −G− = G−v, v = G0 − In+1, on R,
G± → In+1 as λ ∈ C̄± → ∞.

Let G(λ) = G±(λ) if λ ∈ C
±, respectively. Assume that G has R simple poles

{μj}Rj=1, where R is an arbitrarily given natural number, and those poles are off
the real line R to avoid spectral singularities. Introduce

(3.31) G̃±(λ) = G±(λ)−
R∑

j=1

Gj

λ− μj
, λ ∈ C̄

±; G̃(λ) = G̃±(λ), λ ∈ C
±;

where Gj is the residue of G(λ) at λ = μj , i.e.,

Gj = res(G(λ), μj) = lim
λ→μj

(λ− μj)G(λ).

Then, we have

(3.32)

{
G̃+ − G̃− = G+ −G− = G−v, on R,

G̃± → In+1 as λ ∈ C̄± → ∞.

Further, by the Sokhotski-Plemelj formula [24], we obtain the solutions

(3.33) G̃(λ) = In+1 +
1

2πi

∫ ∞

−∞

G−v(ξ)

ξ − λ
dξ, λ ∈ C \ R.

Now, taking the limit as λ → μl generates

lhs = lim
λ→μl

G̃ = Fl −
R∑
j �=l

Gj

μl − μj
, rhs = In+1 +

1

2πi

∫ ∞

−∞

(G−v)(ξ)

ξ − μl
dξ,

where Fl = limλ→μl
[(λ− μl)G(λ)−Gl]/(λ− μl), and consequently, we obtain the

transformed systems:

(3.34) In+1 − Fl +
R∑
j �=l

Gj

μl − μj
+

1

2πi

∫ ∞

−∞

(G−v)(ξ)

ξ − λl
dξ = 0, 1 ≤ l ≤ R.

These systems, like the Gelfand-Levitan-Marchenko equation, are used to determine
solutions to the associated Riemann-Hilbert problems, and thus, the generalized
matrix Jost solutions. The existence and solvability problem of the systems has
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yet to be investigated. In the case of soliton solutions, we will present an explicit
formulation of solutions to the corresponding Riemann-Hilbert problems later.

3.5. Recovery of the potential. To recover the potential matrix P from the gen-
eralized matrix Jost solutions, we make an asymptotic expansion for the generalized
Jost solution G+:

(3.35) G+(x, t, λ) = In+1 +
1

λ
G+

1 (x, t) + O(
1

λ2
), λ → ∞.

Then plugging the asymptotic expansion into the matrix spectral problem (3.2), all
O(1) terms engender

(3.36) P = lim
λ→∞

λ[G+(λ),Λ] = −[Λ, G+
1 ].

To get the potential for the nonlocal equations, one needs to check an involution
property for G+

1 :

(3.37) (G+
1 )

T (−x,−t) = −CG+
1 (x, t)C

−1,

which is a consequence of the involution property for G in (3.27). Then if so, we
obtain the solutions to the nonlocal reverse-spacetime NLS equations (2.11):

(3.38) pj = −α(G+
1 )1,j+1, 1 ≤ j ≤ n,

where G+
1 = ((G+

1 )jl)(n+1)×(n+1).
This finishes the inverse scattering procedure from the scattering matrix S(λ),

through the jump matrix G0(λ) and the solution {G+(λ), G−(λ)} to the associated
Riemann-Hilbert problems, to the potential matrix P . The resulting potential
matrix P defines exact solutions to the nonlocal reverse-spacetime NLS equations
(2.11).

4. Soliton solutions

In this section, we constructN -soliton solutions to the nonlocal reverse-spacetime
integrable NLS equations (2.11). We are not going to solve the transformed systems,
but directly apply the Riemann-Hilbert technique.

Let N be another arbitrary natural number. Assume that s11 has N geomet-
rically simple zeros {λk ∈ C, 1 ≤ k ≤ N}, and ŝ11 has other N geometrically

simple zeros {λ̂k ∈ C, 1 ≤ k ≤ N}. Upon recalling (3.20), we see that each of
ker T+(λk), 1 ≤ k ≤ N , contains only a single basis column vector, denoted by vk,

1 ≤ k ≤ N ; and each of ker T−(λ̂k), 1 ≤ k ≤ N , contains only a single basis row
vector, denoted by v̂k, 1 ≤ k ≤ N . This way, we have

(4.1) T+(λk)vk = 0, v̂kT
−(λ̂k) = 0, 1 ≤ k ≤ N,

from which we can determine those kernel vectors by using the associated spectral
problems that T+ and T− satisfy [16].

Soliton solutions are generated from the Riemann-Hilbert problems in (3.23)

with the identity jump matrix G0 = In+1 (equivalently, S̃ = In+1), which can
be achieved under the zero reflection coefficient conditions si1 = ŝ1i = 0, 2 ≤
i ≤ n + 1, in the scattering problem. Such Riemann-Hilbert problems with the
canonical normalization condition and the zero structures given in (4.1) can be
solved explicitly (see, e.g., [12, 23, 25]).
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NONLOCAL REVERSE-SPACETIME NLS EQUATIONS 259

However, in the case of nonlocal integrable equations, we often do not have the
property

(4.2) {λk|1 ≤ k ≤ N} ∩ {λ̂k|1 ≤ k ≤ N} = ∅,
and so we need to generalize the solution formulation in the literature. The following
theorem offers us a way to determine solutions to this kind of special Riemann-
Hilbert problems.

Theorem 4.1 (Formulation of solutions). Let λk and λ̂k, 1 ≤ k ≤ N , be two sets
of N complex numbers, and let vk and v̂k, 1 ≤ k ≤ N , be (n + 1)-dimensional
column and row vectors, respectively. Suppose that G+ and G− are defined by

(4.3) G+(λ) = In+1−
N∑

k,l=1

vk(M
−1)klv̂l

λ− λ̂l

, (G−)−1(λ) = In+1+

N∑
k,l=1

vk(M
−1)klv̂l

λ− λk
,

where M = (mkl)N×N is a square matrix whose entries are determined by

(4.4) mkl =

⎧⎨
⎩

v̂kvl
λl−λ̂k

, if λl 	= λ̂k,

0, if λl = λ̂k,
1 ≤ k, l ≤ N.

Then, (a) the following properties hold:

(4.5)
( N∏
l=1

(λ− λ̂l)G
+
)
(λk)vk = 0, v̂k

( N∏
l=1

(λ− λl)(G
−)−1

)
(λ̂k) = 0, 1 ≤ k ≤ N ;

(b) G+ and G− satisfy

(4.6) (G−(λ))−1G+(λ) = In+1,

if we require an orthogonal condition

(4.7) v̂kvl = 0, when λl = λ̂k, 1 ≤ k, l ≤ N.

Proof. The characteristic properties in (4.5) follow directly from the definitions of
G± in (4.3) and M in (4.4). To prove (4.6), let us rewrite

G+ = In+1 − vM−1R̂v̂, (G−)−1 = In+1 + vRM−1v̂,

where {
v = (v1, . . . , vN ), R = diag((λ− λ1)

−1, . . . , (λ− λN )−1),

v̂ = (v̂T , . . . , v̂TN )T , R̂ = diag((λ− λ̂1)
−1, . . . , (λ− λ̂N )−1).

Then, taking (4.7) into consideration, we can check the (k, l)-th entries as follows:

(R̂v̂vR)kl = (MR− R̂M)kl = 0, when λl = λ̂k;

(R̂v̂vR)kl = (MR− R̂M)kl =
v̂kvl

(λ− λ̂k)(λ− λ̂l)
, otherwise;

and thus, we see that R̂v̂vR = MR− R̂M . Further, by using this equality, we can
easily verify (4.6). The proof is finished. �

If the condition (4.2) holds, then the above result reduces to the one presented in

[12,23,25]. If λk ∈ C
+ and λ̂k ∈ C

−, 1 ≤ k ≤ N , then G+ and G− are meromorphic
in the upper and lower half-planes, respectively, and thus, they provide solutions
to the Riemann-Hilbert problems with the identity jump matrix on the real line.
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To present soliton solutions to the nonlocal reverse-spacetime NLS equations
(2.11), we need to formulate two generalized Jost solutions. Motivated by the
previous property of eigenfunctions, we take N zeros of s11(= detT+(λ)): λk ∈
C, 1 ≤ k ≤ N, and N zeros of ŝ11(= detT−(λ)): λ̂k ∈ C, 1 ≤ k ≤ N ; and assume
[16] that ker T+(λk) and kerT−(λk), 1 ≤ k ≤ N , are spanned by

(4.8) vk(x, t) = vk(x, t, λk) = eiλkΛx+iλ2
kΩtwk, 1 ≤ k ≤ N,

and

(4.9) v̂k(x, t) = v̂k(x, t, λ̂k) = ŵke
−iλ̂kΛx−iλ̂2

kΩtC, 1 ≤ k ≤ N,

respectively. Here the constant column vectors wk’s and row vectors ŵk’s are arbi-
trary but need to satisfy

(4.10) ŵkCwl = 0, when λl = λ̂k, 1 ≤ k, l ≤ N,

which is a consequence of the orthogonal condition (4.7).
Finally, recalling (3.22), if the solutions to the specific Riemann-Hilbert prob-

lems, determined by (4.3) and (4.4), satisfy the involution property (3.27), then
all matrices, G+

1 , with many free parameters satisfy the corresponding involution
property (3.37). Therefore, by (3.38), we obtain N -soliton solutions to the nonlocal
reverse-spacetime NLS equations (2.11), which we summarize as follows.

Theorem 4.2 (N-soliton solutions). Let λk, 1 ≤ k ≤ N, and λ̂k, 1 ≤ k ≤ N,
be two sets of arbitrary N complex numbers, and let wk, 1 ≤ k ≤ N, and ŵk, 1 ≤
k ≤ N, be two sets of arbitrary constant (n + 1)-dimensional complex column and
row vectors, respectively. Assume that the wk’s and ŵk’s satisfy the conditional
pairwise orthogonal condition (4.10), and that the solutions to the Riemann-Hilbert
problems with the identity jump matrix on the real line, determined by (4.3) and
(4.4), satisfy the involution property (3.27). Then we have the N-soliton solutions
to the nonlocal reverse-spacetime integrable NLS equations (2.11):

(4.11) pj = α

N∑
k,l=1

vk,1(M
−1)klv̂l,j+1, 1 ≤ j ≤ n,

where M is defined by (4.4), and vk = (vk,1, vk,2, . . . , vk,n+1)
T and v̂k = (v̂k,1,

v̂k,2, . . . , v̂k,n+1) are determined by (4.8) and (4.9), respectively.

When n = N = 1, we denote w1 = (w1,1, w1,2)
T and ŵ1 = (ŵ1,1, ŵ1,2). A direct

computation leads to the following one-soliton solution to the nonlocal reverse-
spacetime integrable NLS equation (2.12):

(4.12) p = − (λ1 − λ̂1)w1,1ŵ1,2 e
−i(λ̂1x+λ̂2

1t)

σw1,1ŵ1,1 + w1,2ŵ1,2 ei(λ1−λ̂1)x+i(λ2
1−λ̂2

1)t
,

where λ1 and λ̂1 are arbitrary, and w2
1,1 + σw2

1,2 = ŵ2
1,1 + σŵ2

1,2 = 0, which comes
from the involution condition.

5. Concluding remarks

Nonlocal reverse-spacetime nonlinear Schrödinger (NLS) equations were pre-
sented and their inverse scattering transforms were analyzed. A class of associated
Riemann-Hilbert problems is the basis for our discussion. The Sokhotski-Plemelj
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formula was used to determine solutions to the associated Riemann-Hilbert prob-
lems, and soliton solutions to the nonlocal reverse-spacetime integrable NLS equa-
tions were constructed from the Riemann-Hilbert problems with the identity jump
matrix or equivalently the reflectionless inverse scattering transforms.

It is worth pointing out that it would be interesting to determine any certain
kind of connections among different solution methods, including the Riemann-
Hilbert technique [12, 23, 25], the Hirota direct method [26], the Wronskian tech-
nique [27, 28], and the Darboux transformation [29, 30]. Moreover, various studies
have exhibited great richness of other kinds of solutions in nonlinear dispersive
waves recently, including lump solutions [31–33], Rossby wave solutions [34], soli-
tonless solutions [35, 36], and algebro-geometric solutions [37, 38]. It would also be
very interesting to understand how to construct those exact solutions through the
Riemann-Hilbert perspective or a larger basic perspective.
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