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A general Casoratian formulation is proposed for the 2D Toda lattice equation,
which involves two coupled eigenfunction systems. Various Casoratian type solutions
are generated, through solving the resulting linear conditions and using a Bé&cklund
transformation.
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1. Introduction

It is well-known that Wronskian formulations show a common characteristic feature
of continuous soliton equations, and provide a powerful tool to construct exact solu-
tions to continuous soliton equations.!™” The resulting technique has been applied
to many continuous soliton equations such as the KdV, MKdV, NLS, derivative
NLS, Boussinesq, KP, sine-Gordon and sinh-Gordon equations. With Wronskian
formulations, soliton solutions and rational solutions are usually expressed as some
kind of logarithmic derivatives of Wronskian-type determinants with respect to
space variables, and the involved determinants are generated by eigenfunctions sat-
isfying linear systems of differential equations. A great help is that Wronskian for-
mulations transform nonlinear problems into linear problems, and thus continuous
soliton equations can be treated by means of linear theories.

There is a discrete version of Wronskian formulations, called Casoratian for-
mulations, for discrete soliton equations such as the Volttera, nonlinear electrical
network, and Toda lattice equations (see, for example, Refs. 8-11). With Casora-
tian formulations, soliton solutions and rational solutions are often expressed as
some kind of rational functions of Casoratian type determinants, and the involved
determinants are made of eigenfunctions satisfying linear systems of differential-
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difference equations. Therefore, the Casoratian technique offers a direct approach
for constructing exact solutions to discrete soliton equations.

Besides soliton solutions and rational solutions, the Wronskian and Casoratian
techniques can be used to construct positon solutions,'?~1° i.e., solutions involving
one kind of transcendental functions: trigonometric functions. More generally, a
novel kind of solutions called complexiton solutions has been introduced and gen-

38 and

erated using such techniques for continuous and discrete soliton equations
soliton equations with sources.'® Those solutions contain two kinds of transcenden-
tal waves: exponential waves and trigonometric waves, with different speeds, and
they correspond to complex eigenvalues of associated characteristic linear problems

and generate solitons and positons as limit cases of the complex eigenvalues.?1”

One of the intriguing discrete soliton equations is the 2D Toda lattice equation,'®
9*Qn

=Vor1 =2V, + Vo1, Qn =In(1+V,), 1

2 Vo1~ Wi+ Vot Qu=Tn(1 + V2 )

where z,s € R and n € Z. Through the dependent variable transformation,

2

In7,, (2)

2

In7, = 7L (3)

where the constants of integration are set to zero. This equation is equivalent to

9?1, Oty 0Ty

9s0z " 9s Ox  rimiT T )
which can be written as
DyDyTy Ty = 2(Tni1Tno1 — T2), (5)
in terms of Hirota’s operator,'®
(Dof+g) = (9= = 821 f(2)g(2)|or=- - (6)
If we set
-
Yn =1n Z—:l , (7)

then we obtain another form for the 2D Toda lattice equation:

0%yn
= @¥Yn+17Yn _ oUn="Yn-1 8
959z © ¢ ®)
Two forms (1) and (8) of the 2D Toda lattice equation are linked through
0y

950 — Vn41 — Vn-
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In this paper, we would like to establish a general Casoratian formulation for the
2D Toda lattice equation (4) and analyze its exact solutions based on the resulting
Casoratian formulation and a Bécklund transformation.

The paper is organized as follows. In Sec. 2, a general Casoratian formulation
is presented for the bilinear 2D Toda lattice equation (4). In Sec. 3, some specific
cases of linear conditions are discussed and a Béacklund transformation is furnished
to construct exact solutions, and various examples of Casoratian type solutions are
presented. Concluding remarks are given finally in Sec. 4.

2. A General Casoratian Formulation

The N-soliton solution to the bilinear 2D Toda lattice equation (4) is expressed as

a Casorati determinant,®
¢1(n)  drn+1) -+ di(n+N—1)
¢2(n)  d2(n+1) -+ ¢a(n+N—1)
T = Cas(p1, d2,...,0N) = : : . : ;9
on(n) on(n+1) -+ on(n+N—1)

where each ¢;(n) = ¢;(n,x, s) satisfies the linear differential-difference equations

aq;g(cn) = ¢i(n+1), 6(;55271) =—¢i(n—1), 1<i<N. (10)

The above Casorati determinant has been used in the theory of the 1D lattice
equations.® ' We will adopt the notation®

kl=kk+1,...,0, (11)
where k < [, and it denotes the generalized Casorati determinant by
li1,...,in| =det([i1,...,iN]), (12)

where i; € Z, 1 < j < N, and the matrix [i1,...,iy] is defined by

p1(n+i1) Si(n+iz) - ¢1(n+in)
P2(n+i1)  d2(n+iz) o Pa(n+in)

[Zlv 7ZN] - (13)
on(n+i1) on(n+iz) -+ on(n+in)

Obviously, the standard Casorati determinant is given by

Cas(¢1,q52, . .,¢N) = |0N - 1| .

Theorem 1. Let ¢ = £1 and § = +£1, i.e., (g,6) = (1,1), (1,-1), (—1,1) or
(=1, -1). If a set of functions ¢;(n) = ¢;i(n,z,s), 1 <i < N, satisfies the following
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coupled linear differential-difference equations:

06i(n) 3

. :s¢i(n+5)+;Aij(x)¢j(n), 1<i<N, (14)
9¢i ‘
asai)ffg@n, +ZM 6;(n), 1<i <N, (15)

where Aij(x) and pj(s), 1 < i,j < N, are arbitrary real functions, then 7, =
|0..N — 1| defined by Eq. (9) solves the bilinear 2D Toda lattice equation (4).

Proof. Under an exchange of the variables x and s, the cases of linear conditions
(14) and (15) with different values ¢ = %1 are transformed into each other, but the
bilinear 2D Toda lattice equation (4) is invariant. Therefore, we only need to check
the case under § = 1. In what follows, we set 6 = 1.

Let us use (Ef)(n) = f(n+ 1) and define

a:¢z ZAZJQS] Sd)l Z,LL”QS] ]. <i<N. (16)
Then, using Eq. (14), we can compute that
¢1(n) pn+1) - pi(n+N-1)
5 N 5 : :
B ; 5x¢.i(n) 3x¢i(7.1 +1) O di(n + N 1)
én(n)  on(n+1) - dn(n+ N -—1)
¢1(n) ¢1(n+1) p1(n+N-1)
N . . . :
=Y | (Bo)(n)  (Bo)n+1) - (E¢)(n+N—1)
i=1 . ) _ _
én(n) pn(n+1) dn(n+ N —1)
¢1(n) p1(n+1) ¢p1(n+ N —1)
N . . . :
+ 30| (Lad)0) (Lag)nt1) o (Ladi)nt N 1)
on(n) on(n+1) -+ on(n+N-—1)
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¢1(n)  gin+1) - (Eg)(n+j—-1) - ¢i(n+N-1)
N | ¢a(n)  d2(n+1) - (Ega)(n+j—1) -+ ¢2(n+N-1)
=<2 | . | | |
j=1 . . . . .
on(n) on(n+1) -+ (Eén)n+j—-1) -+ on(n+N-—-1)
$1(n) p1(n+1) -+ G(n+N-1)
N : : - :
+Z Xiidi(n)  Aipdi(n+1) -+ Aydi(n+ N —1)
i=1 : :
¢n(n)  on(n+1) -+ on(n+N-—1)
N
=¢|0.N —2,N| + (Z A”)Tn .
i=1
Using almost the same argument, we can obtain
o, N
E = _€|_17 L.N — 1‘ + <;M'éi>7—n-
Further, we can similarly compute that
0%, N
5egs = 111N =2, N[ =7+ g<§u> 0..N — 2, N|

+ (ﬁ) [EH,L.N 1+ (iuﬂ

N
=—|-1,1.N — 2, N| —T,L+E<Zuii>|0..N—2,N|

i=1

N N N
—E(Z)\“>|—1,1N—1I+ <Z)\”><ZM“>T7L
i=1 i=1 i=1

Plugging these results into the bilinear equation (4) gives
0?1, 0Ty, 0Ty, 9
950z " s Ow it

—|-1,1..N =2, N|[0..N — 1| +[0..N — 2, N||=1,1..N — 1|
—[1.N||-1.N —2].
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This sum is the Laplace expansion by N x N minors of the following 2N x 2N
determinant:

[-1,0, 1.N-2] [ 0, N —1,N]
2|[-1,0, 0

] [1.N-2 N-—1,N]

where () indicates the N x (N — 2) zero matrix, and [}, N — 1, N] = [0, ®(n+ N —
1), ®(n+N)] and [-1,0,0] = [@(n—1), ®(n), 0] with ®(m) = (¢1(m),..., on(m))".
Obviously, this determinant is zero. Therefore, the solution is verified. O

The linear conditions (14) and (15) in the case of (g,d) = (1,1) is a gen-
eralization of the conditions (10). Theorem 1 tells us that if a set of functions
¢i(n), 1 < i < N, satisfies all linear conditions in (14) and (15), then we
can get a Casoratian solution 7, = |0..N — 1| to the bilinear 2D Toda lattice
equation (4). If we exchange x and s in 7, we can get another Casoratian solution,
based on Theorem 1.

Let us observe how the Casoratian formulation generates solutions a little bit
more carefully. From the compatibility conditions ¢; zs = ¢i sz, 1 <7 < N, of the
conditions (14) and (15), we have the equalities

N
D e — pigAgr) ok =0, 1 <i <N, (17)
k=1
and thus we see that the Casorati determinant Cas(¢1, ¢o,...,¢n) becomes zero
at a point (z,s) where the coefficient matrices A = A(z) = (Ai;(2))nvxn and

B = B(s) = (pi(s))nxn do not commute. Therefore, if A and B are constant and
do not commute, then 7, = |0..N — 1] is zero. This shows that the reduced case of
Egs. (14) and (15) under

A(x)B(s) — B(s)A(z) =0 (18)

is important in generating non-trivial Casoratian solutions to the bilinear 2D Toda
lattice equation (4).

3. Casoratian Type Solutions

We would like to construct exact solutions of the bilinear 2D Toda lattice equa-
tion (4) by using the resulting Casoratian formulation and introducing a Béacklund
transformation.

Theorem 2. If A(z) = (\ij(x))nxn and B(s) = (uij(s))Nxn are continuous and
satisfy (18) and

A(x) /01’ Az )dz' = /Ox A(2)dz' A(z), (19)

B(s) /Os B(s")ds' = /Os B(s')ds'B(s), (20)
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then the linear differential-difference equations (14) and (15) have the following

solution:
® = &(n) = exp (/ A(z")da' +/ B(s')ds')
0 0

X (e p tm i oelrha it )T (21)

where ® = (¢1,...,6x5)7 and p; #0, g, 1 <i < N, are arbitrary real constants.

Proof. The condition (18) implies that

e ([* 4w+ [ Bs)as) = ex /0 A da:') e ([ B()a )

A(x)exp(/osB( ) _
B(s) exp ( /O ’ A(x')da:’) — oxp ( /0 A(x’)dx’)B(s).

The other two conditions (19) and (20) guarantee that

0, exp ( /O xA(a:’)da:’) — A()exp ( /O ’ A(x’)dx’), (22)
0, exp ( /0 sB(s’)ds’) — B(s) exp ( /O SB(S’)dS’), (23)

respectively. Further, a direct computation shows that

0P 0P
a;") = ed(n +6) + A(z)®(n), 6(5") = —e®(n — ) + B(s)®(n).
This verifies the solution in Eq. (21). O

Noting that Eqgs. (14) and (15) are linear, any linear combination of ® defined by
Eq. (21) with different sets of p; and ¢;, 1 <7 < N, is again a solution to Egs. (14)
and (15). One example is the set of functions

M
b; = Zp;lje(E:ij+/\¢)$—(€Pfj5—ui)s+qq‘,j, 1<i<N, (24)
j=1
where p;; are arbitrary non-zero real constants and ¢;;, A; and p; are arbitrary real
constants. Actually, ® = (¢1,...,¢n)T satisfies the linear conditions (14) and (15)
with A = diag(A1,...,A\n) and B = diag(p1, ..., un). Thus, we have a Casoratian
solution 7, = |0..N — 1| = Cas(¢1,...,¢n). The N-soliton solutions correspond to
M = 2.29 The situation with a general integer M yields new Casoratian solutions
involving many free parameters.
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If for each | < N, we further take \; = pu;, 1 <14 <[, then

1 1
¢ = <¢1,6A1¢1, RN pa]/{i(bly s ¢l7ak[¢la RN ma§§¢l)7 (25)
1 2
where k1 + -+ 4+ k; = N, satisfies the linear conditions (14) and (15) with
i 0
1 N
A:Bzdiag(C’l,---,C’l), Ci: . . ,1Si§l.

0 1N s ks

Thus, this gives us the following Casoratian solution:
1 k1 1 ki
Tn — Cas (7251, 8,\1¢>1, ey k—lla)\ld)l; tey ¢l7 8,\l¢>l, ey k—llé‘hdn . (26)

Theorem 3. If 7, = 7,(x, s) solves the bilinear 2D Toda lattice equation (4), and
on = on(x, s) satisfies

020, ~ Ooy, %

2
n — ’ n n—1 — ) 2
9s01° Ox Os In+19n-1 = 0n (27)
then the function T, defined by
Tn = Tn(z, 8) = op(ax, ails)Tn(ax, ails), (28)

where « is a mon-zero real constant, presents another solution to the bilinear 2D
Toda lattice equation (4).

Proof. Under the first condition in Eq. (27), a direct computation tells that

0Ty . 0T OFn (z,8) = |02 01y OTa Oma (az,as)
9s0r " Ox Os =N\ sar T B 0s ’ '

Thus, the second condition in Eq. (27) ensures that

oY R
9s0r " Ox 0s  HiTnol T T JES

_ [ o (P OTnOTa
= |7\ 959z "~ Bx 0s

The theorem is proved. O

2 —1
— Tn41Tn—1 + Tn>:| (Oé.ﬁ, « S) =0.

This theorem provides us with an auto-Bécklund transformation of the bilinear
2D Toda lattice equation (4). Generally, it also generates new solutions to the
nonlinear 2D Toda lattice equations (1) and (8) from a given solution to the bilinear
2D Toda lattice equation (4), through the transformations given in the introduction.
However, the case of a = 1 does not lead to new solutions to the nonlinear 2D Toda
lattice equation (1).

A particular selection of o, in Theorem 3 engenders the following corollary.
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Corollary 1. Let 7, = 7,(z, s) be a solution to the bilinear 2D Toda lattice equation
(4) and « be a non-zero real constant. If a,(x) and b,(s) satisfy

n+1(2)n -1 (2)bn41 (8)bn—1(5) = (an (2))*(bn(5))?, (29)
then T, with o, (x,s) = an(x)bn(s):
Tn = 7~'n(l‘, 8) = an(ax)bn(afls)Tn(Oél‘, ails) (30)

solves the bilinear 2D Toda lattice equation (4).
In particular, if a(x), b(s), f(x) and g(s) are real functions but f(x) an
are positive or negative, then 7, with an(z) = a(x)(f(z))"™ and by(s) = b(s)(g(s)

T = Tu(2,5) = alaz)b(a™"s)(f(az))" (g(a™'s)) T (az, 0" 's) (31)

solves the bilinear 2D Toda lattice equation (4).

S
Q
~— N
w
~

In the above corollary, the assumption that f(x) and g(s) are positive or negative
is just to guarantee that 7, is well-defined over the domain of z,s € R and n € Z.

A combination of Theorems 1, 2 and 3 offers us an approach for constructing
Casoratian type solutions to the bilinear 2D Toda lattice equation (4).

If we take a(z) = b(s) = 1, f(z) = 2” and g(s) = s%, the resulting solution 7,
with @ = 1 gives the solution presented in Ref. 20.

Let us take

éf_)i — p?e/\i1+ﬂ15+Q1 —e —eplaztep] S¢ 1<i<N, (32)

where p; # 0, ¢;, A\; and B;, 1 < i < N, are arbitrary real constants. The set
of functions {¢;}}¥, satisfies Egs. (14) and (15) with A = diag(\1,...,Ay) and
B = diag(p1, - .., un) as showed before, and obviously, we have

7 = Cas(¢1, ..., 0N)

N
exp(Z()\ﬂJruiSJer)sz H Pj)

i=1 i>j

N
= exp (—Eprx) exp ( Zp )Cas D1y, ON) - (33)

i=1
The last equality in Eq. (33) also tells us a formula for 7, = Cas(¢1, ..., ¢n), where
¢; are defined by (24) with M = 1. It follows from the above corollary with aw = 1
that 7, is a Casoratian solution to the bilinear 2D Toda lattice equation (4). Again
from the above corollary, we have a class of Casoratian type solutions to the bilinear
2D Toda lattice equation (4):

7o = alax)b(a™'s)(f(ax))" (g(a"s))"

N
X exp (Z()\iax + o s+ g > le H Dj) - (34)
i=1

i>7
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Obviously, these solutions 7,, are all just special cases of (31) with 7,, = 1. They
generate non-constant solutions to the nonlinear 2D Toda lattice equation (8), but
only the zero solution to the nonlinear 2D Toda lattice equation (1).

If we now take the functions ¢;, 1 <i < N, in Eq. (24) with M = 2, i.e.,

¢’i = p?le(fpgl+/\71)95—(517;15—Hi)8+%1 +p’z(ge(fp%‘i‘/\i)95—(51”;25_/%)84-%2, 1<i<N, (35)

then by the above corollary, we have a class of Casoratian type solutions to the
bilinear 2D Toda lattice equation (4):

7 = Fule,8) = a(aw)b(as) (f(aw) (g(a~" )" Cas(@r, ..., ow)(az,a~'s) . (36)

A general case of M in Eq. (24) can produce more general Casoratian type solutions
to the bilinear 2D Toda lattice equation (4). Such solutions 7, can also generate
new solutions to the nonlinear 2D Toda lattice equation (8), and if & # 1, new
solutions to the nonlinear 2D Toda lattice equation (1).

4. Concluding Remarks

A general Casoratian formulation of the bilinear 2D Toda lattice equation (4) has
been presented by means of the bilinear form of (4). The resulting theory provides us
with an effective approach for constructing exact solutions to the bilinear 2D Toda
lattice equation (4). Special classes of functions satisfying (14) and (15), e.g., the
functions defined by Eqs. (24) and (25), were used to generate Casoratian solutions,
and further using the Bécklund transformation in Theorem 3, various examples of
Casoratian type solutions were presented.

We remark that the solutions 7,, presented in Corollary 1 may not be exactly
Casoratian, even if 7, is Casoratian. For example, 7, is non-Casoratian when f(x)
and g(s) are not constant functions. On the other hand, taking different types
of functions for a(x), b(s), f(z) and g(s) can yield positon and complexiton type
solutions.

There are also two other questions that we are interested in. The first question
is how to solve the system of differential-difference equations in Egs. (14) and
(15) generally, in particular, in the case where the conditions (19) and (20) are
not satisfied, or more generally, Eqs. (22) and (23) do not hold. This will bring
us very different Casoratian solutions to the bilinear 2D Toda lattice equation
(4). The second question is what kind of Casoratian formulations can exist for
Pfaffianization of discrete soliton equations,?!:?2 for example, for Pfaffianization of
the 2D Toda lattice equation.?! Any answers to these two questions will enhance
our understanding of both diversity of Casoratian type solutions and university of
Casoratian formulations.
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