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Abstract: This paper applies a pair of identical group reductions or similarity transforma-
tions to formulate integrable models. An application to the Ablowitz–Kaup–Newell–Segur
(AKNS) matrix spectral problems leads to reduced matrix modified Korteweg–de Vries
(mKdV) integrable hierarchies. In particular, several illustrative examples of reduced matrix
mKdV integrable models are derived from the reduced AKNS matrix spectral problems.
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1. Introduction
Integrable models are derived from the Lax pairs of matrix spectral problems [1], with

the key step being the selection of an appropriate matrix spatial spectral problem [2]. The
inverse scattering transform provides a powerful method for solving initial value problems
of integrable models [3,4].

Typical examples, such as the nonlinear Schrödinger (NLS) equation and the modified
Korteweg–de Vries (mKdV) equation, can be obtained from the Ablowitz–Kaup–Newell–
Segur (AKNS) matrix spectral problems associated with sl(m+n) via a single group reduc-
tion or similarity transformation (see, e.g., [5–7]). Furthermore, applying a pair of group
reductions or similarity transformations can produce a variety of integrable models [8]. The
main challenge lies in balancing the reductions applied to the potentials generated by the
two transformations, as this process requires careful attention to maintain the invariance of
the associated zero-curvature equations [9].

Group reductions and similarity transformations have been extensively utilized in
the construction of nonlocal integrable models that involve reflection points [10]. A com-
prehensive classification of lower-order integrable models associated with AKNS matrix
spectral problems has led to the identification of three types of nonlocal NLS equations and
two types of nonlocal mKdV equations [11]. Additionally, various efficient methods have
been developed to analyze and solve reduced integrable models, particularly for deriving
soliton solutions.

The inverse scattering transform has proven to be a powerful tool for solving initial
value problems in nonlocal integrable models [12,13]. Other effective techniques include the
Hirota bilinear method, Darboux transformation, Bäcklund transforms, and the Riemann–
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Hilbert method. Furthermore, a variety of intriguing mathematical frameworks have been
proposed to address nonlocal reduced integrable models (see, e.g., [11,14–19]).

In this paper, we investigate integrable reductions through a pair of identical group
reductions or similarity transformations and explore their applications to AKNS matrix
spectral problems, along with the corresponding reduced integrable models. The key
contribution of this work is the identification of two similarity transformations that involve
diagonal block matrices. In Section 2, we revisit the matrix AKNS spectral problems and
their associated integrable mKdV models to lay the foundation for the subsequent analysis.
We then introduce the pair of identical group reductions or similarity transformations,
which lead to the derivation of reduced matrix mKdV integrable hierarchies. Section 3
illustrates the theory through five specific examples, each selecting distinct sets of block
matrices to construct the pair of group reductions. These examples highlight the diversity
of reduced AKNS matrix integrable models. Section 4 provides a summary of our findings
and concluding remarks.

2. Matrix Integrable mKdV Hierarchies via Group Reductions
2.1. The AKNS Integrable Hierarchies Revisited

Let m, n be two arbitrary natural numbers. We define two matrix potentials, p and q,
as follows:

p = p(x, t) = (pjk)m×n, q = q(x, t) = (qkj)n×m, (1)

and use u = u(p, q) to denote the dependent variable, which is a vector-valued function of
p and q. Then, for all r ≥ 0, the standard matrix AKNS spectral problems are expressed
as follows:

−iϕx = Uϕ, −iϕt = V[r]ϕ, (2)

where the Lax pairs are determined by

U = U(u, λ) = λΛ + P, Λ =

 α1 Im 0

0 α2 In

, P =

 0 p

q 0

, (3)

and

V[r] = V[r](u, λ) = λrΩ + Q[r], Ω =

 β1 Im 0

0 β2 In

, Q[r] =
r−1

∑
s=0

λs

 a[r−s] b[r−s]

c[r−s] d[r−s]

. (4)

In the above Lax pairs, λ denotes the spectral parameter, Ik is the identity matrix of size k,
α1, α2 and β1, β2 are two pairs of arbitrarily given distinct constants, Q[0] is the (m + n)-th-
order zero matrix, and the Laurent series

W = ∑
s≥0

λ−sW [s] = ∑
s≥0

λ−s

 a[s] b[s]

c[s] d[s]

 (5)

solves the stationary zero-curvature equation

Wx = i[U, W], (6)

with the initial data W [0] = Ω. This series solution is crucial for generating integrable
hierarchies (see, e.g., [20,21]).
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Obviously, the compatibility conditions of the two matrix spectral problems in (2) are
the zero-curvature equations:

Ut − V[r]
x + i[U, V[r]] = 0, r ≥ 0. (7)

Together with (3) and (4), these present a matrix AKNS integrable hierarchy:

pt = iαb[r+1], qt = −iαc[r+1], r ≥ 0, (8)

where α = α1 − α2. The simplest case with m = n = 1 yields the AKNS integrable
hierarchy with scalar potentials [22]. Each system within the matrix AKNS integrable
hierarchy possesses a bi-Hamiltonian structure, along with infinitely many symmetries and
conserved quantities (see, e.g., [23–25]).

When r = 2s + 1, s ≥ 1, the matrix AKNS integrable hierarchy (8) reduces to the
matrix mKdV integrable hierarchies. The first (when s = 1) integrable model in the resulted
matrix mKdV integrable hierarches gives the matrix mKdV equations:

pt = − β

α3 (pxxx + 3pqpx + 3pxqp),

qt = − β

α3 (qxxx + 3qx pq + 3qpqx),
(9)

where β = β1 − β2. The corresponding Lax matrix V[3] is given by

V[3] = λ3Ω +
β

α
λ2P − β

α2 λIm,n(P2 + iPx)−
β

α3 (i[P, Px] + Pxx + 2P3), (10)

where Im,n = diag(Im,−In). Other significant examples of higher-order matrix AKNS
integrable models can also be generated (see, e.g., [26]).

2.2. Reducing the AKNS Spectral Problems

In order to introduce a pair of group reductions or similarity transformations, we take
two constant invertible symmetric square matrices of order m, Σ1, ∆1, and two constant
invertible symmetric square matrices of order n, Σ2, ∆2. Then, we define two invertible
constant square matrix of order m + n as follows:

Σ =

[
Σ1 0
0 Σ2

]
, ∆ =

[
∆1 0
0 ∆2

]
. (11)

It is easy to determine that both Σ and ∆ satisfy the important similarity properties

ΣΛΣ−1 = ∆Λ∆−1 = Λ, ΣΩΣ−1 = ∆Ω∆−1 = Ω. (12)

Based on these properties, we can introduce the following pair of group reductions or
similarity transformations:

ΣU(λ)Σ−1 = −UT(−λ) = −(U(−λ))T , ∆U(λ)∆−1 = −UT(−λ) = −(U(−λ))T , (13)

where AT stands for the matrix transpose of a matrix A. We will show that each of the
group reductions or similarity transformations preserves the invariance of the original
zero-curvature equations of the mKdV equations.

Let us now check these two reductions carefully to determine what conditions we
need to impose. Following the definition of the spectral matrix U, we can see that the
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two group reductions or similarity transformations yield the following relations for the
potential matrix P:

ΣPΣ−1 = −PT , ∆P∆−1 = −PT , (14)

respectively. Clearly, these reductions give rise to the following pairs of constraints for the
two matrix potentials p and q:

pT = −Σ2qΣ−1
1 , qT = −Σ1 pΣ−1

2 , (15)

and
pT = −∆2q∆−1

1 , qT = −∆1 p∆−1
2 , (16)

respectively.
Obviously, the two constraints in each of the two pairs, (15) and (16), are compatible

because both Σ and ∆ are symmetric. To guarantee the compatibility of the two sets of
constraints, we must impose one of the following conditions:

Σ1 pΣ−1
2 = ∆1 p∆−1

2 , (17)

or
Σ2qΣ−1

1 = ∆2q∆−1
1 . (18)

Both conditions are equivalent.
To summarize, with the condition in (17) or (18), the two identical group reductions

or similarity transformations in (13) generate a class of reduced AKNS matrix spectral
problems:

−iϕx = Uϕ, U =

 α1λIm p

−Σ−1
2 pTΣ1 α2λIn

, (19)

where the square matrix potential p must satisfy (17). Alternatively, we can express the
class of reduced AKNS matrix spectral problems as

−iϕx = Uϕ, U =

 α1λIm −Σ−1
1 qTΣ2

q α2λIn

, (20)

where the square matrix potential q must satisfy (18).

2.3. Matrix Integrable mKdV Hierarchies

Let us examine the effects of the solution W, determined by (5), with the initial data

W [0] = Ω =

[
β1 Im 0

0 β2 In

]
, (21)

under the group reductions or similarity transformations given in (13). First, we can readily
verify that

ΣW(λ)Σ−1|λ=∞ = ∆W(λ)∆−1|λ=∞ = WT(−λ)|λ=∞ = (W(−λ))T |λ=∞. (22)

From the uniqueness of solutions to the stationary zero-curvature equation, it follows that

ΣW(λ)Σ−1 = WT(−λ) = (W(−λ))T , ∆W(λ)∆−1 = WT(−λ) = (W(−λ))T . (23)
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Therefore, for all s ≥ 0, we can demonstrate that

ΣV[2s+1](λ)Σ−1 = −V[2s+1]T(−λ) = −(V[2s+1](−λ))T ,
∆V[2s+1](λ)∆−1 = −V[2s+1]T(−λ) = −(V[2s+1](−λ))T .

(24)

Consequently, under the group reductions or similarity transformations in (13), we can
compute that

Σ(Ut − V[2s+1]
x + i[U, V[2s+1]])(λ)Σ−1

= (−UT(−λ))t − (−V[2s+1]T(−λ))x + i[−UT(−λ),−V[2s+1]T(−λ)]

= −(UT
t − V[2s+1]T

x + i[V[2s+1]T , UT ])(−λ)

= −((Ut − V[2s+1]
x + i[U, V[2s+1]])(−λ))T ,

and
∆(Ut − V[2s+1]

x + i[U, V[2s+1]])(λ)∆−1

= (−UT(−λ))t − (−V[2s+1]T(−λ))x + i[−UT(−λ),−V[2s+1]T(−λ)]

= −(UT
t − V[2s+1]T

x − i[UT , V[2s+1]T ])(−λ)

= −((Ut − V[2s+1]
x + i[U, V[2s+1]])(−λ))T ,

respectively. Accordingly, the matrix AKNS integrable models in (8) with r = 2s + 1 give
rise to a reduced hierarchy of integrable mKdV models:

pt = 2ib[2s+2]|q=−Σ−1
2 pTΣ1

, s ≥ 0, (25)

where p needs to satisfy (17) or

qt = −2ic[2s+2]|p=−Σ−1
1 qTΣ2

, s ≥ 0, (26)

where q needs to satisfy (18).
The matrix spectral problems, given by (19) and

−iϕt = V[2s+1]|q=−Σ−1
2 pTΣ1

ϕ, s ≥ 0, (27)

form a Lax pair for every member in the reduced integrable hierarchy (25). Alternatively,
the matrix spectral problems, given by (20) and

−iϕt = V[2s+1]|p=−Σ−1
1 qTΣ2

ϕ, s ≥ 0, (28)

form a Lax pair for every member in the reduced integrable hierarchy (26).
The commuting properties of the resulting reduced integrable hierarchies stem from

the Lax operator algebras (see, e.g., [27]). It is important to note that Σ1, Σ2, ∆1, and ∆2

are arbitrary invertible symmetric square matrices. By selecting appropriate values for
these matrices, we can derive a variety of integrable mKdV hierarchies corresponding
to the reduced matrix AKNS models discussed above. Note that we can also similarly
derive examples of integrable mKdV type equations associated with symmetric spaces as
special reductions of sl(m+n) (see, e.g., [28]), and other matrix generalizations of the mKdV
equation, integrable via the inverse scattering transform (see, e.g., [29]).
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3. Applications
In this section, we apply the general framework to five distinct cases, presenting

illustrative examples of reduced matrix AKNS spectral problems and integrable mKdV
equations, as formulated above.

Example 1. Let us begin by considering the case where m = 1 and n = 3. We select the following
specific values for the pairs of matrices:

Σ1 = σ, Σ2 =

 0 0 ρ

0 δ 0
γ 0 0

; ∆1 = σ, ∆2 =

 γ 0 0
0 δ 0
0 0 ρ

; (29)

where σ, ρ, δ, and γ are arbitrary non-zero constants. Then, the group reductions or similarity
transformations in (13) lead to the following expression for the spectral matrix U:

U = U(u, λ) =

[
α1λ p

q α2λI3

]
with p = [p1, p2,

ρ

γ
p1], q = [−σρ

γ2 p1,−σ

δ
p2,−σ

ρ
p1]

T , (30)

where u = (p1, p2)
T . Accordingly, the corresponding reduced matrix integrable mKdV equations

are expressed by
p1,t = − β

α3

{
p1,xxx −

3σ

δγ2

[
(2δρp2

1 + 2δγp2
1 + γ2 p2

2)p1,x + γ2 p1 p2 p2,x
]}

,

p2,t = − β

α3

{
p2,xxx −

3σ

δγ2

[
δ(ρ + γ)p1 p2 p1,x + (δρp2

1 + δγp2
1 + 2γ2 p2

2)p2,x
]}

,
(31)

where σ, ρ, δ, and γ are arbitrary non-zero constants.

Example 2. Let us next consider the case where m = n = 2. We select the following specific values
for the two pairs of matrices:

Σ1 =

[
1 1
1 0

]
, Σ2 =

[
0 −1
−1 0

]
; ∆1 =

[
0 −2
−2 1

]
, ∆2 =

[
0 1
1 0

]
. (32)

Then, the group reductions or similarity transformations in (13) yield

U = U(u, λ) =

[
α1λI2 p

q α2λI2

]
with p =

[
p2 p1

p2 p1

]
, q =

[
2p1 p1

2p2 p2

]
, (33)

where u = (p1, p2)
T . Consequently, the corresponding reduced matrix integrable mKdV equations

are given by 
p1,t = − β

α3

[
p1,xxx + 9p1(3p1,x p2 + p1 p2,x)

]
,

p2,t = − β

α3

[
p2,xxx + 9p2(p1,x p2 + 3p1 p2,x)

]
.

(34)

Example 3. Let us now consider the second case where m = n = 2, and take the following specific
values for the pairs of matrices:

Σ1 =

[
1 1
1 −1

]
, Σ2 =

[
1 1
1 −1

]
; ∆1 =

[
1 1
1 −1

]
, ∆2 =

[
1 1
1 0

]
. (35)

Then, the group reductions or similarity transformations in (13) engender the concrete expression
for U:
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U = U(u, λ) =

[
α1λI2 p

q α2λI2

]
with p =

[
p1 p1

p2 p2

]
, q =

[
−p1 − p2 p2 − p1

0 0

]
, (36)

where u = (p1, p2)
T . Furthermore, the corresponding reduced matrix integrable mKdV equations

are given by
p1,t = − β

α3

{
p1,xxx − 3

[
(2p2

1 + 3p1 p2 − p2
2)p1,x + p1(p1 − p2)p2,x

]}
,

p2,t = − β

α3

{
p2,xxx − 3

[
(p1 + p2)p2 p1,x + (p2

1 + 3p1 p2 − 2p2
2)p2,x

]}
.

(37)

Example 4. For m = n = 2, we consider a third case and take the following two pairs of matrices:

Σ1 =

[
1 1
1 0

]
, Σ2 =

[
0 −1
−1 1

]
; ∆1 =

[
0 −1
−1 1

]
, ∆2 =

[
1 1
1 0

]
. (38)

Now, the group reductions or similarity transformations in (13) generate

U = U(u, λ) =

[
α1λI2 p

q α2λI2

]
with p =

[
−p2 p1

p2 − p1 p2

]
, q =

[
p2 p1 − p2

−p1 −p2

]
, (39)

where u = (p1, p2)
T . The resulting system of integrable models in this case involves complex

interactions between the entries of the potential matrix, exhibiting both nonlinear interactions and
differential terms. These interactions reflect the structure of the reduced AKNS matrix spectral
problems and the corresponding integrable mKdV equations. The corresponding reduced matrix
integrable mKdV equations are determined by

p1,t = − β

α3

{
p1,xxx − 6

[
(p2

1 + p2
2)p1,x + (2p1 − p2)p2 p2,x

]}
,

p2,t = − β

α3

{
p2,xxx − 6

[
(2p1 − p2)p2 p1,x + (p2

1 − 2p1 p2 + 2p2
2)p2,x

]}
.

(40)

Example 5. Finally, let us consider the case where m = 2 and n = 3. We select the following
specific values for the pairs of matrices:

Σ1 =

[
σ1 0
0 σ2

]
, Σ2 =

 0 0 δ1

0 δ2 0
δ3 0 0

; ∆1 =

[
0 σ1

σ2 0

]
, ∆2 =

 δ1 0 0
0 δ2 0
0 0 δ3

; (41)

where σ1, σ2, δ1, δ2, and δ3 are arbitrary non-zero constants. Then, the group reductions or similarity
transformations given in (13) determine

U = U(u, λ) =

[
α1λI2 p

q α2λI3

]
with p =

[
p1 p2 p3

p3 p2 p1

]
, q =


−σ1

δ3
p3 −σ2

δ3
p1

−σ1

δ2
p2 −σ2

δ2
p2

−σ1

δ1
p1 −σ2

δ1
p3

, (42)

where u = (p1, p2, p3)
T . Consequently, the corresponding reduced matrix integrable mKdV

equations are formulated as
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

p1,t = − β

α3 p1,xxx +
3β

α2δ1δ2δ3

{[
(2σ1δ1 + σ2δ1 + σ1δ3)δ2 p1 p3 + σ1δ1δ3 p2

2
]
p1,x

+δ1δ3(σ1 p1 + σ2 p3)p2 p2,x +
[
δ2(σ1δ3 + σ2δ1)p2

1 + σ2δ3(δ1 p2
2 + 2δ2 p2

3)
]
p3,x

}
,

p2,t = − β

α3 p2,xxx +
3β

α2δ1δ2δ3

{
δ1δ2(σ2 p1 + σ1 p3)p2 p1,x + δ2δ3(σ1 p1 + σ2 p3)p2 p3,x

+
[
σ2δ1δ2 p2

1 + σ1δ2(δ1 + δ3)p1 p3 + 2(σ1 + σ2)δ1δ3 p2
2 + σ2δ2δ3 p2

3
]
p2,x

}
,

p3,t = − β

α3 p3,xxx +
3β

α2δ1δ2δ3

{[
σ2δ1(2δ2 p2

1 + δ3 p2
2) + δ2(σ1δ1 + σ2δ3)p2

3
]
p1,x

+δ1δ3(σ2 p1 + σ1 p3)p2 p2,x +
[
δ2(σ1δ1 + 2σ1δ3 + σ2δ3)p1 p3 + σ1δ1δ3 p2

2
]
p3,x

}
,

(43)

where σ1, σ2, δ1, δ2, and δ3 are arbitrary non-zero constants.

In this example, introducing the spectral matrix into the system of equations reveals
complex nonlinear interactions that determine the structure of the integrable mKdV equa-
tions. The parameters σ1, σ2, δ1, δ2, and δ3 are crucial in influencing the system’s dynamics
and the way the components interact with each other, whereas the parameters α and β can
be scaled out without affecting the essential structure.

The examples provided above highlight the flexibility and depth of the Lax pair
formulation in the construction of integrable models. By applying different similarity trans-
formations to the zero-curvature equations, we can generate a wide variety of integrable
reductions (see, e.g., [30–33]). These transformations facilitate the investigation of various
nonlinear wave phenomena, with potential applications spanning numerous fields of study.
Furthermore, these examples contribute to the growing body of research on integrable
models related to the 4 × 4 matrix spectral problems, as detailed in [34–38].

4. Concluding Remarks
This paper investigates a pair of identical group reductions or similarity transforma-

tions and applies them to the AKNS matrix spectral problems, resulting in reduced matrix
mKdV integrable hierarchies. Five specific examples of reduced AKNS matrix spectral
problems and their corresponding integrable mKdV models are provided. An important
aspect of this work is the identification of the constraints arising from the two group reduc-
tions or similarity transformations. These reductions lead to novel mKdV integrable models
and expand the framework of group reductions or similarity transformations established
in earlier studies [9,39].

Our examples highlight the versatility of the Lax pair formulation in constructing inte-
grable models, demonstrating how various group reductions or similarity transformations
can produce a diverse range of integrable mKdV models, each characterized by unique
nonlinear interactions. The selection of diagonal block matrices is crucial in shaping the
structure of these systems. The flexibility of the Lax pair approach enables the creation
of customized models, serving as a valuable tool for both theoretical investigations and
practical applications.

This study serves as an introduction to the construction of integrable models within
a more sophisticated framework. The next step in this exploration is to investigate in-
triguing solution phenomena such as rogue waves, lump waves, and soliton waves (see,
e.g., [40–46]). The integrable models presented here offer valuable insight into classifying
multi-component integrable systems within the Lax pair formulation. It is hoped that these
models will find applications in various fields, including nonlinear optics, water waves,
fluid dynamics, and plasma physics.
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