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Abstract: Sasa–Satsuma (SS)-type integrable matrix modified Korteweg–de Vries (mKdV) equa-
tions are derived from two group constraints, involving the replacement of the spectral matrix in
the Ablowitz–Kaup–Newell–Segur matrix eigenproblems with its matrix transpose and its Her-
mitian transpose. Using the Lax pairs and dual Lax pairs of matrix eigenproblems as a founda-
tion, binary Darboux transformations are constructed. These transformations, initiated with a zero
seed solution, facilitate the generation of soliton solutions for the SS-type integrable matrix mKdV
equations presented.
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1. Introduction

Soliton theory represents a dynamic area within mathematical physics, offering diverse
methods for solving nonlinear integrable equations. Key approaches include the Hirota
direct approach, the inverse scattering technique, Darboux transformations (DT), the
Riemann–Hilbert approach, Lie symmetry analysis, and Painlevé singularity confinement
analysis [1–3]. Integral to these methods is the concept of an integrable equation, which is
linked to two matrix eigenproblems known as a Lax pair. A binary Darboux transformation
(DT) is derived from both a Lax pair and its adjoint, termed the dual Lax pair, which are
equivalent representations of the same integrable equation [4,5]. Matrix eigenproblems play
a crucial role not only in constructing DTs and binary DTs, but also in designing inverse
scattering transforms and Riemann–Hilbert problems [1–3].

In the framework of (1+1)-dimensional integrable equations, where t and x are inde-
pendent variables and p = p(t, x) represents a column vector of unknown variables, spatial
and temporal matrix eigenproblems are defined as follows:

−iϕx = Eϕ = E(p, z)ϕ, (1)

and
−iϕt = Fϕ = F (p, z)ϕ, (2)

where i denotes the imaginary unit, ϕ is a column eigenfunction, and E and F are square
spectral matrices depending on p and the spectral parameter z. The consistency condition
of these eigenproblems yields an integrable evolution equation

pt = X(p), (3)
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through the flatness condition

Et −Fx + i[E ,F ] = 0, (4)

where [·, ·] denotes the matrix bracket. Flatness equations are known for their elegant
algebraic structures, ensuring the existence of a limitless array of symmetries for the
considered nonlinear integrable model [6]. Obviously, the dual Lax pair of the matrix
eigenproblems, defined as

iϕ̃x = ϕ̃E = ϕ̃E(p, z), (5)

and
iϕ̃t = ϕ̃F = ϕ̃F (p, z), (6)

where ϕ̃ is a row eigenfunction, results in an identical flatness condition (4) without
generating any extra conditions. All of the Lax pair of eigenproblems and the dual Lax pair
eigenproblems are utilized in our discussion to formulate binary DTs.

Based on a Lax pair and its adjoint in eigenproblems, a binary DT is constructed for
an integrable equation under examination, expressed as

ϕ′ = D+ϕ = D+(p, z)ϕ, ϕ̃′ = ϕ̃D− = ϕ̃D−(p, z), (7)

where D− = (D+)−1. This transformation ensures that ϕ′ and ϕ̃′ solve new matrix eigen-
problems as follows:

−iϕ′
x = E ′ϕ′, −iϕ′

t = F ′ϕ′, (8)

and their adjoint counterparts as follows:

iϕ̃′
x = ϕ̃′E ′, iϕ̃′

t = ϕ̃′F ′, (9)

in which the updated Lax pair matrices read as follows:

E ′ = E(p′, z), F ′ = F (p′, z), (10)

and
p′ = S(p), (11)

defines a Bäcklund transformation. For the binary DT formulation, the Darboux matrices
D+ and D− must satisfy

−iD+
x D− + D+ED− = E ′ = E(S(p), z), (12)

and
−iD+

t D− + D+FD− = F ′ = F (S(p), z). (13)

The Equations (8) and (9) ensure that the novel Lax pair, E ′ and F ′, satisfy the identical
flatness condition (4), where p is replaced by p′. Moreover, p′ represents a novel solution to
the original integrable model if p does. Hence, (11) provides a Bäcklund transformation
of the given integrable model. It is well documented that Darboux transformations and
binary DTs have been extensively studied for single- and multi-component integrable equa-
tions [4,7–14]. However, research in non-commutative cases, including matrix integrable
equations, remains relatively sparse despite notable contributions [15–17].

It is widely recognized that integrable reductions can generate reduced integrable
equations under certain conditions, particularly when specific group constraints are applied
to the spectral matrix E . One common class of such reductions is expressed as follows:

(E(t, x, z∗))† = ΠE(t, x, z)Π−1, (14)

where † denotes the Hermitian transpose, ∗ represents the complex conjugate, and Π
is a constant Hermitian non-singular matrix (see, e.g., [18–20]). This reduction involves
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replacing the parameter z with z∗ and is effective for either nonlinear Schrödinger (NLS)
or modified Korteweg–de Vries (mKdV)-type integrable models. A second class of inte-
grable reductions specific to mKdV-type equations involves replacing z with its negative
counterpart −z in given matrix eigenproblems as follows:

(E(t, x,−z))T = −ΠE(t, x, z)Π−1, (15)

where T denotes the transpose of a matrix and Π is a constant symmetric non-singular ma-
trix. This reduction is effective for mKdV-type equations but is not applicable to NLS-type
equations [20]. Other substitutions such as z → −z∗ and z → z lead to nonlocal integrable
reductions, often accompanied by reflections of the independent variables t → −t, x → −x,
or (t, x) → (−t,−x). These transformations are notable for their role in generating distinct
forms of integrable reductions across different classes of nonlinear equations.

In this paper, we aim to explore two kinds of integrable reductions, (14) and (15), simul-
taneously applied to construct Sasa–Satsuma (SS)-type integrable matrix mKdV equations.
Our approach will utilize matrix Ablowitz–Kaup–Newell–Segur (AKNS) eigenproblems of
an arbitrary order as the foundational framework. The primary objective is to derive binary
DTs for the resultant integrable matrix mKdV models. These binary DTs will demonstrate
an N-fold decomposition property, particularly when the eigenvalues and dual eigenval-
ues differ from each other in the regular case. Starting from the zero seed solution, the
derived binary DTs will be employed to compute soliton solutions specific to the SS-type
integrable matrix mKdV models. The paper will conclude with a summary in the Section 5,
accompanied by pertinent concluding remarks on the significance and implications of
the findings.

2. SS-Type Integrable Matrix mKdV Models
2.1. The Integrable Matrix AKNS Hierarchy Revisited

Let us revisit the procedure for constructing the hierarchy of integrable matrix AKNS
equations. Assume m, n ≥ 1 are two integers, z represents the spectral parameter, Ik denotes
the k × k identity matrix (k ∈ N), and r, s are two matrix potentials:

r = r(t, x) = (rjl)m×n, s = s(t, x) = (sl j)n×m. (16)

The local integrable matrix AKNS hierarchy originates from the matrix AKNS eigenprob-
lems characterized by the matrix potentials

−iϕx = Eϕ = E(p, z)ϕ, −iϕt = F [k]ϕ = F [k](p, z)ϕ, k ≥ 0, (17)

whose Lax pair reads
E = zΣ + A(p), F [k] = zk∆ + B[k](p), (18)

with Σ, ∆ defined by

Σ = diag(γ1 Im, γ2 In), (19)

∆ = diag(δ1 Im, δ2 In). (20)

Here, γ1, γ2, and δ1, δ2 are pairs of distinct arbitrary real numbers. In addition, the other
two m + nth-order matrices are determined as follows:

A(p) =

[
0 r

s 0

]
, (21)
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referred to as the potential matrix, and

B[k](p) =
k−1

∑
l=0

zl

[
e[s] f [s]

g[s] h[s]

]
, (22)

where four sequences of differential polynomial matrices, e[s], f [s], g[s], and h[s], are deter-
mined in a recursive fashion by

f [0] = 0, g[0] = 0, e[0] = δ1 Im, h[0] = δ2 In, (23a)

f [l+1] =
1
γ
(−ig[l]x − rh[l] + e[l]r), l ≥ 0, (23b)

g[l+1] =
1
γ
(ig[k]x + se[l] − h[l]s), l ≥ 0, (23c)

e[l]x = i(rg[l] − f [l]s), h[l]x = i(s f [l] − g[l]r), l ≥ 1, (23d)

with γ = γ1 − γ2, δ = δ1 − δ2. It is required that the constants of integration vanish, i.e.,
e[l]|r=0,s=0 = 0, h[l]|r=0,s=0 = 0, l ≥ 1), in order to uniquely determine the differential
polynomial matrices B[l], l ≥ 1. For instance, using this approach, one can present

B[1] =
δ

γ

[
0 r

s 0

]
, B[2] =

δ

γ
z

[
0 r

s 0

]
− δ

γ2

[
rs irx

−isx −sr

]
, (24)

and

B[3] =
δ

γ
z2

[
0 r

s 0

]
− δ

γ2 z

[
rs irx

−isx −sr

]
− δ

γ3

[
i(rsx − rxs) rxx + 2rsr

sxx + 2srs i(srx − sxr)

]
. (25)

It is evident that for m = 1, the matrix eigenproblems described in (17) simplify
to the case of multiple components. Specifically, when a set of potentials r1l and sl1 are
nonzero for 1 ≤ l ≤ n, the matrix eigenproblems in (17) transform into the standard AKNS
eigenproblems outlined in [21].

For any given pair of natural numbers m and n, the consistency conditions of the
matrix eigenproblems defined in (17), represented by the flatness conditions

Et −F [k]
x + i[E ,F [k]] = 0, k ≥ 0, (26)

generate a local hierarchy of integrable matrix AKNS equations

rt = iγ f [k+1], st = −iγg[k+1], k ≥ 0. (27)

Based on the trace variational identity [22] and the Lax operator algebra formulation, it
can be readily demonstrated that (27) forms a series of local commuting models. Every
member in the hierarchy possesses a bi-Hamiltonian formulation, indicating the presence
of infinitely many commuting conserved quantities.

2.2. AKNS Integrable Matrix mKdV Models

The AKNS integrable matrix mKdV equation models can be expressed as

rt = − δ

γ3 (rxxx + 3rsrx + 3rxsr), st = − δ

γ3 (sxxx + 3sxrs + 3srsx), (28)
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in which the two matrix potentials, r and s, are given by (16). These equations correspond
to the following spectral matrices:

E = zΣ + A, F [3] = z3∆ + B[3], (29)

where Σ and ∆ are given by (19) and (20), A is defined by (21), and B[3] is expressed in
terms of A as

B[3] = B[3](p, z) =
δ

γ
z2 A − δ

γ2 zIm,n(A2 + iAx)−
δ

γ3 (i[A, Ax] + Axx + 2A3), (30)

with Im,n = diag(Im,−In).
If m = 1 and n = 1, the AKNS integrable matrix mKdV equations reduce to{

r11,t = r11,xxx + 6r11s11r11,x,

s11,t = s11,xxx + 6r11s11s11,x.
(31)

For m = 2 and n = 1, the equations become{
rj1,t = rj1,xxx + 3(r11,xs11 + r21,xs12)rj1 + 3(r11s11 + r21s12)rj1,x,

s1j,t = s1j,xxx + 3(r11s11,x + r21s12,x)s1j + 3(r11s11 + r21s12)s1j,x,
(32)

with 1 ≤ j ≤ 2. And for m = 2 and n = 2, the equations are
rjl,t = rjl,xxx + 3

2

∑
p,q=1

rjpspqrql,x + 3
2

∑
p,q=1

rjp,xspqrql ,

sl j,t = sl j,xxx + 3
2

∑
p,q=1

slp,xrpqsqj + 3
2

∑
p,q=1

slprpqsqj,x,

(33)

with 1 ≤ j, l ≤ 2. These equations are all Liouville integrable and exhibit symmetry under
the reflection about the origin (x → −x, t → −t).

2.3. SS-Type Integrable Matrix AKNS Equations

Let us now construct integrable reductions from the general integrable matrix AKNS
Equation (27).

We choose two constant non-singular Hermitian matrices Θ1, Θ2 and another two
constant non-singular symmetric matrices Ξ1, Ξ2, and we then define two local reductions
for the initial spectral matrix E given in (29) as follows:

(E(t, x, z∗))† = ΘE(t, x, z)Θ−1, (34)

and
(E(t, x,−z))T = −ΞE(t, x, z)Ξ−1, (35)

in which two constant square matrices, Θ and Ξ, are determined by

Θ =

[
Θ1 0
0 Θ2

]
, where Θ†

j = Θj, j = 1, 2, (36)

and

Ξ =

[
Ξ1 0
0 Ξ2

]
, where ΞT

j = Ξj, j = 1, 2. (37)

These two group constraints precisely require

A(t, x) = Θ−1 A†(t, x)Θ, (38)
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and
A(t, x) = −Ξ−1 AT(t, x)Ξ, (39)

which lead equivalently to the following potential reductions:

r(t, x) = Θ−1
1 s†(t, x)Θ2, (40)

and
r(t, x) = −Ξ−1

1 sT(t, x)Ξ2, (41)

respectively. Therefore, we need a restriction for r as follows:

Θ−1
2 r†(t, x)Θ1 = −Ξ−1

2 rT(t, x)Ξ1, (42)

due to taking a pair of group constraints simultaneously.
We observe that the reductions in Equations (34) and (35) lead to the following trans-

formations:  (F [2l+1](t, x, z∗))† = ΘF [2l+1](t, x, z)Θ−1,

(F [2l+1](t, x,−z))T = −ΞF [2l+1](t, x, z)Ξ−1,
(43)

and  (B[2l+1](t, x, z∗))† = ΘB[2l+1](t, x, z)Θ−1,

(B[2l+1](t, x,−z))T = −ΞB[2l+1](t, x, z)Ξ−1,
(44)

where l ≥ 0. Here, F [2l+1] is defined as in (18) and B[2l+1] is determined through (22).
As a result of reductions (40) and (41), the integrable matrix AKNS equations described

in (27) with k = 2l + 1, l ≥ 0, lead to a series of SS-type integrable matrix AKNS equations:

rt = iγ f [2l+2]|s=Θ−1
2 r†Θ1=−Ξ−1

2 rTΞ1
, l ≥ 0, (45)

where r = (rjl)m×n satisfies (42). Here, Θ1 and Θ2 are arbitrarily non-singular Hermitian
matrices of sizes m and n, respectively, and Ξ1 and Ξ2 are arbitrarily non-singular sym-
metric matrices of sizes m and n. Each member in the hierarchy (45) possesses a Lax pair
derived from the reduced matrix eigenproblems defined in (17) with k = 2l + 1 (l ≥ 0).
Furthermore, these equations exhibit infinitely many local commuting conserved quantities
and symmetries, inherited from those of the integrable matrix AKNS equations defined
in (27) with k = 2l + 1 (l ≥ 0) under the two reductions.

2.4. SS-Type Integrable mKdV Equations

Let us focus on the case where k = 3, which corresponds to l = 1. In this context, the
reduced integrable matrix AKNS equation from (45) specifically becomes

rt = − δ

γ3 (rxxx + 3rΘ−1
2 r†Θ1rx + 3rxΘ−1

2 r†Θ1r)

= − δ

γ3 (rxxx − 3rΞ−1
2 rTΞ1rx − 3rxΘ−1

2 rTΞ1r), (46)

where the m × n matrix potential r needs to satisfy (42). This equation is known as the
SS-type integrable matrix mKdV equation.

Based on the provided choices and calculations, let us illustrate the derivation and the
resulting SS-type integrable mKdV equation.

If we take m = 1 and n = 2, and choose

Θ1 = 1, Θ−1
2 =

[
θ 0

0 θ

]
, Ξ1 = 1, Ξ−1

2 =

[
0 ξ

ξ 0

]
, (47)
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with two real constants θ and ξ subject to θ2 = ξ2 = 1. Then, the potential restriction
(42) yields

r2 = −θξr∗1 , (48)

and, furthermore, the potential matrix A satisfying (42) becomes

A =


0 r1 −θξr∗1

θr∗1 0 0

−ξr1 0 0

. (49)

Thus, the corresponding SS-type integrable mKdV equation reads

r1,t = − δ

γ3 [r1,xxx + 6θ|r1|2r1,x + 3θr1(|r1|2)x], (50)

with θ = ±1. Obviously, for θ = 1, this equation precisely matches the SS mKdV equation,
as referenced in the literature [23]. The equation allows for higher-order soliton solutions
through its generalized Darboux transformation, as discussed in further studies [24].

If we still take m = 1 and n = 2, but choose

Θ1 = 1, Θ−1
2 =

[
0 θ

θ 0

]
, Ξ1 = 1, Ξ−1

2 =

[
ξ 0

0 ξ

]
, (51)

in which θ and ξ are two real constanst subject to the condition θ2 = ξ2 = 1, then,
the potential restriction (42) still leads to the relation (48), but the potential matrix A
satisfying (42) becomes

A =


0 r1 −θξr∗1

−ξr1 0 0

θr∗1 0 0

. (52)

Therefore, the corresponding SS-type integrable mKdV equation gives

r1,t = − δ

γ3 [r1,xxx − 6ξr2
1r1,x − 3ξr∗1(|r1|2)x], (53)

with ξ = ±1. Clearly, these mathematical forms are different from the ones previously
presented in (50).

Now, if we take m = 1 and n = 4, and choose

Θ1 = 1, Θ−1
2 =


θ1 0 0 0

0 θ1 0 0

0 0 θ2 0

0 0 0 θ2

, Ξ1 = 1, Ξ−1
2 =


0 ξ1 0 0

ξ1 0 0 0

0 0 0 ξ2

0 0 ξ2 0

, (54)

in which θj and ξ j are real constants subject to the condition θ2
j = ξ2

j = 1, j = 1, 2, then the
potential restriction (42) engenders

r2 = −θ1ξ1r∗1 , r4 = −θ2ξ2r∗3 , (55)



Mathematics 2024, 12, 3643 8 of 15

and, furthermore, the potential matrix A satisfying (42) becomes

A =



0 r1 −θ1ξ1r∗1 r3 −θ2ξ2r∗3
θ1r∗1 0 0 0 0

−ξ1r1 0 0 0 0

θ2r∗3 0 0 0 0

−ξ2r3 0 0 0 0


. (56)

This allows us to generate the following two-component SS-type integrable mKdV equation:
r1,t = − δ

γ3 [r1,xxx + 6(θ1|r1|2 + θ2|r3|2)r1,x + 3(θ1|r1|2 + θ2|r3|2)xr1],

r3,t = − δ

γ3 [r3,xxx + 6(θ1|r1|2 + θ2|r3|2)r3,x + 3(θ1|r1|2 + θ2|r3|2)xr3],
(57)

with the real constants θj subject to θ2
j = 1, j = 1, 2. The long-time asymptotics of the

equation associated with θj = 1, j = 1, 2 have been studied via the nonlinear Deift–Zhou
steepest descent technique in [25,26].

Following the same approach as in the previous example, we can derive another
two-component SS-type integrable mKdV equation as follows:

r1,t = − δ

γ3 {r1,xxx − 3ξ1[2r2
1r1,x + r∗1(|r1|2)x]− 3ξ2[r3(r1r3)x + r∗3(r1r∗3)x]},

r3,t = − δ

γ3 {r3,xxx − 3ξ1[r1(r1r3)x + r∗1(r
∗
1r3)x]− 3ξ2[2r2

3r3,x + r∗3(|r3|2)x]},
(58)

with the real constants ξ j subject to ξ2
j = 1, j = 1, 2. This example is different from the

previous one in (57).
Similarly, we can derive two N-component SS-type integrable mKdV equations. The

equations for the three-component case are as follows:

r1,t = − δ

γ3 [r1,xxx + 6(θ1|r1|2 + θ2|r3|2 + θ3|r5|2)r1,x + 3(θ1|r1|2 + θ2|r3|2 + θ3|r5|2)xr1],

r3,t = − δ

γ3 [r3,xxx + 6(θ1|r1|2 + θ2|r3|2 + θ3|r5|2)r3,x + 3(θ1|r1|2 + θ2|r3|2 + θ3|r5|2)xr3],

r5,t = − δ

γ3 [r5,xxx + 6(θ1|r1|2 + θ2|r3|2 + θ3|r5|2)r5,x + 3(θ1|r1|2 + θ2|r3|2 + θ3|r5|2)xr5],

(59)

with the real constants θj subject to θ2
j = 1, j = 1, 2, 3, and



r1,t = − δ

γ3 {r1,xxx − 3ξ1[2r2
1r1,x + r∗1(r1r∗1)x]− 3ξ2[r3(r1r3)x + r∗3(r1r∗3)x]

−3ξ3[r5(r1r5)x + r∗5(r1r∗5)x]},

r3,t = − δ

γ3 {r3,xxx − 3ξ1[r1(r1r3)x + r∗1(r
∗
1r3)x]− 3ξ2[2r2

3r3,x + r∗3(|r3|2)x]

−3ξ3[r5(r3r5)x + r∗5(r3r∗5)x]},

r5,t = − δ

γ3 {r5,xxx − 3ξ1[r1(r1r5)x + r∗1(r
∗
1r5)x]− 3ξ2[r3(r3r5)x + r∗3(r

∗
3r5)x]

−3ξ3[2r2
5r5,x + r∗5(|r5|2)x]},

(60)
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with the real constants ξ j subject to ξ2
j = 1, j = 1, 2, 3, The equation defined by (59)

with θj = 1, j = 1, 2, 3, has been investigated by the Riemann–Hilbert method in [27].
Additionally, the equations defined by (60) are entirely novel.

Some of the aforementioned examples have also been addressed and solved using cor-
responding Riemann–Hilbert problems in [28]. Certainly, there are numerous other intrigu-
ing examples, such as those discussed in [13,29], where different choices of non-singular
Hermitian matrices Θ1, Θ2 and non-singular symmetric matrices Ξ1, Ξ2 were taken.

3. Binary Darboux Transformations
3.1. Distribution of Eigenvalues

Observe that the local reduction in (34) (or (35)) ensures that z is an eigenvalue of the
matrix eigenproblems in (17) if ẑ := z∗ (or ẑ := −z) is a dual eigenvalue. Specifically, it
solves the adjoint counterparts of the matrix eigenproblems:

iϕ̃x = E ϕ̃ = E(p, ẑ)ϕ̃, iϕ̃t = F [k]ϕ̃ = F [k](p, ẑ)ϕ̃,

where k = 2l + 1 with l ≥ 0. Therefore, eigenvalues exhibit the following patterns:
z : η, −η∗, iζ, and dual eigenvalues have a corresponding pattern: z∗ : η∗, −η, −iζ (or
−z : −η, η∗, −iζ), where η ̸∈ iR and ζ ∈ R.

3.2. Darboux Matrices

We aim to establish a general framework for Darboux matrices, where the chosen
eigenvalues and their adjoints are potentially equal to each other.

Assume that N1, N2 ≥ 0 are two natural numbers such that N = 2N1 + N2 ≥ 1. First,
we take a set of eigenvalues as follows:

{zk | 1 ≤ k ≤ N} = {ηk, −η∗
k , 1 ≤ k ≤ N1; iζk, 1 ≤ k ≤ N2} (61)

and another set of dual eigenvalues as follows:

{ẑk | 1 ≤ k ≤ N} = {η∗
k , −ηk, 1 ≤ k ≤ N1; −iζk, 1 ≤ k ≤ N2}, (62)

where ηk ̸∈ iR, 1 ≤ k ≤ N1 and ζk ∈ R, 1 ≤ k ≤ N2. Two groups of the corresponding
eigenfunctions and dual eigenfunctions are determined by

−iφk,x = E(r, s; zk)φk, −iφk,t = F [3](r, s; zk)φk, 1 ≤ k ≤ N, (63)

and
iφ̂k,x = φ̂kE(r, s; ẑk), iφ̂k,t = φ̂kF [3](r, s; ẑk), 1 ≤ k ≤ N. (64)

For simplicity, we introduce

φ = (φ1, · · · , φN), φ̂ = (φ̂T
1 , · · · , φ̂T

N)
T , (65)

and
Λ = diag(z1, · · · , zN), Λ̂ = diag(ẑ1, · · · , ẑN). (66)

Then, the equations for the eigenfunctions read

−iφx = ΣφΛ + Aφ, iφ̂x = Λ̂φ̂Σ + φ̂A, (67)

and {
−iφt = ∆φΛ3 + (B[3](z1)φ1, · · · , B[3](zN)φN),

iφ̂t = Λ̂3 φ̂∆ + (φ̂1B[3](ẑ1), · · · , φ̂N B[3](ẑN)),
(68)

where the four square matrices Σ, ∆, A, and B[3] are given by (19), (20), (21), and (30),
respectively.
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To establish a general framework for Darboux matrices, where the chosen eigenvalues
and their adjoints may coincide, we introduce an N × N matrix Ω = (ωkl)N×N , whose
elements are given by

ωkl =


φ̂k φl

zl − ẑk
, if zl ̸= ẑk,

ωc
kl(t, x), if zl = ẑk,

where 1 ≤ k, l ≤ N. (69)

Here, the matrix Ω includes a novel type of elements ωc
kl in the case of zl = ẑk for a

pair 1 ≤ k, l ≤ N, which will be specified later. This generalization extends beyond the
traditional cases found in the literature (see, e.g., [3,30,31]). Such novel matrices Ω arise
particularly in the formulation of soliton solutions for nonlocal integrable equations.

If Ω is non-singular, let us define the following two Darboux matrices:
D+ = D+(z) = Im+n −

N

∑
k,l=1

φk(Ω−1)kl φ̂l
z − ẑl

,

D− = D−(z) = Im+n +
N

∑
k,l=1

φk(Ω−1)kl φ̂l
z − zk

.

(70)

Through partial fractional decomposition, these two Darboux matrices can be expressed
concisely. It is important to note that the partial fractional decomposition yields

D+ = Im+n −
N

∑
l=1

φΩ
l φ̂l

z − ẑl
, D− = Im+n +

N

∑
k=1

φk φ̂Ω
k

z − zk
, (71)

where one assumes
(φΩ

1 , · · · , φΩ
N) = (φ1, · · · , φN)Ω−1, (72)

and
((φ̂Ω

1 )T , · · · , (φ̂Ω
N)

T)T = Ω−1(φ̂T
1 , · · · , φ̂T

N)
T . (73)

Therefore, the two Darboux matrices can be expressed concisely as follows:

D+ = Im+n − φΩ−1R̂φ̂, D− = Im+n + φRΩ−1 φ̂, (74)

where we denote

R =


1

z−z1
0

. . .
0 1

z−zN

, R̂ =


1

z−ẑ1
0

. . .
0 1

z−ẑN

. (75)

Now, we introduce
D±

1 = lim
z→∞

[z(D±(z)− Im+n)]. (76)

It then follows that
D+

1 = −φΩ−1 φ̂, D−
1 = φΩ−1 φ̂, (77)

which implies that
D+

1 = −D−
1 .

Finally, we can derive two fundamental properties for the resulting Darboux matrices D+

and D− as follows:

(i) A spectral characteristic identity[ N

∏
l=1

(z − ẑl)D+(z)
]∣∣∣

z=zk
φk = 0, φ̂k

[ N

∏
l=1

(z − zl)D−(z)
]∣∣∣

z=ẑk
= 0, 1 ≤ k ≤ N, (78)
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is satisfied.

(ii) When an orthogonality

φ̂k φl = 0 when zl = ẑk, where 1 ≤ k, l ≤ N, (79)

holds, we achieve R̂φ̂φR = ΩR − R̂Ω, and so, D+ and D− solve

D+(z)D−(z) = Im+n. (80)

This implies that when all eigenvalues zk, 1 ≤ k ≤ N, are situated in the upper right
quadrant of the complex plane, D+ and D− yield a solution to a reflectionless Riemann–
Hilbert problem.

3.3. Binary Darboux Transformations

To construct binary DTs, it is essential to examine the dependence of the Ω-matrix on t
and x. Note that the condition

ωc
kl,x = iφ̂k

E(r, s; zl)− E(r, s; ẑk)

zl − ẑk
φl = iφ̂kΣφl when zl = ẑk, (81)

with 1 ≤ k, l ≤ N, guarantees the following spatial derivative formula:

Ωx = iφ̂Σφ; (82)

and, moreover, the condition

ωc
kl,t = iφ̂k

F [3](r, s; zl)−F [3](r, s; ẑk)

zl − ẑk
φl = iφ̂k∆[k,l]φl when zl = ẑk, (83)

with 1 ≤ k, l ≤ N, and ∆[k,l] being worked out as follows:

∆[k,l] = (ẑ2
k + ẑkzl + z2

l )∆ +
δ

γ
(ẑk + zl)A − δ

γ2 Im,n(A2 + iAx), 1 ≤ k, l ≤ N, (84)

which guarantees the following temporal derivative formula:

Ωt = i[φ̂Λ̂2∆φ + φ̂Λ̂∆Λφ + φ̂∆Λ2 φ +
δ

γ
(φ̂Λ̂Aφ + φ̂AΛφ)− δ

γ2 φ̂Im,n(A2 + iAx)φ]. (85)

Given the defined pattern of eigenvalues and dual eigenvalues in (61) and (62), let
us consider

φ̂k = φ†
k Θ = φT

N1+kΞ, φ̂N1+k = φ†
N1+kΘ = φT

k Ξ, 1 ≤ k ≤ N1, (86)

and
φ̂k = φ†

k Θ = φT
k Ξ, 2N1 + 1 ≤ k ≤ N. (87)

In this way, it becomes evident that D+
1 satisfies the required involution properties as follows:

(D+
1 (t, x))† = −ΘD+

1 (t, x)Θ−1, (D+
1 (t, x))T = ΞD+

1 (t, x)Ξ−1, (88)

where Θ and Ξ are defined by (36) and (37), and A′ = [D+
1 , Σ] satisfies the two group

constraints in (34) and (35).
All of the analyses above enable us to formulate a comprehensive framework for

binary DTs as outlined below.

Theorem 1. Let Σ, ∆, and ∆[k,l] be given by (19), (20), and (84), and let the dual eigenvalues
{ẑk| 1 ≤ k ≤ N} be chosen as in (62) and the corresponding dual eigenfunctions {φ̂k| 1 ≤ k ≤ N}
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be specified through (86) and (87). Assume that D± and D±
1 are presented by (70) and (76). Then,

the conditions in (79), (81), and (83) guarantee a binary DT as follows:

ϕ′ = D+ϕ, ϕ̃′ = ϕ̃D−, (89)

with a Bäcklund transformation
A′ = A + [D+

1 , Σ], (90)

for the SS-type integrable matrix mKdV equation (46).

We note that if we choose

ωc
kl = 0 when zl = ẑk, (91)

the three conditions in (79), (81), and (83) can be satisfied by requiring

φ†
k Θφl = φ†

k ΘΣφl = φ†
k Θ∆[k,l]φl = 0 when zl = ẑk, (92)

with 1 ≤ k, l ≤ N. By utilizing (86) and (87), those orthogonal conditions can be expressed
equivalently as

φT
N1+kΞφl = φT

N1+kΞΣφl = φT
N1+kΞ∆[k,l]φl = 0, when zl = ẑk, 1 ≤ k ≤ N1, (93)

φT
k−N1

Ξφl = φT
k−N1

ΞΣφl = φT
k−N1

Ξ∆[k,l]φl = 0, when zl = ẑk, N1 + 1 ≤ k ≤ 2N1, (94)

and
φT

k Ξφl = φT
k ΞΣφl = φT

k Ξ∆[k,l]φl = 0, when zl = ẑk, 2N1 + 1 ≤ k ≤ N, (95)

with 1 ≤ l ≤ N.

3.4. N-fold Decomposition Feature

Next, we would like to demonstrate an N-fold decomposition property for the es-
tablished binary DT in the traditional case, focusing from the fact that the intersection of
{zk| 1 ≤ k ≤ N} and {ẑk| 1 ≤ k ≤ N} is empty.

To proceed, let us establish two groups of novel binary Darboux matrices using a
single pair of eigenvalues and dual eigenvalues recursively as follows:

D+{k} = D+{k}(z) = Im+n −
zk − ẑk
z − ẑk

φ′
k φ̂′

k
φ̂′

k φ′
k

, 1 ≤ k ≤ N,

D−{k} = D−{k}(z) = Im+n +
zk − ẑk
z − zk

φ′
k φ̂′

k
φ̂′

k φ′
k

, 1 ≤ k ≤ N.

(96)

Here, N pairs of new eigenfunctions and dual eigenfunctions are given by

φ′
k = D+[[k − 1]](zk)φk, φ̂′

k = φ̂kD−[[k − 1]](ẑk), 1 ≤ k ≤ N, (97)

with 
D+[[0]] = D−[[0]] = Im+n,

D+[[k]] = D+{k} · · · D+{2}D+{1}, 1 ≤ k ≤ N,

D−[[k]] = D−{1}D−{2} · · · D−{k}, 1 ≤ k ≤ N.

(98)

At this moment, a straightforward computation can confirm the following N-fold decom-
position:

D+ = D+{N}D+{N − 1} · · · D+{1}, D− = D−{1} · · · D−{N − 1}D−{N}, (99)

where D+{k} and D−{k}, 1 ≤ k ≤ N, are defined by (96).
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4. Soliton Solutions

We focus on the dual eigenvalues {ẑk| 1 ≤ k ≤ N} defined previously as in (62). By
considering the zero seed solution r = 0, which implies the zero potential matrix A = 0 due
to the two group constraints, we can readily determine the corresponding eigenfunctions
and dual eigenfunctions

φk(t, x) = eizkΣx+iz3
k ∆tχk, 1 ≤ k ≤ N, (100)

φ̂k(t, x) = χ†
ke−iẑkΣx−iẑ3

k ∆tΘ, 1 ≤ k ≤ N, (101)

where χk, 1 ≤ k ≤ N, denote constant column vectors. Those choices in (86) and (87) result
in the conditions on the constant vectors χk, 1 ≤ k ≤ N as follows:

χT
k (ΞΘ−1 − Θ∗Ξ∗−1) = 0, 1 ≤ k ≤ N1,

χk = Ξ−1Θ∗χ∗
k−N1

, N1 + 1 ≤ k ≤ 2N1,

χ†
k Θ = χT

k Ξ, 2N1 + 1 ≤ k ≤ N,

(102)

where ∗ stands for the complex conjugate of a matrix. t is important to note that the purpose
of all these conditions is to satisfy the group constraints in (38) and (39).

The three orthogonal conditions in (92) can be expressed as follows:

χ†
k Θχl = χ†

k ΘΣχl = (ẑ2
k + ẑkzl + z2

l )χ
†
k Θ∆χl = 0 when zl = ẑk, (103)

with 1 ≤ k, l ≤ N, and Σ, ∆, and Θ being defined by (19), (20), and (36), respectively.
It is worth noting that the case where zk = ẑk occurs only when zk = 0 for 2N1 + 1 ≤

k ≤ N. Given that γ1 and δ1 are different from γ2 and δ2, respectively, the three conditions
outlined in (103) equivalently yield

(χ1
k)

†Θ1χ1
l = 0, (χ2

k)
†Θ2χ2

l = 0 when zl = ẑk, where 1 ≤ k, l ≤ N, (104)

where we assume χk = ((χ1
k)

T , (χ2
k)

T)T . Here, χ1
k and χ2

k denote column vectors of dimen-
sions m and n, respectively. These conditions ensure the orthogonality restrictions, which
can also be represented using the non-singular matrix Ξ.

Now, following the binary DT theory presented in the previous theorem, we define a
new potential matrix as follows:

A′ = [D+
1 , Σ], D+

1 = −φΩ−1 φ̂ = −
N

∑
k,l=1

φk(Ω
−1)kl φ̂l . (105)

This formula leads to a class of soliton solutions for the following SS-type integrable matrix
mKdV Equation (46):

r = γ
N

∑
k,l=1

φ1
k(Ω

−1)kl φ̂
2
l , (106)

where we split φk = ((φ1
k)

T , (φ2
k)

T)T , as we did for χk before, and φ̂k = (φ̂1
k , φ̂2

k). Here, φ̂1
k

and φ̂2
k denote row vectors of dimensions m and n, respectively.

Finally, we conclude that by selecting χk as in (102) and satisfying the conditions
in (104), Formula (106), along with (69), (100), and (101), yields a matrix potential r sat-
isfying (42). Consequently, these provide the required soliton solutions for the SS-type
integrable matrix mKdV equations (46). Such soliton solutions complement those obtained
in [32].

5. Concluding Remarks

The paper explores Sasa–Satsuma (SS)-type integrable matrix mKdV equations through
two local group constraints applied to the matrix AKNS eigenvalue problem of general



Mathematics 2024, 12, 3643 14 of 15

order. It establishes a general framework for binary Darboux transformations (DTs) appli-
cable to the derived SS-type integrable matrix mKdV equations, leveraging the associated
Lax pair and dual Lax pair of matrix eigenproblems. These binary DTs are then employed
to formuate soliton solutions for the SS-type integrable matrix mKdV equations, expanding
upon the binary DT theory developed for reduced integrable mKdV equations [32,33].

The crucial aspect of our analysis involves applying both local group constraints
simultaneously to derive reduced integrable equations, which forms the foundation for the
SS mKdV equation. In constructing binary DTs, we utilize a generalized Ω-matrix where
adopted eigenvalues and dual eigenvalues can coincide. This extension of the Ω-matrix is
inspired by a comprehensive exploration of Riemann–Hilbert problems in the context of
nonlocal integrable equations. The framework for binary DTs presented here is applicable
to both local and nonlocal integrable equations (see, for example, [34–37] for nonlocal
cases). It is noteworthy that Darboux matrices involving higher order singularities can be
generated by introducing repeated eigenvalues or dual eigenvalues, while generalized DTs
can be constructed by differentiating with respect to eigenvalues or dual eigenvalues.

We emphasize that the discussed group symmetric reductions for matrix AKNS
eigenproblems, involving transformations z → z∗ and z → −z, constitute two fundamental
classes producing reduced local integrable equations. Exploring the simultaneous adoption
of these two reductions for other matrix eigenproblems could yield diverse forms of reduced
local integrable equations, which presents an intriguing avenue for future research. In
the realm of DTs, there are numerous intriguing challenges. For instance, how can DTs be
effectively employed to generate additional types of exact and explicit solutions such as for
instance, breather and rogue wave solutions and lump wave solutions? Another important
question is the formulation of binary DTs for reduced integrable couplings linked to non-
semisimple Lie algebras. Furthermore, it is crucial to explore the connections between
binary DT theories and other robust solution techniques, including the inverse scattering
approach, the Hirota direct method, and the Riemann–Hilbert technique (see, e.g., [38–40]).
Understanding these connections could lead to deeper insights and broader applications in
the field of integrability research, particularly on multi-compoenent integrable models (see,
e.g., [41,42]).
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