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a b s t r a c t

This is an introductory report concerning our recent research on Hamiltonian structures.
We will discuss variational identities associated with continuous and discrete spectral
problems, and their applications to Hamiltonian structures of soliton equations. Our
illustrative examples are the AKNS hierarchy and the Volterra lattice hierarchy associated
with semisimple Lie algebras, and two hierarchies of their integrable couplings associated
with non-semisimple Lie algebras. The resulting Hamiltonian structures generate infinitely
many commuting symmetries and conservation laws for the four soliton hierarchies. The
presented variational identities can be applied to Hamiltonian structures of other soliton
hierarchies.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Matrix spectral problems and zero curvature equations play an important role in exploring the mathematical properties
of associated soliton equations [1–3]. If Lax pairs are taken from non-semisimple Lie algebras, soliton equations come in
a triangular form [4,5], due to the fact that general Lie algebras can be decomposed into semi-direct sums of semisimple
Lie algebras and solvable Lie algebras [6]. Such soliton equations are called integrable couplings [7,8]. There are plenty
of examples of both continuous and discrete integrable couplings [4,5,7–13], and the existing results exhibit diverse
mathematical structures that soliton equations possess. The semi-direct sum decomposition of Lie algebras provides a
practical way to analyze soliton equations, particularly, multi-component soliton equations [11,12,14], allowing for more
classifications of integrable equations supplementing existing theories [15,16], for example, classifications within the areas
of symmetry reductions [17,18] and Lax pairs [19]. In this introductory report, we would like to discuss Hamiltonian
structures of soliton equations associated with general Lie algebras.
Let g be a matrix loop algebra. We assume that a pair of matrix continuous spectral problems

φx = Uφ = U(u, λ)φ,

φt = Vφ = V
(
u, ux, . . . ,

∂m0u
∂xm0
; λ

)
φ,

(1.1)

whereφx andφt denote the partial derivativeswith respect to x and t ,U, V ∈ g are called a Lax pair, λ is a spectral parameter
andm0 is a natural number indicating the differential order, determines (see, say, [20,21]) a continuous soliton equation

ut = K(u) = K(x, t, u, ux, . . .), (1.2)
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through their isospectral (i.e., λt = 0) compatibility condition (i.e., continuous zero curvature equation):

Ut − Vx + [U, V ] = 0. (1.3)

This means that a triple (U, V , K ) satisfies

U ′[K ] − Vx + [U, V ] = 0, where U ′[K ] = U ′(u)[K ] =
∂

∂ε

∣∣∣∣
ε=0
U(u+ εK). (1.4)

There exist rich algebraic structures for such triples in both the isospectral case [22,23] and the non-isospectral case [24–26].
Similarly, it is assumed that a pair of matrix discrete spectral problems{

Eφ = Uφ = U(u, λ)φ,
φt = Vφ = V (u, Eu, E−1u, . . . , u(m), . . . ; λ)φ,

(1.5)

where u = u(n, t) is the potential, E is the shift operator (Ef )(n) = f (n + 1), u(m)(n, t) = (Emu)(n, t) = u(n + m, t), and
U, V ∈ g are a Lax pair, determines (see, say, [27,28]) a discrete soliton equation

ut = K = K(n, t, u, Eu, E−1u, . . .), (1.6)

through their isospectral (i.e., λt = 0) compatibility condition (i.e., discrete zero curvature equation):

Ut = (EV )U − VU . (1.7)

This means that a triple (U, V , K ) satisfies

U ′[K ] = (EV )U − VU, (1.8)

where U ′[K ] denotes the Gateaux derivative as before. Algebraic structures for such triples were systematically discussed
[28] and applied to the construction of isospectral flows [28] and non-isospectral flows [29].
A continuous (or discrete) Hamiltonian equation [30] is as follows:

ut = K(u, ux, . . .) [or K(u, Eu, E−1u, . . .)] = J
δH

δu
, (1.9)

where J is a Hamiltonian operator (see, say, [20,28,31] for details) andH is a Hamiltonian functionalH =
∫
H[u] dx(orH =∑

n∈Z H[u]). A Hamiltonian equation links its conserved functionals with its symmetries [32]:

Conserved functional I→ adjoint symmetry
δI

δu
→ symmetry J

δI

δu
.

Moreover, there is a Lie homomorphism between the Lie algebra of functionals and the Lie algebra of vector fields [33,34]:

J
δ

δu
{I1, I2} =

[
J
δI1

δu
, J
δI2

δu

]
. (1.10)

If the Lie algebra g is semisimple, then Hamiltonian structures of the soliton equations (1.2) and (1.6) can be generated
by the so-called trace identities [20,27]. However, if we start from non-semisimple Lie algebras, the Killing forms involved
in the trace identities are degenerate. Therefore, the trace identities, unfortunately, do not work all the time. To solve this
problem, we get rid of some conditions required in the trace identities and present variational identities associated with
general Lie algebras.
Let us now analyze the triangular form of soliton equations associated with general Lie algebras. An arbitrary Lie algebra

ḡ takes a semi-direct sum of a semisimple Lie algebra g and a solvable Lie algebra gc :

ḡ = g A gc, (1.11)

and we begin with such a Lie algebra ḡ of square matrices. The notion of semi-direct sums means that g and gc satisfy

[g, gc] ⊆ gc,

where [g, gc] = {[A, B] | A ∈ g, B ∈ gc}. It is clear that gc is an ideal Lie sub-algebra of ḡ . The subscript c indicates a
contribution to the construction of integrable couplings. Then, choose a pair of enlarged continuousmatrix spectral problemsφ̄x = Ūφ̄ = Ū(ū, λ)φ̄,φ̄t = V̄ φ̄ = V̄

(
ū, ūx, . . . ,

∂m0 ū
∂xm0
; λ

)
φ̄,

(1.12)

where the enlarged Lax pair is given as follows:

Ū = U + Uc, V̄ = V + Vc, U, V ∈ g, Uc, Vc ∈ gc . (1.13)
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Obviously, under the soliton equation (1.2), the corresponding enlarged continuous zero curvature equation

Ūt − V̄x + [Ū, V̄ ] = 0

equivalently gives rise to{
Ut − Vx + [U, V ] = 0,
Uc,t − Vc,x + [U, Vc] + [Uc, V ] + [Uc, Vc] = 0.

(1.14)

Similarly, we can have a pair of enlarged discrete matrix spectral problems{
Eφ̄ = Ūφ̄ = Ū(ū, λ)φ̄,
φ̄t = V̄ φ̄ = V̄ (ū, Eū, E−1ū, . . . ; λ)φ̄,

(1.15)

where the enlarged Lax pair is given as in (1.13). We also require that the closure property between g and gc under the
matrix multiplication

ggc, gcg ⊆ gc, (1.16)

where g1g2 = {AB|A ∈ g1, B ∈ g2}, to guarantee that the discrete zero curvature equation over semi-direct sums of
Lie algebras can generate coupling systems. Now, it is easy to see that under the soliton equation (1.6), the corresponding
enlarged discrete zero curvature equation

Ūt = (EV̄ )Ū − V̄ Ū (1.17)

equivalently gives rise to{
Ut = (EV )U − VU,
Uc,t = [(EV )Uc − UcV ] + [(EVc)U − UVc] + [(EVc)Uc − UcVc].

(1.18)

In the systems (1.14) and (1.18), the first equations exactly present the soliton (1.2) and (1.6), and thus, the systems
(1.14) and (1.18) provide the coupling systems for the (1.2) and (1.6), respectively. The detailed algebraic structures on both
continuous and discrete integrable couplings can be found in [35,36]. If the solvable Lie algebra gc is zero, i.e., gc = {0}, then
integrable couplings reduce to soliton equations associated with semisimple Lie algebras. More generally, semi-direct sums
of blockmatrix Lie algebras yield soliton equations in block form. The analysis given here shows the basic idea of generating
integrable couplings by using semi-direct sums of Lie algebras, proposed in [4,5].
Now, the basic question for us is how to construct Hamiltonian structures for integrable couplings, namely soliton

equations associated with semi-direct sums of Lie algebras. A bilinear form 〈·, ·〉 on a vector space is said to be non-
degenerate when if 〈A, B〉 = 0 for all vectors A, then B = 0, and if 〈A, B〉 = 0 for all vectors B, then A = 0. The Killing form on
a Lie algebra g ′ is non-degenerate iff g ′ is semisimple, and the Killing form satisfies tr(adAadA) = 0 for all A ∈ Dg ′ = [g ′, g ′]
iff g ′ is solvable, where [·, ·] denotes the Lie bracket of g ′ and adAB = [A, B]. Semi-direct sums of Lie algebras with non-zero
solvable Lie algebras gc 6= {0} are non-semisimple, and thus, the Killing forms are always degenerate on semi-direct sums
of Lie algebras with gc 6= {0}. This is why the trace identities (see [37,38,27,21]) can not be used to establish Hamiltonian
structures for integrable couplings associated with semi-direct sums of Lie algebras with gc 6= {0}.
In this report, wewould like to generalize the trace identities to semi-direct sums of Lie algebras to construct Hamiltonian

structures of general soliton equations. The key point is that for a bilinear form 〈·, ·〉 on a given Lie algebra g ′, we get rid of
the invariance property

〈ρ(A), ρ(B)〉 = 〈A, B〉

under an isomorphism ρ of the Lie algebra g ′, but keep the symmetric property

〈A, B〉 = 〈B, A〉

and the invariance property under the Lie bracket

〈A, [B, C]〉 = 〈[A, B], C〉,

where [·, ·] is the Lie bracket of g ′, or the invariance property under the multiplication

〈A, BC〉 = 〈AB, C〉,

where g ′ is assumed to be an algebra and AB and BC are two products in that algebra.
We can have plenty of non-degenerate bilinear forms satisfying the required properties on semi-direct sums of Lie

algebras. Inwhat follows,wewould like to show that there exist variational identities under non-degenerate, symmetric and
invariant bilinear forms, which allow us to generate Hamiltonian structures of soliton equations associatedwith semi-direct
sums of Lie algebras. Applications to theAKNS case and theVolterra lattice case furnishesHamiltonian structures of theAKNS
hierarchy and the Volterra lattice hierarchy and Hamiltonian structures of two hierarchies of their integrable couplings
associated with semi-direct sums of Lie algebras. The results also ensures that the algorithms [4,5] to enlarge integrable
equations using semi-direct sums of Lie algebras are efficient in presenting integrable couplings possessing Hamiltonian
structures. A few of concluding remarks on coupling integrable couplings and super generalizations are given in the final
section.
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2. Variational identities

2.1. Variational identities on general Lie algebras

Variational identities:
Let g be a loop algebra, either semisimple or non-semisimple, and U = U(u, λ) and V = V (u, λ) be taken from g . Then

the following continuous (or discrete) variational identity holds:

δ

δu

∫ 〈
V ,
∂U
∂λ

〉
dx

[
or

δ

δu

∑
n∈Z

〈
V ,
∂U
∂λ

〉]
= λ−γ

∂

∂λ
λγ
〈
V ,
∂U
∂u

〉
, (2.1)

where γ is a constant, 〈·, ·〉 is a non-degenerate, symmetric and invariant bilinear form on g , and U, V ∈ g satisfy the
stationary zero curvature equation

Vx = [U, V ] [or (EV )(EU) = UV ]. (2.2)

The detailed proofs of the continuous and discrete variational identities are given in [39,31], respectively. If the loop algebra
g is a semisimple matrix Lie algebra, then the Killing form 〈A, B〉 = tr(AB) provides the required bilinear form and the
variational identities under the Killing form become the so-called trace identities [20,27,37]:

δ

δu

∫
tr
(
V
∂U
∂λ

)
dx

[
or

δ

δu

∑
n∈Z

tr
(
V
∂U
∂λ

)]
= λ−γ

∂

∂λ
λγ tr

(
V
∂U
∂u

)
. (2.3)

These trace identities and their variants have been applied to various soliton equations includingmany physically significant
soliton equations such as the KdV equation, the AKNS equations, the Toda lattice equation and the Volterra lattice equation
(see, say, [20,21,28,38,40–44]).

Properties of bilinear forms:

• The non-degenerate property means that if 〈A, B〉 = 0 for all A ∈ g but a fixed B ∈ g or for all B but a fixed A ∈ g , then
B = 0 or A = 0.
• The symmetric property reads

〈A, B〉 = 〈B, A〉, A, B ∈ g. (2.4)

• The invariance property under the multiplication reads

〈A, BC〉 = 〈AB, C〉, A, B, C ∈ g, (2.5)

where g is assumed to be an algebra and AB and BC are two products in that algebra g . This invariance condition is
required in the discrete variational identity [31].
• The invariance property under the Lie bracket reads

〈A, [B, C]〉 = 〈[A, B], C〉, A, B, C ∈ g. (2.6)

This invariance condition is required in the continuous variational identity [39]. If the algebra g is associative, then g
forms a Lie algebra under the commutator bracket

[A, B] = AB− BA. (2.7)

Taking this Lie bracket (2.7) defined via an associate product, the invariance condition (2.6) is weaker than the invariance
condition (2.5) clearly. In other words, the property (2.5) implies the property (2.6).
• The invariance property under Lie isomorphisms reads

〈ρ(A), ρ(B)〉 = 〈A, B〉, A, B ∈ g, (2.8)

where ρ is a Lie isomorphism of g .

Two observations:

• The Killing form: If the Lie algebra g is semisimple, then all bilinear forms on g , which are non-degenerate, symmetric
and invariant under the Lie bracket and Lie isomorphisms, are the Killing forms up to a constant multiplier.
• Integrable couplings: An arbitrary Lie algebra ḡ takes the following form of semi-direct sums

ḡ = g A gc,

where g is a semisimple Lie algebra and gc is a solvable Lie algebra. When gc is non-zero, i.e., gc 6= {0}, this generates
integrable couplings associated with non-semisimple Lie algebras.

These two statements show that the trace identities can not work for non-semisimple Lie algebras, and only the variational
identities work for general Lie algebras which yield integrable couplings.
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Formulas for the constant γ :

• The continuous case: Let Vx = [U, V ]. If |〈V , V 〉| 6= 0, then the constant γ in the variational identity (2.1) is given by

γ = −
λ

2
d
dλ
ln |〈V , V 〉|. (2.9)

• The discrete case: Let (EV )(EU) = UV and Γ = VU . If |〈Γ ,Γ 〉| 6= 0, then the constant γ in the variational identity (2.1)
is given by

γ = −
λ

2
d
dλ
ln |〈Γ ,Γ 〉|. (2.10)

The detailed analysis on the computation of the constant γ can be found in [31,39]. The formulas provide a systematical
way to compute the constant γ in the variational identities and give an answer to the open question raised in [38].

2.2. Constructing symmetric invariant bilinear forms

Non-semisimple Lie algebras:
As an example, take a semi-direct sum of matrix Lie algebras ḡ = g A gc :

g =
{
diag(A0, A0)

∣∣∣∣A0 = [a1 a2
a3 a4

]}
, gc =

{[
0 A1
0 0

]∣∣∣∣ A1 = [a5 a6
a7 a8

]}
, (2.11)

whose Lie bracket is defined by [A, B] = AB− BA. Introduce a mapping

δ : ḡ → R8, A 7→ (a1, . . . , a8)T, A =
[
A0 A1
0 A0

]
∈ ḡ. (2.12)

This mapping δ induces a Lie bracket on R8:

[a, b]T = aTR(b), a = (a1, . . . , a8)T, b = (b1, . . . , b8)T ∈ R8, (2.13)

where R(b) is the square matrix uniquely determined by the Lie bracket of ḡ:

R(b) =



0 b2 −b3 0 0 b6 −b7 0
b3 b4 − b1 0 −b3 b7 b8 − b5 0 −b7
−b2 0 b1 − b4 b2 −b6 0 b5 − b8 b6
0 −b2 b3 0 0 −b6 b7 0
0 0 0 0 0 b2 −b3 0
0 0 0 0 b3 b4 − b1 0 −b3
0 0 0 0 −b2 0 b1 − b4 b2
0 0 0 0 0 −b2 b3 0


. (2.14)

Transforming basic properties of bilinear forms:
A general bilinear form on R8 is given by

〈a, b〉 = aTFb, a, b ∈ R8, (2.15)

where F is a constant matrix, called the structural matrix of the bilinear form.
The non-degenerate property of this bilinear from iff F is invertible. The symmetric property 〈a, b〉 = 〈b, a〉 iff F T = F .

The invariance property 〈a, [b, c]〉 = 〈[a, b], c〉 iff

F(R(b))T = −R(b)F , ∀b ∈ R8. (2.16)

This gives us a system of linear equations on the elements of F . With computer algebra systems such asMaple, Mathematica
and Matlab, solving the resulting system leads to the matrix F :

F =



η1 0 0 η2 η3 0 0 η4
0 0 η1 − η2 0 0 0 η3 − η4 0
0 η1 − η2 0 0 0 η3 − η4 0 0
η2 0 0 η1 η4 0 0 η3
η3 0 0 η4 η5 0 0 η5
0 0 η3 − η4 0 0 0 0 0
0 η3 − η4 0 0 0 0 0 0
η4 0 0 η3 η5 0 0 η5


, (2.17)
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where ηi, 1 ≤ i ≤ 5, are arbitrary constants. If we consider the non-semisimple Lie algebra ḡ with traceless matrices A0 and
A1, then the structure matrix of bilinear forms is given by

F =


2η1 0 0 2η2 0 0
0 0 η1 0 0 η2
0 η1 0 0 η2 0
2η2 0 0 0 0 0
0 0 η2 0 0 0
0 η2 0 0 0 0

 , (2.18)

where η1 and η2 ate arbitrary constants.
Symmetry and invariant bilinear forms:
Now, all symmetric and invariant bilinear forms on ḡ are given by

〈A, B〉Ḡ = 〈δ
−1(A), δ−1(B)〉R8 = (a1, . . . , a8)F(b1, . . . , b8)

T

= (η1a1 + η2a4 + η3a5 + η4a8) b1 + [(η1 − η2) a3 + (η3 − η4) a7] b2
+ [(η1 − η2) a2 + (η3 − η4) a6] b3 + (η2a1 + η1a4 + η4a5 + η3a8) b4
+ (η3a1 + η4a4 + η5a5 + η5a8) b5 + (η3 − η4) a3b6
+ (η3 − η4) a2b7 + (η4a1 + η3a4 + η5a5 + η5a8) b8, (2.19)

which reduce to the Killing type forms on g when η3 = η4 = η5 = 0.
It is easy to check that these kinds of bilinear forms are invariant under the matrix multiplication, and thus, they can be

applied to both the continuous case and the discrete case. The Killing form on g with

η1 = 1, η2 = η3 = η3 = η4 = 0, (2.20)

and two particular non-degenerate bilinear forms on ḡ with

η1 = η3 = 1, η2 = η4 = η5 = 0 (2.21)

and

η1 = η2 = η3 = 1, η4 = η5 = 0 (2.22)

will be used to generate Hamiltonian structures of the AKNS hierarchy and the Volterra lattice hierarchy, and Hamiltonian
structures of two hierarchies of their integrable couplings, respectively.

3. Continuous Hamiltonian structures

Let us focus on the case of the AKNS hierarchy. We will show how to use the continuous trace and variational identities
to construct Hamiltonian structures of the AKNS hierarchy and a hierarchy of its integrable couplings.

3.1. The AKNS hierarchy

The AKNS spectral problem [45] reads

φx = Uφ, U = U(u, λ) =
[
−λ p
q λ

]
, u =

[
p
q

]
. (3.1)

The zero curvature equations Utm − V
[m]
x + [U, V

[m]
] = 0 lead to the AKNS hierarchy:

utm =
[
p
q

]
tm

= Km =
[
−2bm+1
2cm+1

]
= Φm

[
−2p
2q

]
, m ≥ 0, (3.2)

where the hereditary recursion operator [46,47] is given by

Φ =

−12∂ + p∂−1q p∂−1p

−q∂−1q
1
2
∂ − q∂−1p

 . (3.3)

The Lax pairs of the AKNS hierarchy are as follows:

U =
[
−λ p
q λ

]
, V [m] = (λmV )+, m ≥ 0, (3.4)
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where (P)+ denotes the polynomial part of P in λ and V is the following formal solution of the continuous stationary zero
curvature equation Vx = [U, V ]:

V =
[
a b
c −a

]
=

∑
i≥0

Viλ−i =
∑
i≥0

[
ai bi
ci −ai

]
λ−i, (3.5)

with the initial data: a0 = −1 and b0 = c0 = 0.
Noting that〈

V ,
∂U
∂λ

〉
= tr

(
V
∂U
∂λ

)
= −2a,

〈
V ,
∂U
∂u

〉
= tr

(
V
∂U
∂u

)
= (c, b)T, (3.6)

the continuous trace identity with the constants ηi, 1 ≤ i ≤ 5, defined by (2.20) gives

δHm

δu
=

[
cm+1
bm+1

]
, Hm =

∫
2am+2
m+ 1

dx, m ≥ 0, (3.7)

and further, the Hamiltonian structures of the AKNS hierarchy:

utm = Km = J
δHm

δu
, J =

[
0 −2
2 0

]
, m ≥ 0. (3.8)

It then follows that any AKNS system in (3.2) possesses a hierarchy of commuting symmetries {Kn}∞n=0 and a hierarchy of
commuting conserved functionals {Hn}∞n=0.

3.2. Integrable couplings

To construct a coupling hierarchy of the AKNS hierarchy, we take an enlarged spectral problem of (3.1):

Ū = Ū(ū, λ) =
[
U Ua
0 U

]
∈ g A gc, Ua =

[
−α v2
v3 α

]
, (3.9)

where α is a constant and ū = (p, q, v2, v3)T. Then the enlarged zero curvature equations Ūtm − V̄
[m]
x + [Ū, V̄

[m]
] = 0 lead

to a hierarchy of integrable couplings:

ūtm =
[
Km
Sm

]
= (−2bm+1, 2cm+1,−2fm+1, 2gm+1)T, m ≥ 0. (3.10)

Its Lax pairs are as follows:

Ū =
[
U Ua
0 U

]
∈ g A gc, V̄ [m] =

[
V [m] V [m]a
0 V [m]

]
∈ g A gc, V [m]a = (λ

mVa)+, m ≥ 0, (3.11)

where (P)+ similarly denotes the polynomial part of P in λ and V̄ is the following formal solution of the enlarged continuous
stationary zero curvature equation V̄x = [Ū, V̄ ]:

V̄ =
[
V Va
0 V

]
, Va =

[
e f
g −e

]
=

∑
i≥0

[
ei fi
gi −ei

]
λ−i, (3.12)

with the additional initial data: e0 = −1 and f0 = g0 = 0. The first nonlinear system in the coupling hierarchy (3.10) is
pt2 = −

1
2
pxx + p2q, qt2 =

1
2
qxx − pq2,

v2,t2 = −
1
2
(p+ v2)xx − 2αpx + p(pq+ v3p+ v2q)+ v2pq,

v3,t2 =
1
2
(p+ v3)xx − 2αqx − (pq+ v3p+ v2q)q− v3pq.

(3.13)

Now, with the constants ηi, 1 ≤ i ≤ 5, defined by (2.21), we can have〈
V̄ ,
∂Ū
∂λ

〉
= −2a− 2e,

〈
V̄ ,
∂Ū
∂u

〉
= (c + g, b+ f , c, b)T. (3.14)

Thus, the continuous variational identity with γ = 0 presents

δ

δū
H̄m =

cm+1 + gm+1bm+1 + fm+1
cm+1
bm+1

 , H̄m =

∫
2(am+1 + em+1)

m+ 1
dx, m ≥ 0, (3.15)
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and further, the Hamiltonian structures of the coupling hierarchy:

ūtm = K̄m = J̄
δ

δū
H̄m, J̄ =

[
0 J
J −J

]
, m ≥ 0, (3.16)

where J̄ with J defined in (3.8) is Hamiltonian. It then follows that each integrable coupling in (3.10) has a hierarchy of
commuting symmetries {K̄n}∞n=0 and a hierarchy of commuting conserved functionals {H̄n}

∞

n=0.
We point out that starting from other semi-direct sums of Lie algebras can yield different hierarchies of integrable

couplings of the AKNS hierarchy. It is interesting to us if one can get a hierarchy of five-component integrable Hamiltonian
couplings for the AKNS hierarchy.

4. Discrete Hamiltonian structures

Let us now consider the case of the Volterra lattice hierarchy. We will show how to use the discrete trace and variational
identities to construct Hamiltonian structures of the Volterra lattice hierarchy and a hierarchy of its integrable couplings.

4.1. The Volterra lattice hierarchy

A spectral problem for the Volterra hierarchy reads [28]:

Eφ = Uφ, U = U(u, λ) =
[
1 u
λ−1 0

]
, φ =

[
φ1
φ2

]
. (4.1)

The zero curvature equations Utm = (EV
[m])U − V [m]U lead to the Volterra lattice hierarchy:

utm = Km = Φ
mK0 = u(a

(1)
m+1 − a

(−1)
m+1), m ≥ 0, (4.2)

where f (m)(n) = (Emf )(n) = f (n+m), the initial vector field K0 defines the Volterra lattice equation:

ut0 = K0 = u(u
(−1)
− u(1)), (4.3)

and the hereditary recursion operator is given by

Φ = u(1+ E−1)(−u(1)E2 + u)(E − 1)−1u−1. (4.4)

Its Lax pairs are as follows:

U =
[
1 u
λ−1 0

]
, V [m] = (λm+1Γ )+ +∆m, ∆m =

[
0 −bm+1
0 am+1 + a

(−1)
m+1

]
, m ≥ 0, (4.5)

where Γ is the following formal solution of the discrete stationary zero curvature equation (EΓ )U = UΓ :

Γ =

[
a b
c −a

]
=

∑
i≥0

Γiλ
−i
=

∑
i≥0

[
ai bi
ci −ai

]
λ−i, (4.6)

with the initial data: a0 = 1
2 , b0 = u and c0 = 0.

Obviously, we can have〈
V ,
∂U
∂λ

〉
= tr

(
V
∂U
∂λ

)
= λ−1a(1),

〈
V ,
∂U
∂u

〉
= tr

(
V
∂U
∂u

)
= −

a
u
, (4.7)

and thus, the discrete trace identity with γ = 0 presents

δHm

δu
= −

am+1
u
, Hm = −

∑
n∈Z

am+1(n)
m+ 1

, m ≥ 0, (4.8)

and further, the Hamiltonian structures of the Volterra lattice hierarchy:

utm = Km = J
δHm

δu
, J = u(E−1 − E)u, m ≥ 0. (4.9)

It now follows that each Volterra lattice equation in (4.2) possesses a hierarchy of commuting symmetries {Kn}∞n=0 and a
hierarchy of commuting conserved functionals {Hn}∞n=0.
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4.2. Integrable couplings

To construct a coupling hierarchy of the Volterra lattice hierarchy, we take an enlarged spectral problem of (4.1):

Ū = Ū(ū, λ) =
[
U Ua
0 U

]
∈ g A gc, Ua = Ua(v) =

[
0 v
0 0

]
, (4.10)

where v is a new dependent variable and ū = (u, v)T. Then the enlarged zero curvature equations Ūtm = (EV̄
[m])Ū − V̄ [m]Ū

lead to a hierarchy of integrable couplings:

ūtm =

[
u(a(1)m+1 − a

(−1)
m+1)

u(e(1)m+1 − e
(−1)
m+1)+ v(a

(1)
m+1 − a

(−1)
m+1)

]
, m ≥ 0. (4.11)

Its Lax pairs are as follows:

Ū =
[
U Ua
0 U

]
∈ g A gc, V̄ [m] =

[
V [m] V [m]a
0 V [m]

]
∈ g A gc, (4.12)

with V [m]a being defined by

V [m]a = (λ
m+1Γa)+ +∆m,a, ∆m,a =

[
0 −fm+1
0 em+1 + e

(−1)
m+1

]
, m ≥ 0, (4.13)

where Γ̄ is the following formal solution of the enlarged discrete stationary zero curvature equation (EΓ̄ )Ū = ŪΓ̄ :

Γ̄ =

[
Γ Γa
0 Γ

]
, Γa = Γa(ū, λ) =

[
e f
g −e

]
=

∑
i≥0

[
ei fi
gi −ei

]
λ−i (4.14)

with the additional initial data: e0 = 0, f0 = v and g0 = 0. The first nonlinear system in the coupling hierarchy (4.11) reads

ut0 = u(u
(−1)
− u(1)), vt0 = v(u

(−1)
− u(1))+ u(v(−1) − v(1)), (4.15)

Now, noticing that with the constants ηi, 1 ≤ i ≤ 5, defined by (2.22), we can have〈
V̄ ,
∂Ū
∂λ

〉
= λ−1e(1),

〈
V̄ ,
∂Ū
∂u

〉
=
va
u2
−
e
u
,

〈
V̄ ,
∂Ū
∂v

〉
= −

a
u
, (4.16)

the discrete variational identity with γ = 0 presents

δ

δū
H̄m =

(vam+1
u2
−
em+1
u
,−
am+1
u

)T
, H̄m = −

∑
n∈Z

em+1(n)
m+ 1

, m ≥ 0. (4.17)

Further, an application of the discrete variational identity with γ = 0 yields the Hamiltonian structures of the coupling
hierarchy:

ūtm = K̄m = J̄
δ

δū
H̄m, J̄ =

[
0 u(E−1 − E)u

u(E−1 − E)u J22

]
, m ≥ 0, (4.18)

where J22 = u(E−1−E)v+v(E−1−E)u. It finally follows that each integrable coupling in (4.11) has a hierarchy of commuting
symmetries {K̄n}∞n=0 and a hierarchy of commuting conserved functionals {H̄n}

∞

n=0.
We point out that starting from other semi-direct sums of Lie algebras can generate different hierarchies of integrable

couplings of the Volterra lattice hierarchy. It is interesting to us how one can construct a hierarchy of three-component
integrable Hamiltonian couplings for the Volterra hierarchy.

5. Concluding remarks

We have discussed variational identities associated with general matrix spectral problems and applied them to
Hamiltonian structures of soliton equations associated with semisimple Lie algebras and integrable couplings associated
with semi-direct sums of Lie algebras. The required conditions for the involved bilinear forms are the non-degenerate,
symmetric and invariance properties under the Lie bracket or the multiplication. Illustrative examples includes the AKNS
hierarchy and the Volterra lattice hierarchy, and two hierarchies of their integrable couplings. The results show that the
approaches for enlarging integrable equations through semi-direct sums of Lie algebras [4,5] are powerful in presenting
continuous and discrete integrable Hamiltonian couplings.
Bilinearization of Lax pairs of integrable couplings [48] could engender higher-dimensional Liouville integrable

Hamiltonian systems on symplectic manifolds, and integrable couplings with self-consistent sources for given soliton
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equations. There are more integrable couplings if we couple given integrable couplings [49]. One open question is whether
there exist Hamiltonian structures of such integrable couplings. More precisely, let us assume that we have two integrable
couplings{

ut = K(u),
vt = S1(u, v),

{
ut = K(u),
vt = S2(u, v),

(5.1)

for a given soliton equation ut = K(u). Is there is any Hamiltonian structure for a coupled system of integrable couplings{ut = K(u),
vt = S1(u, v),
wt = S2(u, w),

(5.2)

if ut = K(u) is Hamiltonian? In particular, it remains an open question to us if there is any Hamiltonian structure for the
coupled system:

ut = K(u), vt = K ′(u)[v], wt = K ′(u)[w], (5.3)

where K ′(u)[X] is the Gateaux derivative: K ′(u)[X] = ∂
∂ε

∣∣
ε=0K(u+ εX) [49].

There is a super-trace identity for super zero curvature equations, which allows us to construct Hamiltonian structures
of super soliton equations [50], associated with Lie superalgebras [51]. Let g be a Lie superalgebra over a supercommutative
ring. Then the super-trace identity on the Lie superalgebra g reads

δ

δu

∫
str
(
adV ad ∂U

∂λ

)
dx

[
or

δ

δu

∑
n∈Z

str
(
adV ad ∂U

∂λ

)]
= λ−γ

∂

∂λ
λγ
(
adV ad ∂U

∂u

)
, (5.4)

where U, V ∈ g solve Vx = [U, V ] [ or (EV )(EU) = UV ], and ada denotes the adjoint action of a ∈ g on g: adab = [a, b],
and str is the supertrace. Based on the Lie superalgebra B(0, 1), two applications to the super-AKNS soliton hierarchy and
the super-Dirac soliton hierarchy are given in [50].
It is interesting to generalize the super-trace identity to super-symmetric soliton equations. In the simplest super-

symmetric case where D = 1 and N = 1, the super-symmetric derivative is given by Dx = ∂θ + θ∂x, where x is even
but θ is odd. To start from zero curvature equations, let us take the Taylor expansion about θ = 0 for a Lax pair:

U = U1 + θU2, V = V1 + θV2, (5.5)

where U1, V1 are bosonic fields and U2, V2 are fermionic fields. Then the zero curvature equation Ut − Vx + [U, V ] = 0
exactly leads to the so-called integrable coupling:{

U1,t − V1,x + [U1, V1] = 0, – bosinic field,
U2,t − V2,x + [U1, V2] + [U2, V1] = 0, – fermionic field.

To involve in a business of the super-symmetric derivative Dx, one needs to adjust the standard zero curvature equation. It
seems that a first choice to work with is a generalized zero curvature equation

Ut − DxV + [U, V ] = 0. (5.6)

The nonlinearization of Lax pairs in the super case can yield super finite-dimensional integrable Hamiltonian systems
when there are only super dependent variables, and super-symmetric finite-dimensional integrable Hamiltonian systems
when there are super independent variables [52]. This will further generate super or super-symmetric soliton equations
with self-consistent sources.
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