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 A B S T R A C T

This study investigates dispersion-induced lump structures in a generalized (2+1)-dimensional 
KP-like framework with spatially balanced dispersions. Using a generalized bilinear form of the 
governing equation, we construct positive quadratic wave solutions via symbolic computation, 
which give rise to lump structures. Our analysis shows that the stationary points of these 
quadratic waves align along a straight line in the spatial domain and propagate at constant 
velocities. Along this characteristic line, the lump wave amplitude vanishes. The formation of 
these lump waves is governed by the combined influence of four distinct dispersion terms in 
the model.

1. Introduction

Exact and explicit closed-form solutions play a central role in mathematical physics and engineering, as they offer profound 
insights and provide general frameworks for tackling complex nonlinear problems. However, obtaining such solutions is often a 
challenging endeavor. Consequently, much research has focused on either deriving closed-form expressions directly or determining 
the conditions under which they can exist.

In the context of soliton theory and integrable models, wave structures such as solitons, rogue waves, and lump waves are often 
constructed through symbolic or computational techniques. These dispersive waves emerge from the intricate interplay between 
nonlinearity and dispersion, making their construction, whether analytical or numerical, a central focus in the study of wave 
dynamics across diverse physical and engineering systems.

Two cornerstone techniques in soliton theory and the analysis of integrable models are the inverse scattering transform (IST) [1] 
and the Hirota bilinear method [2]. The IST serves as a nonlinear generalization of the Fourier transform tailored for integrable 
systems. It is widely employed to solve initial-value problems for nonlinear equations via their associated Lax pairs [3], and to 
analyze the asymptotic behavior of dispersive waves in the long-time limit, including solutions that do not contain solitons [4]. In 
contrast, the Hirota method provides an efficient framework for generating exact wave solutions, such as solitons and lump waves, 
particularly for nonlinear dispersive equations in (2+1)- and (3+1)-dimensional settings [5–9].

Let 𝑥 and 𝑦 denote spatial coordinates, and 𝑡 represent time. Given a polynomial 𝑃 (𝑥, 𝑦, 𝑡), one can formulate a Hirota bilinear 
differential equation in (2+1)-dimensions: 

𝑃 (𝐷𝑥, 𝐷𝑦, 𝐷𝑡)𝑓 ⋅ 𝑓 = 0, (1.1)
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where 𝐷𝑥, 𝐷𝑦 and 𝐷𝑡 are Hirota’s bilinear operators [2], defined by

𝐷𝑚
𝑥𝐷

𝑛
𝑦𝐷

𝑘
𝑡 𝑓 ⋅ 𝑓 =

( 𝜕
𝜕𝑥

− 𝜕
𝜕𝑥′

)𝑚( 𝜕
𝜕𝑦

− 𝜕
𝜕𝑦′

)𝑛( 𝜕
𝜕𝑡

− 𝜕
𝜕𝑡′

)𝑘𝑓 (𝑥, 𝑦, 𝑡)𝑓 (𝑥′, 𝑦′, 𝑡′)||
|𝑥′=𝑥,𝑦′=𝑦,𝑡′=𝑡

,

with 𝑚, 𝑛, 𝑘 being nonnegative integers. Using Bell polynomial theory, one can often derive nonlinear PDEs for a scalar function 𝑢
from Hirota bilinear forms via logarithmic derivative transformations (see, e,g., [10]), for example, 

𝑢 = 𝛽(ln 𝑓 )𝑥𝑥, 𝛽(ln 𝑓 )𝑦𝑦, 𝛽(ln 𝑓 )𝑥𝑦, 𝛽(ln 𝑓 )𝑥, 𝛽(ln 𝑓 )𝑦, (1.2)

where 𝛽 is an appropriate nonzero constant. Hirota’s bilinear method allows for the construction of 𝑁-soliton solutions in the 
exponential superposition form (see, e.g., [5,11]): 

𝑓 =
∑

𝜆=0,1
exp(

𝑁
∑

𝑖=1
𝜆𝑖𝜂𝑖 +

∑

𝑖<𝑗
𝜆𝑖𝜆𝑗𝑐𝑖𝑗 ), (1.3)

where the sum ∑𝜆=0,1 runs over all combinations 𝜆1, 𝜆2,… , 𝜆𝑁 ∈ {0, 1}. The phase shifts 𝑐𝑖𝑗 and the wave variables 𝜂𝑖 are given by 

exp(𝑐𝑖𝑗 ) = −
𝑃 (𝜔𝑗 − 𝜔𝑖, 𝑘𝑖 − 𝑘𝑗 , 𝑙𝑖 − 𝑙𝑗 )
𝑃 (𝜔𝑗 + 𝜔𝑖, 𝑘𝑖 + 𝑘𝑗 , 𝑙𝑖 + 𝑙𝑗 )

, where 1 ≤ 𝑖 < 𝑗 ≤ 𝑁, (1.4)

and 
𝜂𝑖 = 𝑘𝑖𝑥 + 𝑙𝑖𝑦 − 𝜔𝑖𝑡 + 𝜂𝑖,0, where 1 ≤ 𝑖 ≤ 𝑁. (1.5)

The only requirement for the existence of 𝑁-soliton solutions is the dispersion relation: 
𝑃 (−𝜔𝑖, 𝑘𝑖, 𝑙𝑖) = 0, where 1 ≤ 𝑖 ≤ 𝑁. (1.6)

A central problem is to determine whether a function 𝑓 of the form (1.3) indeed solves the bilinear Eq. (1.1) under the dispersion 
conditions (1.6). A systematic algorithm for this verification, with examples in both (1+1)- and (2+1)-dimensional cases, is presented 
in [11,12].

Another important class of explicit wave solutions in nonlinear integrable models comprises lump waves and rogue waves, which 
are closely related to solitons and capture a wide spectrum of nonlinear phenomena [13]. Lump waves are rationally localized in 
space, vanishing at infinity in all directions at a fixed time [13,14]. For instance, the KPI equation admits a rich variety of lump 
solutions [6], some of which arise in the long-wave limit of multi-soliton configurations [15]. These localized structures are not 
restricted to integrable systems: lump-type waves also appear in nonintegrable (2+1)-dimensional KP, BKP, and KP–Boussinesq-type 
extensions [16], and even in certain higher-dimensional linear wave settings via linear superposition [17,18].

A widely used approach for constructing lump solutions is the sum-of-squares ansatz, in which a positive quadratic function is 
substituted into a bilinear equation [6,13]. Applying logarithmic derivative transformations to such quadratic forms then produces 
lump solutions for various nonlinear model equations. In this work, we employ this method to study a (2+1)-dimensional generalized 
KP-like (gKP-like) equation incorporating two sets of nonlinear terms and four distinct dispersive terms. These nonlinear and 
dispersive effects serve as the balancing mechanisms that sustain lump structures. Lump solutions are derived symbolically using 
computer algebra systems, and the stationary points of the underlying quadratic function are analyzed to provide insight into the 
wave dynamics. The paper concludes with remarks and prospective directions for related problems.

2. A generalized KP-like model with spatially balanced dispersions

We consider a class of generalized bilinear differential operators introduced in [19]:
𝐷𝑚

𝑝,𝑥𝐷
𝑛
𝑝,𝑦𝐷

𝑘
𝑝,𝑡𝑓 ⋅ 𝑓

=
( 𝜕
𝜕𝑥

+ 𝛼𝑝
𝜕
𝜕𝑥′

)𝑚( 𝜕
𝜕𝑦

+ 𝛼𝑝
𝜕
𝜕𝑦′

)𝑛( 𝜕
𝜕𝑡

+ 𝛼𝑝
𝜕
𝜕𝑡′

)𝑘𝑓 (𝑥, 𝑦, 𝑡)𝑓 (𝑥′, 𝑦′, 𝑡′)||
|𝑥′=𝑥,𝑦′=𝑦,𝑡′=𝑡

, (2.1)

where 
𝛼𝑘𝑝 = (−1)𝑟(𝑘) where 𝑘 ≡ 𝑟(𝑘) mod 𝑝, 0 ≤ 𝑟(𝑘) < 𝑝. (2.2)

For example, choosing 𝑝 = 3 yields the pattern 
𝛼3 = −1, 𝛼23 = 𝛼33 = 1, 𝛼43 = −1, 𝛼53 = 𝛼63 = 1, ⋯ , (2.3)

while taking 𝑝 = 5 gives 
𝛼5 = −1, 𝛼25 = 1, 𝛼35 = −1, 𝛼45 = 𝛼55 = 1, 𝛼65 = −1, 𝛼75 = 1, 𝛼85 = −1, 𝛼95 = 𝛼105 = 1, ⋯ . (2.4)

It is noted that when 𝑝 is even, the generalized derivatives reduce to the standard Hirota bilinear derivatives, whereas when 𝑝 is 
odd, they yield new forms of bilinear derivatives.

Setting 𝑝 = 3, we consider a gKP-like bilinear equation:
𝐹 (𝑓 )
gKP-like
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∶=
(

𝐷4
3,𝑥 + 𝛾0𝐷

3
3,𝑥 + 𝛾1𝐷3,𝑡𝐷3,𝑥 + 𝛾2𝐷3,𝑡𝐷3,𝑦 + 𝛾3𝐷

2
3,𝑥 + 𝛾4𝐷

2
3,𝑦
)

𝑓 ⋅ 𝑓

= 2
[

3𝑓 2
𝑥𝑥 + 𝛾0𝑓𝑓𝑥𝑥𝑥 + 𝛾1(𝑓𝑡𝑥𝑓 − 𝑓𝑡𝑓𝑥) + 𝛾2(𝑓𝑡𝑦𝑓 − 𝑓𝑡𝑓𝑦)

+𝛾3(𝑓𝑥𝑥𝑓 − 𝑓 2
𝑥 ) + 𝛾4(𝑓𝑦𝑦𝑓 − 𝑓 2

𝑦 )
]

= 0, (2.5)

where 𝐷3,𝑥, 𝐷3,𝑦 and 𝐷3,𝑡 denote the generalized bilinear derivatives, and 𝛾𝑖 for 0 ≤ 𝑖 ≤ 4 are arbitrary constants. This represents a 
natural generalization of the standard KP equation. By redefining the dependent variable as 

𝑢 = 2(ln 𝑓 )𝑥, (2.6)

we obtain the corresponding gKP-like model equation:

𝑃gKP-like(𝑢) ∶= 3𝑢𝑥𝑢𝑥𝑥 + 3𝑢𝑢2𝑥 +
3
2
𝑢3𝑢𝑥 +

3
2
𝑢2𝑢𝑥𝑥

+𝛾0
[3
4
𝑢2𝑢𝑥 +

3
2
(𝑢𝑢𝑥)𝑥 + 𝑢𝑥𝑥𝑥

]

+𝛾1𝑢𝑡𝑥 + 𝛾2𝑢𝑡𝑦 + 𝛾3𝑢𝑥𝑥 + 𝛾4𝑢𝑦𝑦 = 0. (2.7)

This new model incorporates two sets of nonlinear terms and four dispersion terms.
In the special case 𝛾1 = 𝛾4 = 1 and all other coefficients set to zero, the equation reduces to the standard KP-like equation: 

3𝑢𝑥𝑢𝑥𝑥 + 3𝑢𝑢2𝑥 +
3
2
𝑢3𝑢𝑥 +

3
2
𝑢2𝑢𝑥𝑥 + 𝑢𝑡𝑥 + 𝑢𝑦𝑦 = 0., (2.8)

whose rational solutions have been studied in [20].
The model Eq. (2.7) is exactly related to the generalized bilinear Eq. (2.5) via 

𝑃gKP-like(𝑢) =
[
𝐹gKP-like(𝑓 )

𝑓 2

]

𝑥. (2.9)

Hence, 𝑢, defined by (2.6), satisfies the nonlinear generalized model Eq. (2.7) whenever 𝑓 solves the bilinear Eq. (2.5).
Several questions remain concerning the integrability of this model, including whether it supports lump solutions, which are 

characteristic of integrable systems. In the following section, we address this issue, with a particular focus on a class of lump 
solutions shaped by the dispersion terms.

3. Lump waves governed by dispersion

We proceed to construct lump wave solutions of the gKP-like model Eq. (2.7) by performing symbolic computations on the 
corresponding generalized bilinear Eq. (2.5). In particular, we show that all four dispersion terms play a crucial role in generating 
lump waves and analyze the stationary points of the resulting quadratic function.

3.1. Application of the sum-of-squares ansatz

The sum-of-squares ansatz is a well-established method for constructing lump solutions of nonlinear evolution equations in higher 
dimensions, as illustrated in [6]. The approach begins by expressing the dependent variable as a logarithmic derivative of a positive 
quadratic function. The quadratic function is generally represented as a sum of squared linear terms augmented by a constant: 

𝑓 = 𝜉21 + 𝜉22 + 𝑎9, 𝜉1 = 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑡 + 𝑎4, 𝜉2 = 𝑎5𝑥 + 𝑎6𝑦 + 𝑎7𝑡 + 𝑎8, (3.1)

which guarantees a rationally localized solution in all spatial directions. Substituting this form into the generalized bilinear 
representation of the target equation reduces the problem to solving an algebraic system for the nine parameters 𝑎𝑖. This framework 
provides a systematic basis for generating general lump wave structures of lower order in (2+1)-dimensional settings [13], with 
symbolic computation used to determine the coefficients.

Substituting the function 𝑓 from (3.1) into the generalized bilinear Eq. (2.5) yields a system of algebraic equations. Solving this 
system with computer algebra provides explicit expressions for 𝑎3, 𝑎7 and 𝑎9:

𝑎3 = − 1
(𝑎1𝛾1 + 𝑎2𝛾2)2 + (𝑎5𝛾1 + 𝑎6𝛾2)2

[

𝑎1(𝑎21 + 𝑎25)𝛾1𝛾3 + 𝑎2(𝑎22 + 𝑎26)𝛾2𝛾4

+(𝑎1𝑎22 − 𝑎1𝑎
2
6 + 2𝑎2𝑎5𝑎6)𝛾1𝛾4 + (𝑎21𝑎2 + 2𝑎1𝑎5𝑎6 − 𝑎2𝑎

2
5)𝛾2𝛾3

]

, (3.2)

𝑎7 = − 1
(𝑎1𝛾1 + 𝑎2𝛾2)2 + (𝑎5𝛾1 + 𝑎6𝛾2)2

[

𝑎5(𝑎21 + 𝑎25)𝛾1𝛾3 + 𝑎6(𝑎22 + 𝑎26)𝛾2𝛾4

+(2𝑎1𝑎2𝑎6 − 𝑎22𝑎5 + 𝑎5𝑎
2
6)𝛾1𝛾4 + (2𝑎1𝑎2𝑎5 − 𝑎21𝑎6 + 𝑎25𝑎6)𝛾2𝛾3

]

, (3.3)

and 

𝑎9 = −
3(𝑎21 + 𝑎25)

2[(𝑎1𝛾1 + 𝑎2𝛾2)2 + (𝑎5𝛾1 + 𝑎6𝛾2)2
]

2 2 2
, (3.4)
(𝑎1𝑎6 − 𝑎2𝑎5) (𝛾1 𝛾4 + 𝛾2 𝛾3)

3
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while all other parameters can be chosen arbitrarily. The frequency parameters 𝑎3 and 𝑎7 encode the dispersion relations in (2+1)-
dimensional nonlinear dispersive wave systems, whereas the constant 𝑎9 depends intricately on the wave numbers and plays a key 
role in shaping lump waves. Similar of higher-order dispersion relations have appeared in studies of lump waves associated with 
the second flow of the integrable KP hierarchy [21], and related dynamical behaviors have been investigated in various generalized 
KP-type models (see, e.g., [22,23]).

All expressions, (3.2), (3.3) and (3.4), are simplified by means of symbolic computation. To ensure the parameters are 
well-defined, the dispersion coefficients must satisfy the following condition: 

𝛾21 𝛾4 + 𝛾22 𝛾3 ≠ 0, (3.5)

which guarantees that 
𝛾11 + 𝛾22 ≠ 0. (3.6)

Moreover, the wave numbers must satisfy the determinant condition 
𝑎1𝑎6 − 𝑎2𝑎5 ≠ 0, (3.7)

which further leads to 
𝑎21 + 𝑎25 ≠ 0, 𝑎22 + 𝑎26 ≠ 0, (3.8)

thereby ensuring that the solution 𝑢, defined through the logarithmic derivative transformation (2.6), decays to zero as 𝑥2+𝑦2 → ∞, 
confirming its spatial localization.

With respect to positivity, a necessary and sufficient condition on the dispersion coefficients for the solution is 
𝛾21 𝛾4 + 𝛾22 𝛾3 < 0, (3.9)

which can be verified from the expression (3.4) for 𝑎9.
In summary, the construction of lump wave solutions via the logarithmic derivative transformation requires the two essential 

conditions (3.7) and (3.9). The former ensures the well-posedness of 𝑢 in the entire spatial–temporal domain and guarantee its 
localization, while the later establishes the positivity of the solution. Under these conditions, the resulting 𝑢 indeed represents a 
genuine lump wave solution.

3.2. Characteristic path of stationary points

We now compute the stationary points of the quadratic function 𝑓 defined in (3.1). These points satisfy the system
𝑓𝑥(𝑥(𝑡), 𝑦(𝑡), 𝑡) = 0, 𝑓𝑦(𝑥(𝑡), 𝑦(𝑡), 𝑡) = 0.

Since 𝑓 is quadratic in 𝑥 and 𝑦, this reduces to the linear system:
𝑎1𝜉1 + 𝑎5𝜉2 = 0, 𝑎2𝜉1 + 𝑎6𝜉2 = 0,

where 𝜉1 and 𝜉2 are defined as in (3.1). Under the non-degeneracy condition (3.7), we obtain 
𝜉1 = 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑡 + 𝑎4 = 0, 𝜉2 = 𝑎5𝑥 + 𝑎6𝑦 + 𝑎7𝑡 + 𝑎8 = 0. (3.10)

Solving (3.10) for 𝑥 and 𝑦 as functions of 𝑡 gives the trajectories of the stationary points: 

𝑥(𝑡) =
[(𝑎21 + 𝑎25)𝛾3 − (𝑎22 + 𝑎26)𝛾4]𝛾1 + 2(𝑎1𝑎2 + 𝑎5𝑎6)𝛾2𝛾3

(𝑎1𝛾1 + 𝑎2𝛾2)2 + (𝑎5𝛾1 + 𝑎6𝛾2)2
𝑡 +

𝑎2𝑎8 − 𝑎4𝑎6
𝑎1𝑎6 − 𝑎2𝑎5

, (3.11)

𝑦(𝑡) =
2(𝑎1𝑎2 + 𝑎5𝑎6)𝛾1𝛾4 − [(𝑎21 + 𝑎25)𝛾3 − (𝑎22 + 𝑎26)𝛾4]𝛾2

(𝑎1𝛾1 + 𝑎2𝛾2)2 + (𝑎5𝛾1 + 𝑎6𝛾2)2
𝑡 −

𝑎1𝑎8 − 𝑎4𝑎5
𝑎1𝑎6 − 𝑎2𝑎5

. (3.12)

These formulas describe the time evolution of the stationary points of 𝑓 in the spatial plane.
These stationary points define a straight-line characteristic trajectory, along which 𝑥 and 𝑦 advance uniformly, and the lump 

wave 𝑢 vanishes.

4. Concluding remarks

Through symbolic computation using computer algebra systems, lump waves for a (2+1)-dimensional generalized KP-type model 
were obtained. The stationary points of the quadratic function specify a characteristic curve, along which the wave vanishes.

Lump waves arise in a wide range of physical and mathematical settings, underscoring both their versatility and the challenges 
involved in modeling nonlinear dispersive phenomena. Previous studies have explored lump solutions in linear wave models [17,18], 
as well as in nonlinear, nonintegrable systems in (2+1)-dimensions [24–29] and (3+1)-dimensions [22,30]. Their construction 
often relies on Hirota bilinear forms and related generalizations, which provide effective frameworks for analyzing such localized 
structures [13].
4
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Lump waves interact in rich ways with other coherent structures in (2+1)-dimensional integrable models, such as homoclinic 
and heteroclinic waves [31–33], while 𝑁-soliton solutions and integrability have been widely studied using Riemann–Hilbert, bi-
Hamiltonian methods and neural network-based approaches [34–41]. The properties and dynamics of lump waves in generalized 
(2+1)-dimensional integrable systems and multi-component integrable systems (see, e.g., [42–46]) remain open and important 
questions.

In conclusion, investigating lump waves offers deeper insight into nonlinear dispersive dynamics and may guide applications in 
physical and engineering systems where localized, coherent, and energy-concentrated structures are crucial.
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