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1. Introduction

It is well-known that Wronskian formulations show a common characteristic feature

of continuous soliton equations, and provide a powerful tool to construct exact solu-

tions to continuous soliton equations.1–7 The resulting technique has been applied

to many continuous soliton equations such as the KdV, MKdV, NLS, derivative

NLS, Boussinesq, KP, sine-Gordon and sinh-Gordon equations. With Wronskian

formulations, soliton solutions and rational solutions are usually expressed as some

kind of logarithmic derivatives of Wronskian-type determinants with respect to

space variables, and the involved determinants are generated by eigenfunctions sat-

isfying linear systems of differential equations. A great help is that Wronskian for-

mulations transform nonlinear problems into linear problems, and thus continuous

soliton equations can be treated by means of linear theories.

There is a discrete version of Wronskian formulations, called Casoratian for-

mulations, for discrete soliton equations such as the Volttera, nonlinear electrical

network, and Toda lattice equations (see, for example, Refs. 8–11). With Casora-

tian formulations, soliton solutions and rational solutions are often expressed as

some kind of rational functions of Casoratian type determinants, and the involved

determinants are made of eigenfunctions satisfying linear systems of differential-
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difference equations. Therefore, the Casoratian technique offers a direct approach

for constructing exact solutions to discrete soliton equations.

Besides soliton solutions and rational solutions, the Wronskian and Casoratian

techniques can be used to construct positon solutions,12–15 i.e., solutions involving

one kind of transcendental functions: trigonometric functions. More generally, a

novel kind of solutions called complexiton solutions has been introduced and gen-

erated using such techniques for continuous and discrete soliton equations3,8 and

soliton equations with sources.16 Those solutions contain two kinds of transcenden-

tal waves: exponential waves and trigonometric waves, with different speeds, and

they correspond to complex eigenvalues of associated characteristic linear problems

and generate solitons and positons as limit cases of the complex eigenvalues.5,17

One of the intriguing discrete soliton equations is the 2D Toda lattice equation,18

∂2Qn

∂s∂x
= Vn+1 − 2Vn + Vn−1, Qn = ln(1 + Vn), (1)

where x, s ∈ R and n ∈ Z. Through the dependent variable transformation,

Vn =
∂2

∂s∂x
ln τn, (2)

Eq. (1) may be integrated with respect to x and s to obtain

1 +
∂2

∂s∂x
ln τn =

τn+1τn−1

τ2
n

, (3)

where the constants of integration are set to zero. This equation is equivalent to

∂2τn

∂s∂x
τn −

∂τn

∂s

∂τn

∂x
= τn+1τn−1 − τ2

n , (4)

which can be written as

DxDsτn · τn = 2(τn+1τn−1 − τ2
n) , (5)

in terms of Hirota’s operator,18

(Dzf · g) = (∂z − ∂z′)f(z)g(z′)|z′=z . (6)

If we set

yn = ln
τn+1

τn

, (7)

then we obtain another form for the 2D Toda lattice equation:

∂2yn

∂s∂x
= eyn+1−yn − eyn−yn−1 . (8)

Two forms (1) and (8) of the 2D Toda lattice equation are linked through

∂2yn

∂s∂x
= Vn+1 − Vn.



Final Reading
August 4, 2008 14:57 WSPC/147-MPLB 01649

An Application of the Casoratian Technique 1817

In this paper, we would like to establish a general Casoratian formulation for the

2D Toda lattice equation (4) and analyze its exact solutions based on the resulting

Casoratian formulation and a Bäcklund transformation.

The paper is organized as follows. In Sec. 2, a general Casoratian formulation

is presented for the bilinear 2D Toda lattice equation (4). In Sec. 3, some specific

cases of linear conditions are discussed and a Bäcklund transformation is furnished

to construct exact solutions, and various examples of Casoratian type solutions are

presented. Concluding remarks are given finally in Sec. 4.

2. A General Casoratian Formulation

The N -soliton solution to the bilinear 2D Toda lattice equation (4) is expressed as

a Casorati determinant,19

τn = Cas(φ1, φ2, . . . , φN ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(n) φ1(n + 1) · · · φ1(n + N − 1)

φ2(n) φ2(n + 1) · · · φ2(n + N − 1)

...
...

. . .
...

φN (n) φN (n + 1) · · · φN (n + N − 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (9)

where each φi(n) = φi(n, x, s) satisfies the linear differential-difference equations

∂φi(n)

∂x
= φi(n + 1),

∂φi(n)

∂s
= −φi(n − 1), 1 ≤ i ≤ N . (10)

The above Casorati determinant has been used in the theory of the 1D lattice

equations.8–11 We will adopt the notation8

k..l = k, k + 1, . . . , l , (11)

where k < l, and it denotes the generalized Casorati determinant by

|i1, . . . , iN | = det([i1, . . . , iN ]) , (12)

where ij ∈ Z, 1 ≤ j ≤ N , and the matrix [i1, . . . , iN ] is defined by

[i1, . . . , iN ] =













φ1(n + i1) φ1(n + i2) · · · φ1(n + iN)

φ2(n + i1) φ2(n + i2) · · · φ2(n + iN)

...
...

. . .
...

φN (n + i1) φN (n + i2) · · · φN (n + iN)













. (13)

Obviously, the standard Casorati determinant is given by

Cas(φ1, φ2, . . . , φN ) = |0..N − 1| .

Theorem 1. Let ε = ±1 and δ = ±1, i.e., (ε, δ) = (1, 1), (1,−1), (−1, 1) or

(−1,−1). If a set of functions φi(n) = φi(n, x, s), 1 ≤ i ≤ N, satisfies the following
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coupled linear differential-difference equations:

∂φi(n)

∂x
= εφi(n + δ) +

N
∑

j=1

λij(x)φj(n), 1 ≤ i ≤ N , (14)

∂φi(n)

∂s
= −εφi(n − δ) +

N
∑

j=1

µij(s)φj(n), 1 ≤ i ≤ N, (15)

where λij(x) and µij(s), 1 ≤ i, j ≤ N , are arbitrary real functions, then τn =

|0..N − 1| defined by Eq. (9) solves the bilinear 2D Toda lattice equation (4).

Proof. Under an exchange of the variables x and s, the cases of linear conditions

(14) and (15) with different values δ = ±1 are transformed into each other, but the

bilinear 2D Toda lattice equation (4) is invariant. Therefore, we only need to check

the case under δ = 1. In what follows, we set δ = 1.

Let us use (Ef)(n) = f(n + 1) and define

(Lxφi)(n) =
N
∑

j=1

λijφj(n), (Lsφi)(n) =
N
∑

j=1

µijφj(n), 1 ≤ i ≤ N . (16)

Then, using Eq. (14), we can compute that

∂τn

∂x
=

N
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(n) φ1(n + 1) · · · φ1(n + N − 1)
...

...
. . .

...

∂xφi(n) ∂xφi(n + 1) · · · ∂xφi(n + N − 1)

...
...

. . .
...

φN (n) φN (n + 1) · · · φN (n + N − 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= ε

N
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(n) φ1(n + 1) · · · φ1(n + N − 1)

...
...

. . .
...

(Eφi)(n) (Eφi)(n + 1) · · · (Eφi)(n + N − 1)

...
...

. . .
...

φN (n) φN (n + 1) · · · φN (n + N − 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

N
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(n) φ1(n + 1) · · · φ1(n + N − 1)

...
...

. . .
...

(Lxφi)(n) (Lxφi)(n + 1) · · · (Lxφi)(n + N − 1)

...
...

. . .
...

φN (n) φN (n + 1) · · · φN (n + N − 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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= ε

N
∑

j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(n) φ1(n + 1) · · · (Eφ1)(n + j − 1) · · · φ1(n + N − 1)

φ2(n) φ2(n + 1) · · · (Eφ2)(n + j − 1) · · · φ2(n + N − 1)

...
...

. . .
...

. . .
...

φN (n) φN (n + 1) · · · (EφN )(n + j − 1) · · · φN (n + N − 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

N
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(n) φ1(n + 1) · · · φ1(n + N − 1)

...
...

. . .
...

λiiφi(n) λiiφi(n + 1) · · · λiiφi(n + N − 1)

...
...

. . .
...

φN (n) φN (n + 1) · · · φN (n + N − 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= ε|0..N − 2, N | +

(

N
∑

i=1

λii

)

τn .

Using almost the same argument, we can obtain

∂τn

∂s
= −ε|−1, 1..N − 1| +

(

N
∑

i=1

µii

)

τn .

Further, we can similarly compute that

∂2τn

∂s∂x
= −|−1, 1..N − 2, N | − τn + ε

(

N
∑

i=1

µii

)

|0..N − 2, N |

+

(

N
∑

i=1

λii

)[

−ε|−1, 1..N − 1| +

(

N
∑

i=1

µii

)

τn

]

= −|−1, 1..N − 2, N | − τn + ε

(

N
∑

i=1

µii

)

|0..N − 2, N |

− ε

(

N
∑

i=1

λii

)

|−1, 1..N − 1| +

(

N
∑

i=1

λii

)(

N
∑

i=1

µii

)

τn .

Plugging these results into the bilinear equation (4) gives

∂2τn

∂s∂x
τn −

∂τn

∂s

∂τn

∂x
− τn+1τn−1 + τ2

n

= −|−1, 1..N − 2, N ||0..N − 1| + |0..N − 2, N ||−1, 1..N − 1|

−|1..N ||−1..N − 2| .
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This sum is the Laplace expansion by N × N minors of the following 2N × 2N

determinant:

−
1

2

∣

∣

∣

∣

∣

[ −1, 0, 1..N − 2 ] [ ∅, N − 1, N ]

[ −1, 0, ∅ ] [ 1..N − 2, N − 1, N ]

∣

∣

∣

∣

∣

,

where ∅ indicates the N × (N − 2) zero matrix, and [∅, N − 1, N ] = [∅, Φ(n + N −

1), Φ(n+N)] and [−1, 0, ∅] = [Φ(n−1), Φ(n), ∅] with Φ(m) = (φ1(m), . . . , φN (m))T .

Obviously, this determinant is zero. Therefore, the solution is verified. �

The linear conditions (14) and (15) in the case of (ε, δ) = (1, 1) is a gen-

eralization of the conditions (10). Theorem 1 tells us that if a set of functions

φi(n), 1 ≤ i ≤ N, satisfies all linear conditions in (14) and (15), then we

can get a Casoratian solution τn = |0..N − 1| to the bilinear 2D Toda lattice

equation (4). If we exchange x and s in τn, we can get another Casoratian solution,

based on Theorem 1.

Let us observe how the Casoratian formulation generates solutions a little bit

more carefully. From the compatibility conditions φi,xs = φi,sx, 1 ≤ i ≤ N , of the

conditions (14) and (15), we have the equalities

N
∑

j,k=1

(λijµjk − µijλjk)φk = 0, 1 ≤ i ≤ N, (17)

and thus we see that the Casorati determinant Cas(φ1, φ2, . . . , φN ) becomes zero

at a point (x, s) where the coefficient matrices A = A(x) = (λij (x))N×N and

B = B(s) = (µij(s))N×N do not commute. Therefore, if A and B are constant and

do not commute, then τn = |0..N − 1| is zero. This shows that the reduced case of

Eqs. (14) and (15) under

A(x)B(s) − B(s)A(x) = 0 (18)

is important in generating non-trivial Casoratian solutions to the bilinear 2D Toda

lattice equation (4).

3. Casoratian Type Solutions

We would like to construct exact solutions of the bilinear 2D Toda lattice equa-

tion (4) by using the resulting Casoratian formulation and introducing a Bäcklund

transformation.

Theorem 2. If A(x) = (λij(x))N×N and B(s) = (µij(s))N×N are continuous and

satisfy (18) and

A(x)

∫ x

0

A(x′)dx′ =

∫ x

0

A(x′)dx′A(x), (19)

B(s)

∫ s

0

B(s′)ds′ =

∫ s

0

B(s′)ds′B(s) , (20)
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then the linear differential-difference equations (14) and (15) have the following

solution:

Φ = Φ(n) = exp

(

∫ x

0

A(x′)dx′ +

∫ s

0

B(s′)ds′

)

× (pn
1eε(pδ

1x−p
−δ
1

s)+q1 , . . . , pn
Neε(pδ

N x−p
−δ
N s)+qN )T , (21)

where Φ = (φ1, . . . , φN )T and pi 6= 0, qi, 1 ≤ i ≤ N , are arbitrary real constants.

Proof. The condition (18) implies that

exp

(
∫ x

0

A(x′)dx′ +

∫ s

0

B(s′)ds′
)

= exp

(
∫ x

0

A(x′)dx′

)

exp

(
∫ s

0

B(s′)ds′
)

= exp

(
∫ s

0

B(s′)ds′
)

exp

(
∫ x

0

A(x′)dx′

)

,

A(x) exp

(
∫ s

0

B(s′)ds′
)

= exp

(
∫ s

0

B(s′)ds′
)

A(x),

B(s) exp

(
∫ x

0

A(x′)dx′

)

= exp

(
∫ x

0

A(x′)dx′

)

B(s) .

The other two conditions (19) and (20) guarantee that

∂x exp

(
∫ x

0

A(x′)dx′

)

= A(x) exp

(
∫ x

0

A(x′)dx′

)

, (22)

∂x exp

(
∫ s

0

B(s′)ds′
)

= B(s) exp

(
∫ s

0

B(s′)ds′
)

, (23)

respectively. Further, a direct computation shows that

∂Φ(n)

∂x
= εΦ(n + δ) + A(x)Φ(n),

∂Φ(n)

∂s
= −εΦ(n − δ) + B(s)Φ(n) .

This verifies the solution in Eq. (21). �

Noting that Eqs. (14) and (15) are linear, any linear combination of Φ defined by

Eq. (21) with different sets of pi and qi, 1 ≤ i ≤ N , is again a solution to Eqs. (14)

and (15). One example is the set of functions

φi =

M
∑

j=1

pn
ije

(εpδ
ij+λi)x−(εp

−δ
ij −µi)s+qij , 1 ≤ i ≤ N, (24)

where pij are arbitrary non-zero real constants and qij , λi and µi are arbitrary real

constants. Actually, Φ = (φ1, . . . , φN )T satisfies the linear conditions (14) and (15)

with A = diag(λ1, . . . , λN ) and B = diag(µ1, . . . , µN ). Thus, we have a Casoratian

solution τn = |0..N − 1| = Cas(φ1, . . . , φN ). The N -soliton solutions correspond to

M = 2.20 The situation with a general integer M yields new Casoratian solutions

involving many free parameters.
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If for each l ≤ N , we further take λi = µi, 1 ≤ i ≤ l, then

Φ =

(

φ1, ∂λ1
φ1, . . . ,

1

k1!
∂k1

λ1
φ1; · · · ; φl, ∂λl

φl, . . . ,
1

kl!
∂kl

λl
φl

)

, (25)

where k1 + · · · + kl = N , satisfies the linear conditions (14) and (15) with

A = B = diag(C1, · · · , Cl), Ci =













λi 0

1 λi

. . .
. . .

0 1 λi













ki×ki

, 1 ≤ i ≤ l .

Thus, this gives us the following Casoratian solution:

τn = Cas

(

φ1, ∂λ1
φ1, . . . ,

1

k1!
∂k1

λ1
φ1; · · · ; φl, ∂λl

φl, . . . ,
1

kl!
∂kl

λl
φl

)

. (26)

Theorem 3. If τn = τn(x, s) solves the bilinear 2D Toda lattice equation (4), and

σn = σn(x, s) satisfies

∂2σn

∂s∂x
σn =

∂σn

∂x

∂σn

∂s
, σn+1σn−1 = σ2

n , (27)

then the function τ̃n defined by

τ̃n = τ̃n(x, s) = σn(αx, α−1s)τn(αx, α−1s), (28)

where α is a non-zero real constant, presents another solution to the bilinear 2D

Toda lattice equation (4).

Proof. Under the first condition in Eq. (27), a direct computation tells that
(

∂2τ̃n

∂s∂x
τ̃n −

∂τ̃n

∂x

∂τ̃n

∂s

)

(x, s) =

[

σ2
n

(

∂2τn

∂s∂x
τn −

∂τn

∂x

∂τn

∂s

)]

(αx, α−1s) .

Thus, the second condition in Eq. (27) ensures that
(

∂2τ̃n

∂s∂x
τ̃n −

∂τ̃n

∂x

∂τ̃n

∂s
− τ̃n+1τ̃n−1 + τ̃2

n

)

(x, s)

=

[

σ2
n

(

∂2τn

∂s∂x
τn −

∂τn

∂x

∂τn

∂s
− τn+1τn−1 + τ2

n

)]

(αx, α−1s) = 0 .

The theorem is proved. �

This theorem provides us with an auto-Bäcklund transformation of the bilinear

2D Toda lattice equation (4). Generally, it also generates new solutions to the

nonlinear 2D Toda lattice equations (1) and (8) from a given solution to the bilinear

2D Toda lattice equation (4), through the transformations given in the introduction.

However, the case of α = 1 does not lead to new solutions to the nonlinear 2D Toda

lattice equation (1).

A particular selection of σn in Theorem 3 engenders the following corollary.
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Corollary 1. Let τn = τn(x, s) be a solution to the bilinear 2D Toda lattice equation

(4) and α be a non-zero real constant. If an(x) and bn(s) satisfy

an+1(x)an−1(x)bn+1(s)bn−1(s) = (an(x))2(bn(s))2, (29)

then τ̃n with σn(x, s) = an(x)bn(s):

τ̃n = τ̃n(x, s) = an(αx)bn(α−1s)τn(αx, α−1s) (30)

solves the bilinear 2D Toda lattice equation (4).

In particular, if a(x), b(s), f(x) and g(s) are real functions but f(x) and g(s)

are positive or negative, then τ̃n with an(x) = a(x)(f(x))n and bn(s) = b(s)(g(s))n:

τ̃n = τ̃n(x, s) = a(αx)b(α−1s)(f(αx))n(g(α−1s))nτn(αx, α−1s) (31)

solves the bilinear 2D Toda lattice equation (4).

In the above corollary, the assumption that f(x) and g(s) are positive or negative

is just to guarantee that τ̃n is well-defined over the domain of x, s ∈ R and n ∈ Z.

A combination of Theorems 1, 2 and 3 offers us an approach for constructing

Casoratian type solutions to the bilinear 2D Toda lattice equation (4).

If we take a(x) = b(s) = 1, f(x) = xβ and g(s) = sα, the resulting solution τ̃n

with α = 1 gives the solution presented in Ref. 20.

Let us take

φ̄i = pn
i eλix+µis+qi = e−εpδ

i x+εp
−δ
i sφi, 1 ≤ i ≤ N, (32)

where pi 6= 0, qi, λi and βi, 1 ≤ i ≤ N , are arbitrary real constants. The set

of functions {φi}
N
i=1 satisfies Eqs. (14) and (15) with A = diag(λ1, . . . , λN ) and

B = diag(µ1, . . . , µN ) as showed before, and obviously, we have

τ̄n = Cas(φ̄1, . . . , φ̄N )

= exp

(

N
∑

i=1

(λix + µis + qi)

)

N
∏

i=1

pn
i

∏

i>j

(pi − pj)

= exp

(

−ε

N
∑

i=1

pδ
i x

)

exp

(

ε

N
∑

i=1

p−δ
i s

)

Cas(φ1, . . . , φN ) . (33)

The last equality in Eq. (33) also tells us a formula for τn = Cas(φ1, . . . , φN ), where

φi are defined by (24) with M = 1. It follows from the above corollary with α = 1

that τ̄n is a Casoratian solution to the bilinear 2D Toda lattice equation (4). Again

from the above corollary, we have a class of Casoratian type solutions to the bilinear

2D Toda lattice equation (4):

τ̃n = a(αx)b(α−1s)(f(αx))n(g(α−1s))n

× exp

(

N
∑

i=1

(λiαx + µiα
−1s + qi)

)

N
∏

i=1

pn
i

∏

i>j

(pi − pj) . (34)
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Obviously, these solutions τ̃n are all just special cases of (31) with τn = 1. They

generate non-constant solutions to the nonlinear 2D Toda lattice equation (8), but

only the zero solution to the nonlinear 2D Toda lattice equation (1).

If we now take the functions φi, 1 ≤ i ≤ N , in Eq. (24) with M = 2, i.e.,

φi = pn
i1e

(εpδ
i1+λi)x−(εp

−δ
i1 −µi)s+qi1 + pn

i2e
(εpδ

i2+λi)x−(εp
−δ
i2 −µi)s+qi2 , 1 ≤ i ≤ N, (35)

then by the above corollary, we have a class of Casoratian type solutions to the

bilinear 2D Toda lattice equation (4):

τ̃n = τ̃n(x, s) = a(αx)b(α−1s)(f(αx))n(g(α−1s))nCas(φ1, . . . , φN )(αx, α−1s) . (36)

A general case of M in Eq. (24) can produce more general Casoratian type solutions

to the bilinear 2D Toda lattice equation (4). Such solutions τ̃n can also generate

new solutions to the nonlinear 2D Toda lattice equation (8), and if α 6= 1, new

solutions to the nonlinear 2D Toda lattice equation (1).

4. Concluding Remarks

A general Casoratian formulation of the bilinear 2D Toda lattice equation (4) has

been presented by means of the bilinear form of (4). The resulting theory provides us

with an effective approach for constructing exact solutions to the bilinear 2D Toda

lattice equation (4). Special classes of functions satisfying (14) and (15), e.g., the

functions defined by Eqs. (24) and (25), were used to generate Casoratian solutions,

and further using the Bäcklund transformation in Theorem 3, various examples of

Casoratian type solutions were presented.

We remark that the solutions τ̃n presented in Corollary 1 may not be exactly

Casoratian, even if τn is Casoratian. For example, τ̃n is non-Casoratian when f(x)

and g(s) are not constant functions. On the other hand, taking different types

of functions for a(x), b(s), f(x) and g(s) can yield positon and complexiton type

solutions.

There are also two other questions that we are interested in. The first question

is how to solve the system of differential-difference equations in Eqs. (14) and

(15) generally, in particular, in the case where the conditions (19) and (20) are

not satisfied, or more generally, Eqs. (22) and (23) do not hold. This will bring

us very different Casoratian solutions to the bilinear 2D Toda lattice equation

(4). The second question is what kind of Casoratian formulations can exist for

Pfaffianization of discrete soliton equations,21,22 for example, for Pfaffianization of

the 2D Toda lattice equation.21 Any answers to these two questions will enhance

our understanding of both diversity of Casoratian type solutions and university of

Casoratian formulations.
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