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The aim of this paper is to show that there exist lump solutions and interaction so-

lutions to linear partial differential equations in 2 + 1 dimensions. Through symbolic
computations with Maple, we exhibit a great variety of exact solutions to a class of

(2 + 1)-dimensional linear partial differential equations, and present a specific example

which possesses lump, lump-kink and lump-soliton solutions. This supplements the study
on lump, rogue wave and breather solutions and their interaction solutions to nonlinear
integrable equations.
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1. Introduction

Soliton and lump solutions describe various important nonlinear phenomena in

nature.1,2 Positons and complexitons are counterparts of solitons, which enrich the

diversity of exact solutions to integrable equations.3,4 Interaction solutions between

two classes of solutions describe more diverse nonlinear phenomena.5 Upon taking

long wave limits, lump solutions can be generated from solitons.1,6 The Hirota
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bilinear method in soliton theory provides a powerful approach to all those exact

solutions.7,8

Mathematically, solitons are solutions usually exponentially localized in all di-

rections in space and time, and lumps are solutions rationally localized in all direc-

tions in space. Based on a Hirota bilinear form in 2 + 1 dimensions:

P (Dx, Dy, Dt)f · f = 0 , (1.1)

where P is a polynomial in the indicated variables, and Dx, Dy and Dt are Hirota’s

bilinear derivatives, an N -soliton solution is determined by

f =
∑
µ=0,1

exp

 N∑
i=1

µiξi +
∑
i<j

µiµjaij

 , (1.2)

with 
ξi = kix+ liy − ωit+ ξi,0, 1 ≤ i ≤ N ,

eaij = −P (ki − kj , li − lj , ωj − ωi)
P (ki + kj , li + lj , ωj + ωi)

, 1 ≤ i < j ≤ N ,
(1.3)

where the dispersion relations hold: P (ki, li,−ωi) = 0, 1 ≤ i ≤ N , and the ξi,0’s are

arbitrary constants. The KPI equation

(ut + 6uux + uxxx)x − uyy = 0 (1.4)

possesses a lump solution9:

u = 2(ln f)xx, f =

(
a1x+ a2y +

a1a
2
2 − a1a26 + 2a2a5a6

a21 + a25
t+ a4

)2

+

(
a5x+ a6y +

2a1a2a6 − a22a5 + a5a
2
6

a21 + a25
t+ a8

)2

+
3(a21 + a25)3

(a1a6 − a2a5)2
, (1.5)

where the parameters ai’s are arbitrary but need to satisfy a1a6 − a2a5 6= 0, which

guarantees rational localization in all directions in the (x, y)-plane. Other integrable

equations, which possess lump solutions, contain the three-dimensional three-wave

resonant interaction,10 the BKP equation,11,12 the Davey–Stewartson equation II,6

the Ishimori-I equation,13 the KP equation with a self-consistent source,14 and many

others.15–17 Symbolic computations also show that various non-integrable equations

possess lump solutions as well, including (2 + 1)-dimensional generalized KP, BKP

and Bogoyavlensky–Konopelchenko equations (see, e.g. Refs. 18–23). Moreover, re-

cent studies exhibit the existence of interaction solutions of lumps with another

kind of dispersive waves to nonlinear integrable equations in 2 + 1 dimensions (see,

e.g. Refs. 24 and 25 for lump–soliton interaction solutions; and see, e.g. Refs. 26–28

for lump–kink interaction solutions).
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In this paper, we would like to show that like nonlinear integrable equations,

linear partial differential equations can possess lump solutions and their interaction

solutions with kink and soliton waves. A class of linear partial differential equa-

tions in 2 + 1 dimensions will be analyzed and a specific equation in the class will

be considered to verify such solution phenomena. More concretely, we will search

for lump solutions and mixed lump-kink and lump-soliton solutions to a class of

(2 + 1)-dimensional linear partial differential equations. Through making symbolic

computations with Maple, sufficient conditions to guarantee the existence of the

mentioned solutions will be given and a few examples of lump and interaction so-

lutions will be explicitly presented and plotted. Concluding remarks will be given

finally in the last section.

2. Lump and Interaction Solutions

Let u = u(x, y, t) be a real function of x, y, t ∈ R. We consider a class of linear

partial differential equations (PDEs) in 2 + 1 dimensions:

αutx + βuxy + γuty = 0 , (2.1)

where α, β and γ are three given constants, and utx, uxy and uty are all mixed

second-order partial derivatives.

2.1. A general criterion

We search for a kind of exact solutions

u = v(ξ, η, ζ) , (2.2)

where v is an arbitrary function, and ξ, η and ζ are three linear variables:


ξ = a1x+ b1y + c1t+ d1 ,

η = a2x+ b2y + c2t+ d2 ,

ζ = a3x+ b3y + c3t+ d3 ,

(2.3)

in which ai, bi, ci and di, 1 ≤ i ≤ 3, are constants to be determined. Then, the

linear PDE (2.1) becomes

w1vξξ + w2vηη + w3vζζ + w4vξη + w5vξζ + w6vηζ = 0 , (2.4)

where wi, 1 ≤ i ≤ 6, are quadratic functions of the parameters ai, bi and ci,

1 ≤ i ≤ 3. Requiring all coefficients of the six second-order partial derivatives of v

1950457-3



December 10, 2019 11:16 MPLB S0217984919504578 page 4

W. X. Ma

to be zero, we obtain a system of conditions on the parameters:

αa1c1 + βa1b1 + γb1c1 = 0,

αa2c2 + βa2b2 + γb2c2 = 0 ,

αa3c3 + βa3b3 + γb3c3 = 0 ,

α(a1c2 + a2c1) + β(a1b2 + a2b1) + γ(b1c2 + b2c1) = 0 ,

α(a1c3 + a3c1) + β(a1b3 + a3b1) + γ(b1c3 + b3c1) = 0 ,

α(a2c3 + a3c2) + β(a2b3 + a3b2) + γ(b2c3 + b3c2) = 0 .

(2.5)

2.2. Specific solutions

By direct symbolic computations with Maple, we can get a few solutions to this

system of quadratic equations. We list the following three of them which are

fascinating.

When γ = 0, we can have

αc1 + βb1 = 0, αc2 + βb2 = 0, αc3 + βb3 = 0 . (2.6)

When a3 = b3 = c3 = 0, we can have
b1 = −a1(αc2 + βb2)

γc2
, c1 = −a1(αc2 + βb2)

γb2
,

a2 = − γb2c2
αc2 + βb2

.

(2.7)

Otherwise, we can generally have

a2 = −b2(βa1 + γc1)

αc1
, a3 = −b3(βa1 + γc1)

αc1
,

b1 = − αa1c1
βa1 + γc1

, c2 = −b2(βa1 + γc1)

αa1
,

c3 = −b3(βa1 + γc1)

αa1
.

(2.8)

In each set of the above solutions, the parameters not determined in the set are

arbitrary provided that all expressions in the set will be meaningful. Some straight-

forward computations can show that all those solutions satisfy a determinant equa-

tion ∣∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣∣ = 0 , (2.9)

which implies that none of the above three sets of parameters can generate rogue

wave solutions to the PDEs (2.1).
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When three mixed second-order partial derivatives of v with respect to ξ, η and

ζ are all zero, i.e.

vξη = vξζ = vηζ = 0 ,

then the general system (2.5) is reduced to a half set of conditions on the parameters:
αa1c1 + βa1b1 + γb1c1 = 0 ,

αa2c2 + βa2b2 + γb2c2 = 0 ,

αa3c3 + βa3b3 + γb3c3 = 0 .

(2.10)

This generates a different kind of solutions: u = v1(ξ) + v2(η) + v3(ζ), with separa-

ble variables ξ, η and ζ in three arbitrary functions v1, v2 and v3. When γ = 0, the

above system is simplified into

αa1c1 + βa1b1 = 0, αa2c2 + βa2b2 = 0, αa3c3 + βa3b3 = 0 , (2.11)

which is a little bit more general than (2.6). Obviously, this set of equations can

have solutions, which do not need to satisfy the determinant equation (2.9).

2.3. An illustrative example

Let us now consider a specific equation in the above class of (2 + 1)-dimensional

linear PDEs:

utx + uxy = 0 . (2.12)

Due to the linearity, combining two solutions can yield a class of solutions to (2.12):

u = v1(y, t) + v2(x, t− y) , (2.13)

where v1 and v2 are arbitrary. This kind of solutions does not need to satisfy (2.9),

either. The two solutions v1(y, t) and v2(x, t− y) are generated by (2.5) and (2.6),

respectively. By transforming the PDE (2.12) into a canonical one, we can directly

show that this class of solutions in (2.13) is general. That is, all solutions of (2.12)

must be of the type in (2.13).

Particularly, when the conditions in (2.6) hold, we can have the following sub-

class of solutions:

u = v2 = (ln f)xx, f = ξ2m + η2n + g(ζ) + 1 , (2.14)

where m and n are arbitrary natural numbers, and the function g is arbitrary.

Therefore, upon taking

g(ζ) = 0, eζ or cosh ζ , (2.15)

from (2.14), we can present lump solutions, and interaction solutions: lump-kink

and lump-soliton solutions, for the linear PDE (2.12). The resulting solution with

m = n = 1 reads

u =
fxxf − f2x

f2
=

[2a21 + 2a22 + a23g
′′(ζ)]f − [2a1ξ + 2a2η + a3g

′(ζ)]2

f2
. (2.16)

1950457-5



December 10, 2019 11:16 MPLB S0217984919504578 page 6

W. X. Ma

This supplements various theories of soliton solutions and dromion-type solu-

tions, through basic techniques including the Painlevé analysis (see, e.g. Ref. 29),

the Riemann–Hilbert approach (see, e.g. Refs. 30 and 31), symmetry constraints

(see, e.g. Refs. 32–34) and binary nonlinearization (see, e.g. Refs. 35–37).

Further, taking
a1 = 1, b1 = −2, c1 = 2, d1 = 10 ,

a2 = −2, b2 = −1, c2 = 1, d2 = −3 ,

a3 = −6, b3 = −5, c3 = 5, d3 = −2 ,

(2.17)

we get, from (2.16), the three specific solutions to (2.12):
u1 =

10f1 − (10x+ 32)2

f21
,

f1 = (x− 2y + 2t+ 10)2 + (−2x− y + t− 3)2 + 1 ,

(2.18)


u2 =

(10 + 36e−6x−5y+5t−2)f2 − (10x+ 32− 6e−6x−5y+5t−2)2

f22
,

f2 = (x− 2y + 2t+ 10)2 + (−2x− y + t− 3)2 + e−6x−5y+5t−2 + 1 ,

(2.19)

and 

u3 =
[10 + 36 cosh(−6x− 5y + 5t− 2)]

f3

− [10x+ 32− 6 sinh(−6x− 5y + 5t− 2)]2

f23
,

f3 = (x− 2y + 2t+ 10)2 + (−2x− y + t− 3)2

+ cosh(−6x− 5y + 5t− 2) + 1 .

(2.20)

The solution u2 is also called a lumpoff solution.38 Three 3D plots and contour plots

of those solutions are made in Figs. 1–3, which exhibit characteristics of lumps and

interactions of lumps with kink and soliton waves in soliton theory.

2.4. Two questions

We have produced many lump solutions and their interaction solutions with kink

and soliton type dispersive waves. Moreover, we can easily produce three-wave

rational solutions by (2.13) which are analytical in the x, y and t space, i.e. the whole

spatial and temporal space, and does not satisfy the determinant equation (2.9).

However, we still don’t know how to guarantee the localization of such rational

solutions in all directions in the whole spatial and temporal space, i.e.

lim
kx+ly−ωt→±∞

u(x, y, t) = 0, ∀k, l, ω ∈ R ,

so that we can produce rogue wave solutions.
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Fig. 1. (Color online) Profiles of u1 when t = 0, 1, 2: 3D plots (top) and contour plots (bottom).

Fig. 2. (Color online) Profiles of u2 when t = 0, 0.5, 1: 3D plots (top) and contour plots (bottom).
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Fig. 3. (Color online) Profiles of u3 when t = 0, 1, 2: 3D plots (top) and contour plots (bottom).

The other question is whether or not there exist lump solutions to the (2 + 1)-

dimensional linear wave equation

utt = uxx + uyy .

This equation does not contain any mixed second-order partial derivative.

3. Concluding Remarks

We have focused on a class of linear partial differential equations to show the

existence of lump solutions and their interaction solutions with kink and soliton

waves via symbolic computation with Maple, as shown for nonlinear integrable

equations in soliton theory. A few concrete lump and interaction solutions to a

specific equation in the class were explicitly presented, together with three 3D

plots and contour plots of the three specific solutions.

We remarked that we have never seen lumps and interactions of lumps with

kink and soliton waves in a linear world. The obtained lump, lump-kink and lump-

soliton solutions are valuable supplements to exact solutions generated from differ-

ent kinds of combinations.39–41 We know that integrable equations can be solved

by the Wronskian technique.42 Therefore, our study creates a new question: how

can one generalize Wronskian solutions by introducing matrix entries of new type?

It is also interesting to look for lump and interaction solutions to other generalized
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bilinear and tri-linear differential equations involving generalized bilinear deriva-

tives.43 The corresponding interaction solutions will normally not be resonant solu-

tions presented through the linear superposition principle.44,45 Integrable equations

determined through generalized bilinear derivatives will have different interaction

solutions, but lump solutions derived from quadratic functions remain the same as

in the Hirota derivative case (see Ref. 46 for more discussions).

Diversity of interaction solutions should exhibit the existence of abundant Lie–

Bäcklund symmetries which amends symmetry theories on differential equations.

Absolutely, it is also important to explore examples of both linear and nonlinear dis-

crete differential equations which exhibit lump and interaction solution phenomena.

These are all interesting problems that deserve our further investigation.
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