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1. Introduction

There exist a few efficient and effective methods to compute analytical solutions to

integrable equations in soliton theory. Those include the inverse scattering trans-

form, the Darboux transformation (DT), the Hirota bilinear method, the Painlevé

test and the Riemann–Hilbert technique.1–3 The DT is one of the most direct

approaches for generating soliton solutions to integrable equations.4,5 A pair of

matrix spectral problems, called a Lax pair, plays a crucial role in formulating DTs
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(see, for example, Ref. 6), which is also the basis for establishing Riemann–Hilbert

problems and the inverse scattering transform.1–3 A binary DT is constructed from

both a pair of matrix spectral problems being equivalent to a given integrable equa-

tion, and another pair of adjoint matrix spectral problems being equivalent to the

same given equation, called an adjoint Lax pair.

Let x and t be two independent variables, and u = u(x, t), a column vector of

dependent variables. A Lax pair of spatial and temporal matrix spectral problems

reads

−iφx = Uφ = U(u, λ)φ, −iφt = V φ = V (u, λ)φ, (1.1)

where i stands for the unit imaginary number, λ is the spectral parameter, U and

V are square matrices, and φ is a column eigenfunction. We assume that such a

Lax pair leads equivalently to an integrable equation

ut = K(u), (1.2)

via the zero curvature equation

Ut − Vx + i[U, V ] = 0, (1.3)

where [·, ·] denotes the matrix commutator, i.e. [U, V ] = UV − V U . This is the

compatibility condition of the involved two spectral problems. Such Lax pairs also

possess beautiful algebraic structures, which guarantee the integrability of the asso-

ciated nonlinear equations.7,8 The adjoint Lax pair of the matrix spectral problems

in (1.1) reads as follows:

iφ̃x = φ̃U = φ̃U(u, λ), iφ̃t = φ̃V = φ̃V (u, λ). (1.4)

The corresponding compatibility condition produces the same zero curvature equa-

tion as (1.3), i.e. it does not generate any new equations, and thus, we can use both

the Lax pair and the adjoint Lax pair simultaneously.

Based on a Lax pair of matrix spectral problems, a reduced integrable equation

can be presented, if the corresponding reduced zero curvature equation still holds

while a group reduction is taken for the spectral matrix U . One example of such

reductions takes the form

U†(x, t, λ∗) = (U(x, t, λ∗))† = CU(x, t, λ)C−1, (1.5)

where C is a constant Hermitian matrix and λ∗ denotes the complex conjugate of

λ (see, for example, Ref. 9). In the above condition, the key is to replace the spec-

tral parameter λ with λ∗ in the spectral matrix U , which works for the nonlinear

Schrödinger (NLS) equations and the modified Korteweg–de Vries (mKdV) equa-

tions. In this paper, we would like to present another example of possible reductions

which work for the mKdV equations. We will replace the spectral parameter λ with

−λ and so introduce

UT (x, t,−λ) = (U(x, t,−λ))T = −CU(x, t, λ)C−1, (1.6)
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in the matrix Ablowitz–Kaup–Newell–Segur (AKNS) spectral problems, to reduce

the mKdV equations. Unfortunately, this reduction idea does not work for the NLS

equations. It is known that the other two replacements λ → −λ∗ and λ → λ

(i.e. no change) could only produce nonlocal integrable reductions, together with

the reflection transformations of the independent variables: x → −x, t → −t and

(x, t)→ (−x,−t) (see, for example, Ref. 10).

By taking advantage of a Lax pair, a binary DT can be determined for an

associated integrable equation by

φ′ = T+φ = T+(u, λ)φ, φ̃′ = φ̃T− = φ̃T−(u, λ), (1.7)

where T− = (T+)−1, provided that φ′ and φ̃′ satisfy the new matrix spectral

problems:

−iφ′x = U ′φ′, −iφ′t = V ′φ′, (1.8)

and the new adjoint matrix spectral problems:

iφ̃′x = φ̃′U ′, iφ̃′t = φ̃′V ′, (1.9)

where the new Lax of spectral matrices is defined by

U ′ = U(u′, λ), V ′ = V (u′, λ), u′ = f(u). (1.10)

The above condition for producing a binary DT just requires that the Darboux

matrices T+ and T− should satisfy

−iT+
x T
− + T+UT− = U ′, −iT+

t T
− + T+V T− = V ′. (1.11)

Obviously, either (1.8) or (1.9) guarantees that the new Lax pairs, U ′ and V ′, gen-

erate the same zero curvature Eq. (1.3) with u replaced with u′. Thus, u′ produces

a new solution to the same integrable equation when so does u. That is to say,

u′ = f(u) presents a Bäcklund transformation of the associated integrable equation.

There exist abundant examples of binary DTs for scalar or multi-component inte-

grable equations (see, for example, Refs. 4 and 11–17), though very few examples

for non-commutative cases, such as cases producing matrix integrable equations, in

the existing literature (see, for example, Refs. 18–20).

In this paper, we would like to construct a novel kind of integrable reductions

of the general integrable matrix mKdV equations, and binary DTs for the resulting

reduced integrable matrix mKdV equations, beginning with a Lax pair of arbitrary-

order matrix AKNS spectral problems. The resulting binary DTs also possess an

N -fold Darboux characteristics, in the regular case where eigenvalues are different

from adjoint eigenvalues. Upon taking the zero seed solution, the obtained binary

DTs generate soliton solutions to the reduced integrable matrix mKdV equations.

A conclusion and several concluding remarks will be given in Sec. 5.
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2. Reduced Integrable Matrix mKdV Equations

Let us recall the general integrable matrix mKdV equations (see, for example,

Ref. 21). Assume that m,n ≥ 0 are two arbitrary integers, and Is denotes the

identity matrix of size s (s ∈ N). We consider a Lax pair of matrix AKNS spectral

problems:

−iφx = Uφ = U(p, q;λ)φ, −iφt = V φ = V (p, q;λ)φ, (2.1)

where

p = (pjl)m×n, q = (qlj)n×m, (2.2)

are two matrices of dependent variables, and

U = λΛ + P, V = λ3Ω +Q, (2.3)

are two spectral matrices. The involved square matrices, Λ,Ω, P and Q, read

Λ = diag(α1Im, α2In), (2.4)

Ω = diag(β1Im, β2In), (2.5)

P = P (u) =

[
0 p

q 0

]
, (2.6)

Q = Q(u, λ) =
β

α
λ2P − β

α2
λIm,n(P 2 + iPx)− β

α3
(i[P, Px] + Pxx + 2P 3)

=
β

α
λ2

[
0 p

q 0

]
− β

α2
λ

[
pq ipx

−iqx −qp

]

− β

α3

[
i(pqx − pxq) pxx + 2pqp

qxx + 2qpq i(qpx − qxp)

]
, (2.7)

where α1, α2 and β1, β2 are two pairs of different constants, α = α1−α2, β = β1−β2

and Im,n = diag(Im,−In).

With only one nonzero pair (pjl, qlj) (1 ≤ j, l ≤ n), the spatial spectral problem

in (2.1) becomes the standard AKNS spectral problem.22 Because of the existence

of a multiple eigenvalue of Λ, the spatial matrix spectral problem in (2.1) with

matrix potentials, p and q, is degenerate.

Now, it is direct to see that the compatibility condition of the matrix spectral

problems in (2.1) yields the following integrable matrix mKdV equations:

pt = − β

α3
(pxxx + 3pqpx + 3pxqp), qt = − β

α3
(qxxx + 3qxpq + 3qpqx). (2.8)

When m = 1 and n = 1, we can have{
p11,t = p11,xxx + 6p11q11p11,x,

q11,t = q11,xxx + 6p11q11q11,x.
(2.9)
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When m = 2 and n = 1, we can obtain{
pj1,t = pj1,xxx + 3(p11q11 + p21q12)pj1,x + 3(p11,xq11 + p21,xq12)pj1,

q1j,t = q1j,xxx + 3(p11q11 + p21q12)q1j,x + 3(p11q11,x + p21q12,x)q1j ,
(2.10)

where 1 ≤ j ≤ 2. When m = 2 and n = 2, we can get
pjl,t = pjl,xxx + 3

2∑
r,s=1

pjrqrspsl,x + 3

2∑
r,s=1

pjr,xqrspsl,

qlj,t = qlj,xxx + 3

2∑
r,s=1

qlr,xprsqsj + 3

2∑
r,s=1

qlrprsqsj,x,

(2.11)

where 1 ≤ j, l ≤ 2. In these three examples, we have taken α = −β = 1.

Let us then make integrable reductions of the general integrable matrix mKdV

equations (2.8). We take two constant invertible symmetric matrices Σ1,Σ2 and

introduce a particular reduction for the spectral matrix U defined in (2.3):

UT (x, t,−λ) = (U(x, t,−λ))T = −CU(x, t, λ)C−1, (2.12)

where C is a constant square matrix by

C =

[
Σ1 0

0 Σ2

]
, ΣTj = Σj , j = 1, 2. (2.13)

This group reduction precisely requires

PT (x, t) = −CP (x, t)C−1, (2.14)

which leads equivalently to the reduction for the potential matrices:

q(x, t) = −Σ−1
2 pT (x, t)Σ1. (2.15)

Moreover, it is direct to see that such a reduction in (2.12) guarantees that

V T (x, t,−λ) = (V (x, t,−λ))T = −CV (x, t, λ)C−1 (2.16)

and

QT (x, t,−λ) = (Q(x, t,−λ))T = −CQ(x, t, λ)C−1, (2.17)

where V and Q are given by (2.3) and (2.7). Therefore, under the reduction (2.15),

the matrix integrable mKdV equations (2.8) reduce to the following reduced matrix

mKdV equations:

pt = − β

α3
(pxxx − 3pΣ−1

2 pTΣ1px − 3pxΣ−1
2 pTΣ1p), (2.18)

where p = (pjl)m×n, and Σ1,Σ2 are two arbitrary invertible symmetric matrices of

sizes m and n, respectively. This system possesses a Lax pair of the reduced spatial

and temporal matrix spectral problems of (2.1).
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When n = 1, taking α = −β = 1 and Σ1 = 1,Σ2 = σ−1, σ = ±1, we obtain the

two integrable scalar mKdV equations:

p11,t = p11,xxx + 6σp2
11p11,x, σ = ±1. (2.19)

When m = 2 and n = 1, we can get the following four new systems of integrable

two-component mKdV equations:{
p11,t = p11,xxx + d1(c1p

2
11 + c2p

2
21)p11,x + d1(c1p11p11,x + c2p21p21,x)p11,

p21,t = p21,xxx + d2(c1p
2
11 + c2p

2
21)p21,x + d2(c1p11p11,x + c2p21p21,x)p21,

(2.20){
p11,t = p11,xxx + (c1p

2
11 + c2p

2
21)p21,x + (c1p11p11,x + c2p21p21,x)p21,

p21,t = p21,xxx + (c1p
2
11 + c2p

2
21)p11,x + (c1p11p11,x + c2p21p21,x)p11,

(2.21)

{
p11,t = p11,xxx + d1(3p21p11,x + p11p21,x)p11,

p21,t = p21,xxx + d2(p21p11,x + 3p11p21,x)p21,
(2.22)

and {
p11,t = p11,xxx + d1(3p11p21,x + p21p11,x)p21,

p21,t = p21,xxx + d1(p21p11,x + 3p21,xp11)p11,
(2.23)

where cj , dj , 1 ≤ j ≤ 2, are arbitrary nonzero real constants. The system (2.20)

and the system in (2.22) contain the two systems of mKdV equations presented in

Ref. 23. One system of such mixed type mKdV equations of (2.20) has been solved

by the inverse scattering transform.24 When m = 2 and n = 2, we can generate a

more general system of integrable mKdV equations

pjl,t = pjl,xxx +

2∑
r,s=1

crdspjrpsrpsl,x +

2∑
r,s=1

crdspjr,xpsrpsl, (2.24)

where 1 ≤ j, l ≤ 2, and cj , dj , 1 ≤ j ≤ 2, are arbitrary nonzero real constants.

3. Binary Darboux Transformations

Let us start to formulate Darboux matrices in a general case, where eigenvalues

could be equal to adjoint eigenvalues.

Let N ≥ 1 be another arbitrary integer. First, we take two sets of eigenvalues

and adjoint eigenvalues:

λk ∈ C, 1 ≤ k ≤ N, and λ̂k = −λk, 1 ≤ k ≤ N, (3.1)

and two sets of the associated eigenfunctions and adjoint eigenfunctions:

−ivk,x = U(p, q;λk)vk, −ivk,t = V (p, q;λk)vk, 1 ≤ k ≤ N (3.2)

and

iv̂k,x = v̂kU(p, q; λ̂k), iv̂k,t = v̂kV (p, q; λ̂k), 1 ≤ k ≤ N. (3.3)

2250094-6
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For the sake of convenience, we introduce

v = (v1, . . . , vN ), v̂ = (v̂T1 , . . . , v̂
T
N )T (3.4)

and

A = diag(λ1, . . . , λN ), Â = diag(λ̂1, . . . , λ̂N ). (3.5)

Then the equations for the eigenfunctions read{
−ivx = ΛvA+ Pv,

iv̂x = Âv̂Λ + v̂P
(3.6)

and {
−ivt = ΩvA3 + (Q(λ1)v1, . . . , Q(λN )vN ),

iv̂t = Â3v̂Ω + (v̂1Q(λ̂1), . . . , v̂NQ(λ̂N )),
(3.7)

where the four matrices Λ,Ω, P and Q are defined by (2.4)–(2.7).

To present Darboux matrices in a general situation, where eigenvalues could

equal adjoint eigenvalues, we introduce a square matrix M = (mkl)N×N , whose

entries are determined by

mkl =


v̂kvl

λl − λ̂k
if λl 6= λ̂k,

0 if λl = λ̂k,

where 1 ≤ k, l ≤ N. (3.8)

Such an M -matrix involves zero entries, when λl = λ̂k for a pair 1 ≤ k, l ≤ N .

Therefore, it generalizes the traditional case without zero entries (see, for example,

Refs. 3, 25 and 26). This new kind of M -matrices is required, indeed, while gener-

ating soliton solutions to nonlocal integrable equations (see, for example, Refs. 27

and 28).

When M is invertible, we can formulate two Darboux matrices as follows:
T+ = T+(λ) = Im+n −

N∑
k,l=1

vk(M−1)klv̂l

λ− λ̂l
,

T− = T−(λ) = Im+n +

N∑
k,l=1

vk(M−1)klv̂l
λ− λk

.

(3.9)

Those two Darboux matrices can be stated in a compact form, by means of partial

fractional decompositions:

T+ = Im+n −
N∑
l=1

vMl v̂l

λ− λ̂l
, T− = Im+n +

N∑
k=1

vkv̂
M
k

λ− λk
, (3.10)

where we set {
(vM1 , . . . , vMN ) = (v1, . . . , vN )M−1,

((v̂M1 )T , . . . , (v̂MN )T )T = M−1(v̂T1 , . . . , v̂
T
N )T .

(3.11)

2250094-7
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At this moment, we can have the compact forms for the Darboux matrices:

T+ = Im+n − vM−1R̂v̂, T− = Im+n + vRM−1v̂, (3.12)

upon defining

R = diag

(
1

λ− λ1
, . . . ,

1

λ− λN

)
, R̂ = diag

(
1

λ− λ̂1

, . . . ,
1

λ− λ̂N

)
. (3.13)

Let us then take

T±1 = lim
λ→∞

[λ(T±(λ)− Im+n)]. (3.14)

Obviously, we have

T+
1 = −vM−1v̂, T−1 = vM−1v̂, (3.15)

which also yields

T+
1 = −T−1 .

Moreover, we can have the following basic properties for the two Darboux matrices

T+ and T−.

(i) A spectral property holds:(
N∏
l=1

(λ− λ̂l)T+

)
(λk)vk = 0,

v̂k

(
N∏
l=1

(λ− λl)T−
)

(λ̂k) = 0, 1 ≤ k ≤ N.

(3.16)

(ii) If an orthogonal condition is satisfied:

v̂kvl = 0 when λl = λ̂k, (3.17)

where 1 ≤ k, l ≤ N, then we have R̂v̂vR = MR − R̂M, and thus, T+ and T− are

inverse to each other:

T+(λ)T−(λ) = Im+n. (3.18)

Now, in order to present a binary DT, we need to compute the derivatives of

the M -matrix with respect to the two independent variables, x and t. It is direct

to show that

v̂kΛvl = 0 when λl = λ̂k, (3.19)

where 1 ≤ k, l ≤ N, guarantees that

Mx = iv̂Λv; (3.20)

and it is also straightforward to check that

v̂kΩ[k,l]vl = 0 when λl = λ̂k, (3.21)

2250094-8
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where 1 ≤ k, l ≤ N, and

Ω[k,l] = (λ̂2
k + λ̂kλl + λ2

l )Ω +
β

α
(λ̂k + λl)P

− β

α2
Im,n(P 2 + iPx), 1 ≤ k, l ≤ N, (3.22)

guarantees that

Mt = i

[
v̂Â2Ωv + v̂ÂΩAv + v̂ΩA2v +

β

α
(v̂ÂPv + v̂PAv)

− β

α2
v̂Im,n(P 2 + iPx)v

]
. (3.23)

Let us also take the adjoint eigenfunctions:

v̂k(x, t, λ̂k) = vTk (x, t, λk)C, 1 ≤ k ≤ N. (3.24)

Then, we can find that T+
1 satisfies a required involution property:

(T+
1 (x, t))T = −CT+

1 (x, t)C−1, (3.25)

where C is defined by (2.13), and the three conditions in (3.17), (3.19) and (3.21)

become

vTk Cvl = vTk CΛvl = vTk CΩ[k,l]vl = 0 when λl = λ̂k, (3.26)

where 1 ≤ k, l ≤ N.
All those properties above lead us to establish a general binary DT formulation

as follows.

Theorem 3.1. Let Λ and Ω[k,l] be defined by (2.4) and (3.22), and let the adjoint

eigenvalues {λ̂k| 1 ≤ k ≤ N} be taken as in (3.1) and the associated adjoint eigen-

functions {v̂k| 1 ≤ k ≤ N} be determined by (3.24). Assume that T± and T±1 are

formulated by (3.9) and (3.14). Then if the conditions in (3.26) are satisfied, we

have a binary DT:

φ′ = T+φ, φ̃′ = φ̃T−, (3.27)

yielding a Bäcklund transformation

P ′ = P + [T+
1 ,Λ], (3.28)

for the redeuced integrable matrix mKdV equations (2.18).

Finally, we would like to exhibit an N -fold decomposition feature for the above

binary DT in the standard case {λk| 1 ≤ k ≤ N} ∩ {λ̂k| 1 ≤ k ≤ N} = ∅.
To the end, we introduce two new sets of single binary Darboux matrices T+[[k]]

and T−[[k]], 1 ≤ k ≤ N , recursively as follows:
T+[[k]] = T+[[k]](λ) = Im+n −

λk − λ̂k
λ− λ̂k

v′kv̂
′
k

v̂′kv
′
k

, 1 ≤ k ≤ N,

T−[[k]] = T−[[k]](λ) = Im+n +
λk − λ̂k
λ− λk

v′kv̂
′
k

v̂′kv
′
k

, 1 ≤ k ≤ N,
(3.29)

2250094-9
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with new pairs of eigenfunctions and adjoint eigenfunctions:

v′k = T+{k − 1}(λk)vk, v̂′k = v̂kT
−{k − 1}(λ̂k), 1 ≤ k ≤ N, (3.30)

where{
T+{0} = T−{0} = Im+n, T

+{k} = T+[[k]] . . . T+[[2]]T+[[1]], 1 ≤ k ≤ N,
T−{k} = T−[[1]]T−[[2]] . . . T−[[k]], 1 ≤ k ≤ N.

(3.31)

Then we can have the following N -fold decompositions for the two Darboux matri-

ces T+ and T−:

T+ = T+[[N ]]T+[[N − 1]] . . . T+[[1]], T− = T−[[1]] . . . T−[[N − 1]]T−[[N ]],

(3.32)

where T+[[k]] and T−[[k]], 1 ≤ k ≤ N , are defined by (3.29).

4. Soliton Solutions

Let us take the adjoint eigenvalues {λ̂k| 1 ≤ k ≤ N} as in (3.1). Starting from the

zero seed solution P = 0, we can readily obtain the associated eigenfunctions and

adjoint eigenfunctions

vk(x, t) = eiλkΛx+iλ3
kΩtwk, 1 ≤ k ≤ N, (4.1)

v̂k(x, t) = wTk e−iλ̂kΛx−iλ̂3
kΩtC, 1 ≤ k ≤ N, (4.2)

where wk, 1 ≤ k ≤ N , are arbitrary constant column vectors, and the three orthog-

onal conditions in (3.26) reduce to

wTk Cwl = wTk CΛwl = (λ̂2
k + λ̂kλl + λ2

l )w
T
k CΩwl = 0 when λl = λ̂k, (4.3)

where 1 ≤ k, l ≤ N, and Λ, Ω and C are given by (2.4), (2.5) and (2.13), respectively.

Now following the binary DT theory in Theorem 3.1, a new potential matrix

can be generated by

P ′ = [T+
1 ,Λ], T+

1 = −vM−1v̂ = −
N∑

k,l=1

vk(M−1)klv̂l. (4.4)

As a consequence, this generates a kind of soliton solutions to the reduced integrable

matrix mKdV equations (2.18):

p = α

N∑
k,l=1

v1
k(M−1)klv̂

2
l , (4.5)

where we split vk = ((v1
k)T , (v2

k)T )T and v̂k = (v̂1
k, v̂

2
k), of which v1

k and v2
k are

m- and n-dimensional column vectors, respectively, and v̂1
k and v̂2

k are m- and n-

dimensional row vectors, respectively.
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We remark that the situation of λk = λ̂k occurs only when taking λk = 0.

Because of α1 6= α2 and β1 6= β2, we can easily observe that the three conditions

in (4.3) are equivalent to

(w1
k)TΣ1w

1
l = 0, (w2

k)TΣ2w
2
l = 0, if λl = λ̂k, where 1 ≤ k, l ≤ N, (4.6)

where we split wk = ((w1
k)T , (w2

k)T )T , 1 ≤ k ≤ N , as we did for vk before.

Finally, we see that once the conditions in (4.6) are satisfied, the formula (4.5),

together with (3.8), (4.1) and (4.2), presents soliton solutions to the reduced inte-

grable matrix mKdV equations (2.18).

5. Concluding Remarks

The paper aims to present a novel kind of integrable reductions of the mKdV

equations, based on the corresponding matrix AKNS spectral problems of arbi-

trary order, and to compute binary DTs for the resulting reduced integrable matrix

mKdV equations, starting from the Lax pair and the adjoint Lax pair of matrix

spectral problems. The resulting binary DTs have been used to construct soliton

solutions to the reduced integrable matrix mKdV equations, which provides an

amendment to the binary DT theory for the other kind of reduced integrable matrix

mKdV equations.

The basic idea in our formulation of producing reduced integrable equations is

to replace the spectral parameter λ with −λ. Such a simple idea generates a novel

kind of reduced integrable matrix mKdV equations, based on the matrix AKNS

spectral problems. Also, in our construction of binary DTs, we have used a gen-

eralized M -matrix, where eigenvalues could be equal to adjoint eigenvalues. The

thought of doing that comes from recent studies on Riemann–Hilbert problems for

nonlocal integrable equations (see, for example, Refs. 27 and 28). The resulting

general formulation of binary DTs can be applied to either local or nonlocal inte-

grable equations (see, for example, Refs. 27–32 for nonlocal theories). We remark

that taking repeated eigenvalues or repeated adjoint eigenvalues engenders Darboux

matrices with higher-order poles, and taking derivatives with respect to eigenvalues

or adjoint eigenvalues yields generalized DTs.

We also remark that on the one hand, there are only two kinds of group reduc-

tions for the matrix AKNS spectral problems which produce reduced integrable

equations. One is to make λ→ λ∗ and the other is to make λ→ −λ. It should be

interesting to apply such ideas to other kinds of matrix spectral problems to gen-

erate reduced integrable equations. On the other hand, there are many interesting

problems in the theory of DTs, which include applications of DTs to other kinds

of exact solutions, including rogue wave solutions, and more generally, lump solu-

tions33; and formulations of binary DTs for integrable equations associated with

non-semisimple Lie algebras (see Ref. 34 for DTs for continuous integrable cou-

plings). It would also be desirable in exploring soliton dynamics, to establish con-

nections between binary DT theories and Hirota bilinear forms.35,36
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