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The aim of this paper is to show that there exist lump solutions and interaction so-
lutions to linear partial differential equations in 2+ 1 dimensions. Through symbolic
computations with Maple, we exhibit a great variety of exact solutions to a class of
(2+ 1)-dimensional linear partial differential equations, and present a specific example
which possesses lump, lump-kink and lump-soliton solutions. This supplements the study
on lump, rogue wave and breather solutions and their interaction solutions to nonlinear
integrable equations.
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1. Introduction

Soliton and lump solutions describe various important nonlinear phenomena in
nature.!»2 Positons and complexitons are counterparts of solitons, which enrich the
diversity of exact solutions to integrable equations.?>* Interaction solutions between
two classes of solutions describe more diverse nonlinear phenomena.® Upon taking
long wave limits, lump solutions can be generated from solitons.!® The Hirota
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bilinear method in soliton theory provides a powerful approach to all those exact
solutions.”8

Mathematically, solitons are solutions usually exponentially localized in all di-
rections in space and time, and lumps are solutions rationally localized in all direc-

tions in space. Based on a Hirota bilinear form in 2 4+ 1 dimensions:

where P is a polynomial in the indicated variables, and D, D, and D; are Hirota’s
bilinear derivatives, an N-soliton solution is determined by

N
f= Z exp ZﬂifiJrZ,uiHjaij , (1.2)
i=1

pn=0,1 1<J
with
& = ki + Ly — wit + & o, 1<i<N,
P(ki —kj, li — 1, w; — wi) (13)
P(k; + kj, l; + 1, wj +w;)’

Cg‘ij = —

1<i<j<N,

where the dispersion relations hold: P(k;,l;, —w;) = 0,1 < i < N, and the §; ¢’s are
arbitrary constants. The KPI equation

(we 46Uty + Upgy )z — Uyy = 0 (1.4)

possesses a lump solution®:

2
aja3 —aja? + 2a2a5a6t i )
4

=2(1 Ty =
U (In f) f (alx + asy + poa

9 2 2 2 3(a2 2\3
410906 a2a5—|—a5a6t+a8> +( (a? + a?) (15)

+ (asx + agy + —
2 2 )
a3 + az aiag — a2a5)?

where the parameters a;’s are arbitrary but need to satisfy ajag — asas # 0, which
guarantees rational localization in all directions in the (z, y)-plane. Other integrable
equations, which possess lump solutions, contain the three-dimensional three-wave
resonant interaction,' the BKP equation,'*'? the Davey-Stewartson equation II,%
the Ishimori-I equation,'3 the KP equation with a self-consistent source,'* and many
others.15 17 Symbolic computations also show that various non-integrable equations
possess lump solutions as well, including (2 + 1)-dimensional generalized KP, BKP
and Bogoyavlensky—Konopelchenko equations (see, e.g. Refs. 18-23). Moreover, re-
cent studies exhibit the existence of interaction solutions of lumps with another
kind of dispersive waves to nonlinear integrable equations in 2 + 1 dimensions (see,
e.g. Refs. 24 and 25 for lump—soliton interaction solutions; and see, e.g. Refs. 26—28
for lump—kink interaction solutions).
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In this paper, we would like to show that like nonlinear integrable equations,
linear partial differential equations can possess lump solutions and their interaction
solutions with kink and soliton waves. A class of linear partial differential equa-
tions in 2 + 1 dimensions will be analyzed and a specific equation in the class will
be considered to verify such solution phenomena. More concretely, we will search
for lump solutions and mixed lump-kink and lump-soliton solutions to a class of
(2 + 1)-dimensional linear partial differential equations. Through making symbolic
computations with Maple, sufficient conditions to guarantee the existence of the
mentioned solutions will be given and a few examples of lump and interaction so-
lutions will be explicitly presented and plotted. Concluding remarks will be given
finally in the last section.

2. Lump and Interaction Solutions

Let u = u(x,y,t) be a real function of z,y,t € R. We consider a class of linear
partial differential equations (PDEs) in 2 4+ 1 dimensions:

Uty + Plgy + YUy =0, (2.1)
where o, 8 and «y are three given constants, and ¢, uzy and ug, are all mixed

second-order partial derivatives.

2.1. A general criterion

We search for a kind of exact solutions

w=v(&n.0), (2.2)

where v is an arbitrary function, and &, n and { are three linear variables:

E=a1x+ by +eit+dy,
N = azx + by + cot +da, (2.3)
¢ = azx + b3y +c3t +d3,

in which a;,b;,¢; and d;, 1 < i < 3, are constants to be determined. Then, the
linear PDE (2.1) becomes

W1Vee + WUy + W3Vee + Waley + Wsvge + WeUye = 0, (2.4)

where w;, 1 < ¢ < 6, are quadratic functions of the parameters a;,b; and c¢;,
1 <4 < 3. Requiring all coefficients of the six second-order partial derivatives of v
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to be zero, we obtain a system of conditions on the parameters:

aaicy + PBarby +vbier =0,

aazcs + Pagbs +ybace =0,

aazcs + Pagbs +ybses =0,

alajes + ager) + Blarbs + asby) + y(biea + bacy) =0,

alarcs + azer) + Blarbs + azbr) + y(bics + bser) =0,
0.

a(azes + agez) + Bazbs + azba) + y(bacs + baca) =

2.2. Specific solutions

By direct symbolic computations with Maple, we can get a few solutions to this
system of quadratic equations. We list the following three of them which are

fascinating.
When v = 0, we can have
ac; +Pby =0, acy+ Bba =0, «ac3+ b3 =0. (2.6)
When a3z = b3 = ¢3 = 0, we can have
b — a1 (acg + Bbs) __ai(acy + Bby)
L e
(2.7)
@ — — ybaco
? acs + by
Otherwise, we can generally have
_ ba(Bay +yer) ~ b3(Bay +yer)
ag = ————"", 3= ———",
acy acy
b= 2ma_ o balfatae) (2.8)
Bay + yey aag
_ b3(Bai +c1)
3= ———7-—"7—"-.
(6705}

In each set of the above solutions, the parameters not determined in the set are
arbitrary provided that all expressions in the set will be meaningful. Some straight-
forward computations can show that all those solutions satisfy a determinant equa-

tion
a; b1
az by | =0, (2.9)
az by c3

which implies that none of the above three sets of parameters can generate rogue
wave solutions to the PDEs (2.1).
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When three mixed second-order partial derivatives of v with respect to &, 7 and
¢ are all zero, i.e.
Vgn = V¢ = vn¢ =0,
then the general system (2.5) is reduced to a half set of conditions on the parameters:
aaicy + farby + ybici =0,
aagcy + Basby + ybaca =0 (2.10)
aascs + PBaszbs + ybses = 0.

This generates a different kind of solutions: u = v1(€) + v2(n) + v3(¢), with separa-
ble variables £, n and ( in three arbitrary functions vy, vy and vs. When v = 0, the
above system is simplified into

aaicy + Barby =0, «ascs + Basbs =0, «aszcsz + Basbs =0, (2.11)

which is a little bit more general than (2.6). Obviously, this set of equations can
have solutions, which do not need to satisfy the determinant equation (2.9).

2.3. An illustrative example

Let us now consider a specific equation in the above class of (2 + 1)-dimensional
linear PDEs:

Uty + Uy = 0. (2.12)
Due to the linearity, combining two solutions can yield a class of solutions to (2.12):
u:vl(y,t)+vz($,t—y), (213)

where v1 and vy are arbitrary. This kind of solutions does not need to satisfy (2.9),
either. The two solutions vy (y,t) and va(x,t — y) are generated by (2.5) and (2.6),
respectively. By transforming the PDE (2.12) into a canonical one, we can directly
show that this class of solutions in (2.13) is general. That is, all solutions of (2.12)
must be of the type in (2.13).

Particularly, when the conditions in (2.6) hold, we can have the following sub-
class of solutions:

u=v2=(I0f)ga, f=E"+1"" +9(¢) +1, (2.14)

where m and n are arbitrary natural numbers, and the function g is arbitrary.
Therefore, upon taking

g(¢) =0, e or cosh(, (2.15)

from (2.14), we can present lump solutions, and interaction solutions: lump-kink
and lump-soliton solutions, for the linear PDE (2.12). The resulting solution with
m =n =1 reads

L fm];; 2 [2a3 + 203 + a3g"(Q))f }2[2a15+ 201 + asg' (O (2.16)
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This supplements various theories of soliton solutions and dromion-type solu-
tions, through basic techniques including the Painlevé analysis (see, e.g. Ref. 29),
the Riemann-Hilbert approach (see, e.g. Refs. 30 and 31), symmetry constraints
(see, e.g. Refs. 32-34) and binary nonlinearization (see, e.g. Refs. 35-37).

Further, taking

a1=1, b1:—2, 81:2, d1:10,
ag = —2, bg = —1, Cy = 1, d2 = —3, (217)
asz = 76, b3 = 757 C3 = 5, d3 = 72,

we get, from (2.16), the three specific solutions to (2.12):

101 — (102 + 32)2
1= 2 )
i (2.18)
fi=(@—2y+2t+10)2+ (-2z—y+t—3)?+1,

o — (1043670775 H572) fy — (10 + 32 — Ge™Or—v+5t72)2
2 = ,

13 (2.19)
fo=(r—2y+2t+10)% + (=2 —y+t —3)? f e 0x75H51=2 4 1

and
[10 4 36 cosh(—6x — 5y + 5t — 2)]
f3
[10x + 32 — 6 sinh(—6x — 5y + 5t — 2)]?
- f;% ’ (220)
fa=(@—2y+2t+10)2+ (22 —y+t—3)2
+ cosh(—6z — 5y + 5t —2) + 1.

us =

The solution u, is also called a lumpoff solution.?® Three 3D plots and contour plots
of those solutions are made in Figs. 1-3, which exhibit characteristics of lumps and
interactions of lumps with kink and soliton waves in soliton theory.

2.4. Two questions

We have produced many lump solutions and their interaction solutions with kink
and soliton type dispersive waves. Moreover, we can easily produce three-wave
rational solutions by (2.13) which are analytical in the x, y and ¢ space, i.e. the whole
spatial and temporal space, and does not satisfy the determinant equation (2.9).

However, we still don’t know how to guarantee the localization of such rational
solutions in all directions in the whole spatial and temporal space, i.e.

lim u(z,y,t) =0, Vk,l,weR,
kz+ly—wt—+oo

so that we can produce rogue wave solutions.
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Fig. 1. (Color online) Profiles of u; when ¢t = 0,1, 2: 3D plots (top) and contour plots (bottom).

Fig. 2. (Color online) Profiles of uz when ¢t = 0,0.5, 1: 3D plots (top) and contour plots (bottom).
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Fig. 3. (Color online) Profiles of ug when t = 0,1, 2: 3D plots (top) and contour plots (bottom).

The other question is whether or not there exist lump solutions to the (2 + 1)-
dimensional linear wave equation

Ut = Ugg + Uyy -

This equation does not contain any mixed second-order partial derivative.

3. Concluding Remarks

We have focused on a class of linear partial differential equations to show the
existence of lump solutions and their interaction solutions with kink and soliton
waves via symbolic computation with Maple, as shown for nonlinear integrable
equations in soliton theory. A few concrete lump and interaction solutions to a
specific equation in the class were explicitly presented, together with three 3D
plots and contour plots of the three specific solutions.

We remarked that we have never seen lumps and interactions of lumps with
kink and soliton waves in a linear world. The obtained lump, lump-kink and lump-
soliton solutions are valuable supplements to exact solutions generated from differ-
ent kinds of combinations.?® 41 We know that integrable equations can be solved
by the Wronskian technique.*? Therefore, our study creates a new question: how
can one generalize Wronskian solutions by introducing matrix entries of new type?
It is also interesting to look for lump and interaction solutions to other generalized
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bilinear and tri-linear differential equations involving generalized bilinear deriva-
tives.43 The corresponding interaction solutions will normally not be resonant solu-
tions presented through the linear superposition principle.#44% Integrable equations
determined through generalized bilinear derivatives will have different interaction
solutions, but lump solutions derived from quadratic functions remain the same as
in the Hirota derivative case (see Ref. 46 for more discussions).

Diversity of interaction solutions should exhibit the existence of abundant Lie—
Béacklund symmetries which amends symmetry theories on differential equations.
Absolutely, it is also important to explore examples of both linear and nonlinear dis-
crete differential equations which exhibit lump and interaction solution phenomena.
These are all interesting problems that deserve our further investigation.
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