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Abstract: Let k, l be two integers with k ≥ 0 and l ≥ 2, c a real number greater than or
equal to 1, and f a multivariable function satisfying f (w1, w2, w3, · · · , wl) ≥ 0 when w1, w2 ≥ 0.
We consider an arbitrary order nonlinear difference equation with the indicated function f : zn+1 =
c(zn+zn−k)+(c−1)znzn−k+c f (zn ,zn−k ,w3,··· ,wl)

znzn−k+ f (zn ,zn−k ,w3,··· ,wl)+c , n ≥ 0, where initial values z−k, z−k+1, · · · , z0 are positive and
wi, i ≥ 3, are arbitrary functions of zj, n− k ≤ j ≤ n. We classify its solutions into three types with
different asymptotic behaviors, and verify the global asymptotic stability of its positive equilibrium
solution z̄ = c.

Keywords: difference equation; positive equilibrium; oscillatory solution; strong negative feedback;
global asymptotic stability
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1. Introduction

Difference equations regard time as a discrete quantity, and are treated in mathematics as
discrete dynamical systems. Examples include inflation and unemployment data, published once
a month or once a year, which tells us an inverse correlation between inflation and unemployment.
Difference equations are similar to differential equations, but the latter regard time as a continuous
quantity and examples include continuous dynamical systems.

There are various ways of solving linear difference equations [1]. However, for nonlinear difference
equations, properties of solutions, in various situations, can only be observed and conjectured by
numerical simulations, and they are extremely difficult to verify rigorously in mathematical ways [2].
Global asymptotics of special functions also play key roles in formulating algebro-gemoetric solutions
to soliton equations (see, e.g., [3,4]) and determining scattering data in matrix spectral problems
(see, e.g., [5]). It is, therefore, fundamentally important to make qualitative analysis on nonlinear
difference equations, particularly global behaviors, and this is the topic of the current study. There have
been some related mathematical studies on rational difference equations in the literature (see, e.g., [6–11]).

In numerical mathematics, an iterative algorithm (see, e.g., [12]) to approximate a zero of a given
function g reads

xn+1 =
xn−1g(xn)− xng(xn−1)

g(xn)− g(xn−1)
, n ≥ 0. (1)

An application of this algorithm to a quadratic function g(x) = x2 − a, a > 0 gives a special
rational difference equation

xn+1 =
xnxn−1 + a
xn + xn−1

, n ≥ 0. (2)

In this paper, we would like to consider a more general difference equation.
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Let k, l be two integers with k ≥ 0 and l ≥ 2, c a real number greater than or equal to 1, and f a
multivariable function satisfying that

f (w1, w2, w3, · · · , wl) ≥ 0, when w1, w2 ≥ 0. (3)

We would like to study a (k + 1)th-order nonlinear difference equation involving an indicated
function f :

zn+1 =
c(zn + zn−k) + (c− 1)znzn−k + c f (zn, zn−k, w3, · · · , wl)

znzn−k + f (zn, zn−k, w3, · · · , wl) + c
, n ≥ 0, (4)

with positive initial values z−k, z−k+1, · · · , z0 and wi, i ≥ 3, being arbitrary functions of zj,
n− k ≤ j ≤ n. Taking positive initial values and the property (3) guarantees positive solutions. It is
direct to see that this difference Equation (4) possesses only one equilibrium: z̄ = c, among positive
solutions. Upon taking a transformation

zn =
c

yn
, n ≥ −k, (5)

we obtain an equivalent difference equation

yn+1 =
c(ynyn−k + c) + f (c/yn, c/yn−k)ynyn−k

c(yn + yn−k + c− 1) + f (c/yn, c/yn−k)ynyn−k
, n ≥ 0, (6)

where f = f (w1, w2) is assumed. The positive equilibrium solution z̄ = c of the difference Equation (4)
becomes the positive equilibrium solution ȳ = 1 of the transformed difference Equation (6).

A reduction with c = 1 and f = 0 yields the rational difference equation studied in [9,10]:

yn+1 =
ynyn−k + 1
yn + yn−k

, n ≥ 0. (7)

Introducing xn =
√

a yn into (7) generates

xn+1 =
xnxn−k + a
xn + xn−k

, n ≥ 0, (8)

where a > 0. This resulting difference equation in the case of k = 1 is exactly the numerical algorithm
in (2).

In this paper, we would like to show that there are three solution categories for the nonlinear
difference Equation (4). A characterization of oscillatory solutions will be made, and the global
asymptotic stability properties of the positive equilibrium solution z̄ = c will be verified. Finally, a few
illustrative examples of solutions will be presented.

2. Global Behavior

2.1. Classification of Solutions

Immediately from the difference Equation (4), we can derive

zn+1 − c =
(c− zn)(zn−k − c)

znzn−k + f (zn, zn−k, w3, · · · , wl) + c
, n ≥ 0, (9)

zn+1 − zn =
(c− zn)[(zn + 1)zn−k + f (zn, zn−k, w3, · · · , wl)]

znzn−k + f (zn, zn−k, w3, · · · , wl) + c
, n ≥ 0, (10)
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and

zn+1 − zn−k =
(c− zn−k)[(zn−k + 1)zn + f (zn, zn−k, w3, · · · , wl)]

znzn−k + f (zn, zn−k, w3, · · · , wl) + c
, n ≥ 0. (11)

Now from the equalities (10) and (11), we can easily get the following solution properties.

Proposition 1. Let {zn}∞
n=−k be a solution to the nonlinear difference Equation (4). Then we have

zn+1 > zn if zn < c, and zn+1 < zn if zn > c, (12)

and
zn+1 > zn−k if zn−k < c, and zn+1 < zn−k if zn−k > c, (13)

where n ≥ 0.

If we take k = 0, then the nonlinear difference Equation (4) becomes a first-order difference equation

zn+1 =
2czn + (c− 1)z2

n + c f (zn, zn, w3, · · · , wl)

z2
n + f (zn, zn, w3, · · · , wl) + c

, n ≥ 0. (14)

On one hand, for n ≥ 0, we have zn+1 ≤ c, since −z2
n + 2czn ≤ c2. On the other hand, for n ≥ 1,

we have zn+1 ≥ zn, because c+(c− 1)zn ≥ z2
n, due to zn ≤ c. Therefore, zn increases to c, when n→ ∞.

Generally, the equality (9) and the property (12) directly tell that there are three types of solutions
to the higher-order nonlinear difference Equation (4) as follows.

Theorem 1 (Classification of solutions). Let k ≥ 1. Suppose that {zn}∞
n=−k solves the (k + 1)th-order

nonlinear difference Equation (4) with a function f satisfying (3). Then it

(i) eventually equals c, more precisely zn = c, n ≥ m, which occurs when zm = c for some m ≥ 0;
(ii) is eventually less than c, more precisely zn < zn+1 < c, n ≥ m + k, which occurs when

zm, zm+1, · · · , zm+k < c for some m ≥ −k; or
(iii) oscillates about c with at most k + 1 consecutive decreasing terms greater than c and at most k consecutive

increasing terms less than c.

We point out that another situation that a solution of (4) is eventually greater than c does not
occur, which is guaranteed by (9).

A solution {zn}∞
n=−k in the third type of solutions (iii) of Theorem 1 is called an oscillatory solution.

For an oscillatory solution to the nonlinear difference Equation (4), we can verify its decreasing and
increasing characteristics as follows.

Let n1, n2 ≥ 0 be two integers satisfying n1 < n2. Based on (10), we can compute that

zn2 − zn1 = (zn2 − zn1+1) + (zn1+1 − zn1)

=
n2−1

∑
j=n1+1

(zj+1 − zj) + (zn1+1 − zn1)

= D + (zn1+1 − zn1), (15)

with D being defined by

D =
n2−1

∑
j=n1+1

(c− zj)[(zj + 1)zj−k + f (zj, zj−k, w3, · · · , wl)]

zjzj−k + f (zj, zj−k, w3, · · · , wl) + c
, (16)

where an empty sum is conventionally assumed to be 0. Now if n2 = n1 + 1, the monotonicity
follows from the solution property (12). Hence, we assume that n2 ≥ n1 + 2. Consider the case of
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zn > c, n1 ≤ n ≤ n2. Using the definition of D in (16), we know D < 0, and so zn2 < zn1 , due to (15).
Consider the case of zn < c, n1 ≤ n ≤ n2. Using the definition of D in (16), we know D > 0, and so
zn2 > zn1 , due to (15).

2.2. Global Asymptotic Stability

Please note that the (k + 1)th-order nonlinear difference Equation (4) has the unique positive
equilibrium solution z̄ = c.

Because a globally attractive equilibrium solution of a first-order difference equation cannot be
unstable [13], the positive equilibrium solution z̄ = c of the first-order difference Equation (14) is
globally asymptotically stable. This is for the case of k = 0 in the nonlinear difference Equation (4).

In what follows, we would like to establish the same result for the general case of k ≥ 1. We can
show the global asymptotic stability property of the positive equilibrium solution z̄ = c, by verifying
the local asymptotic stability and the global attractivity, which imply the global asymptotic stability [2].
Instead, we are going to prove a strong negative feedback property [14], which guarantees the global
asymptotic stability (see [15] for a generalization of the strong negative feedback property).

Theorem 2 (Global asymptotic stability). The positive equilibrium solution z̄ = c of the (k + 1)th-order
nonlinear difference Equation (4) with a function f satisfying (3) is globally asymptotically stable.

Proof. Let gn = f (zn, zn−k, w3, · · · , wl). Beginning with the nonlinear difference Equation (4), we can
obtain by a direct computation:

c2

zn−k
− zn+1 =

(c− zn−k)[(c− 1)znzn−k + czn−k + cgn + c2]

zn−k[znzn−k + gn + c]
, n ≥ 0.

It now follows from this equality and the equality (11) that

(zn−k − zn+1)(
c2

zn−k
− zn+1)

=− (c− zn−k)
2[znzn−k + zn + gn][(c− 1)znzn−k + czn−k + cgn + c2]

zn−k[znzn−k + gn + c]2
, n ≥ 0,

which implies a strong negative feedback property:

(zn−k − zn+1)(
c2

zn−k
− zn+1) ≤ 0, n ≥ 0,

with equality for all n ≥ 0 if and only if zn = c, n ≥ −k. Finally, by a stability theorem in [14]
(Theorem 4 in [14]), the positive equilibrium solution z̄ = c of the nonlinear difference Equation (4) is
globally asymptotically stable. The proof is finished.

2.3. Illustrative Examples

To illustrate the oscillation property and the global asymptotic stability in Theorems 1 and 2,
we present two sets of specific examples associated with two special choices for c and f :

c = 2, f (w1, w2) = w2
1 + 2w1w2,

and
c = 3, f (w1, w2) = 3w2 + w1w2

2.
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For the first choice, we take

k = 3, z−3 =
6
5

, z−2 =
7
3

, z−1 =
9
7

, z0 =
8
3

,

and
k = 5, z−5 =

8
7

, z−4 =
9
5

, z−3 =
7
3

, z−2 =
5
3

, z−1 =
3
2

, z0 =
5
2

.

The two corresponding plots are displayed in Figure 1.

Figure 1. Profiles of {zn}∞
n=−k with c = 2 and f = w2

1 + 2w1w2: k = 3 (left), k = 5 (right).

For the second choice, we take

k = 4, z−4 =
18
5

, z−3 =
8
3

, z−2 = 2, z−1 =
33
10

, z0 =
7
3

,

and
k = 6, z−6 =

5
2

, z−5 =
17
5

, z−4 =
27
10

, z−3 =
22
7

, z−2 =
7
3

, z−1 =
10
3

, z0 =
12
5

.

The two corresponding plots are displayed in Figure 2.

Figure 2. Profiles of {zn}∞
n=−k with c = 3 and f = 3w2 + w1w2

2: k = 4 (left), k = 6 (right).

From the four plot pictures, we see that the rate of convergence is excellent in every case.

3. Concluding Remarks

In this paper, we showed that there are three types of solutions to an arbitrary-order nonlinear
difference equation involving a pretty arbitrary function. A decreasing and increasing characteristic
of oscillatory solutions has been explored and the global asymptotic stability of the unique positive
equilibrium solution has been verified.
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We remark that if we take c = 1 and f = 0, Theorem 2 provides the result in [7] for k = 1,
the one in [8] for k = 2 and the one in [10] for a general k. There have also been similar studies on
global behaviors of polynomial difference equations (see, e.g., [16]) and rational difference equations
or systems (see, e.g., [6–11,17]), and other recent studies on positive rational function solutions,
called lump solutions, to both linear and nonlinear partial differential equations (see, e.g., [18,19]).

Let k ≥ 1. Suppose that {zn}∞
n=−k is an oscillatory solution to the nonlinear difference Equation (4).

We define
Ng = {n | zn > c and n ≥ 0}, Nl = {n | zn < c and n ≥ 0}.

Because {zn}∞
n=−k is oscillatory, it follows directly from Theorem 1 that both Ng and Nl have

infinitely many numbers. An interesting question is what kind of conditions on f will guarantee that
zn is decreasing on Ng and increasing on Nl .

Acknowledgments: This work was in part supported by NSFC under the grants 11975145, 11972291 and 11771151,
the Natural Science Foundation for Colleges and Universities in Jiangsu Province (17KJB110020), and Emphasis
Foundation of Special Science Research on Subject Frontiers of CUMT under Grant No. 2017XKZD11.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Batchelder, P.M. An Introduction to Linear Difference Equations; Dover Publications: New York, NY, USA, 1967.
2. Kocic, V.L.; Ladas, G. Global Behavior of Nonlinear Difference Equations of Higher Order with Applications; Kluwer:

Dordrecht, The Netherlands, 1993.
3. Ma, W.X. Trigonal curves and algebro-geometric solutions to soliton hierarchies I. Proc. Roy. Soc. A 2017,

473, 20170232. [CrossRef] [PubMed]
4. Ma, W.X. Trigonal curves and algebro-geometric solutions to soliton hierarchies II. Proc. Roy. Soc. A 2017,

473, 20170233. [CrossRef] [PubMed]
5. Ma, W.X. The inverse scattering transform and soliton solutions of a combined modified Korteweg-de Vries

equation. J. Math. Anal. Appl. 2019, 471, 796–811. [CrossRef]

6. Camouzis, E.; Ladas, G.; Rodrigues, I.W.; Northshield, S. The rational recursive sequence xn+1 =
βx2

n
1+xn−12 .

Comput. Math. Appl. 1994, 28, 37–43. [CrossRef]
7. Li, X.; Zhu, D. Global asymptotic stability in a rational equation. J. Differ. Equ. Appl. 2003, 9, 833–839.
8. Li, X.; Zhu, D. Two rational recursive sequences. Comput. Math. Appl. 2004, 47, 1487–1494. [CrossRef]
9. Rhouma, M.B.H. The Fibonacci sequence modulo π, chaos and some rational recursive equations. J. Math.

Anal. Appl. 2005, 310, 506–517. [CrossRef]
10. Abu-Saris, R.; Çinar, C.; Yalçinkaya, I. On the asymptotic stability of xn+1 = (a + xnxn−k)/(xn + xn−k).

Comput. Math. Appl. 2008, 56, 1172–1175. [CrossRef]
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