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Abstract

Within the Hirota bilinear formulation, we construct N -soliton solutions and analyze the Hirota N -soliton conditions in
2+1)-dimensions. A generalized algorithm to prove the Hirota conditions is presented by comparing degrees of the multivariate
olynomials derived from the Hirota function in N wave vectors, and two weight numbers are introduced for transforming
he Hirota function to achieve homogeneity of the related polynomials. An application is developed for a general combined
onlinear equation, which provides a proof of existence of its N -soliton solutions. The considered model equation includes
hree integrable equations in (2+1)-dimensions: the (2+1)-dimensional KdV equation, the Kadomtsev–Petviashvili equation, and
he (2+1)-dimensional Hirota–Satsuma–Ito equation, as specific examples.
c 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
eserved.
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1. Introduction

N -soliton solutions are exact multiple wave solutions to nonlinear integrable equations [1,25]. Various significant
olutions in mathematical physics, including breather, complexion, lump and rogue wave solutions, are special
eductions of N -soliton solutions in different situations. Solitons superimposed in fibers can be applied to optical
ommunications, which are faster, more secure, and more flexible [5]. It is well-known that the Hirota bilinear
ethod is a standard and powerful technique to generate N -soliton solutions [11]. The innovative concept of bilinear

derivatives is the key in the basic theory of exact solutions [22], and Hirota bilinear forms are the starting point to
construct N -soliton solutions [11].

Hirota bilinear derivatives read [9]:

Dm
x f · g =

m∑
i=0

(−1)m−i
(

m
i

)
(∂ i

x f )(∂m−i
x g), m ≥ 1, (1.1)
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and more generally, we have bilinear partial derivatives with multiple variables:

(Dm
x Dn

t f · g)(x, t) = (∂x − ∂x ′ )m(∂t − ∂t ′ )n f (x, t)g(x ′, t ′)|x ′=x,t ′=t , m, n ≥ 0, m + n ≥ 1. (1.2)

he case of f = g yields Hirota bilinear expressions:

D2m−1
x f · f = 0, D2m

x f · f =

2m∑
i=0

(−1)2m−i
(

2m
i

)
(∂ i

x f )(∂2m−i
x f ), m ≥ 1, (1.3)

nd bilinear partial derivative expressions:

Dm
x Dn

t f · f =

m∑
i=0

n∑
j=0

(−1)m+n−i− j
(

m
i

)(
n
j

)
(∂ i

x∂
j

t f )(∂m−i
x ∂

n− j
t f ), m, n ≥ 0, m + n ≥ 1. (1.4)

y virtue of Hirota bilinear expressions, we can formulate Hirota bilinear equations. Take an even polynomial
P(x1, x2, . . . , xM ) in M variables, and assume that P has no constant term, i.e.,

P(0) = P(0, 0, . . . , 0) = 0. (1.5)

he corresponding Hirota bilinear equation reads

P(Dx1 , Dx2 , . . . , DxM ) f · f = 0, (1.6)

ll terms of which are Hirota bilinear expressions. An important example is the bilinear Kadomtsev–Petviashvili
quation

B( f ) := (D4
x + Dx Dt + D2

y) f · f = 2( fxxxx f − 4 fxxx fx + 3 f 2
xx + fxt f − fx ft + fyy f − f 2

y ) = 0, (1.7)

hich is transformed into the nonlinear Kadomtsev–Petviashvili equation

N (u) := (ut + 6uux + uxxx )x + u yy = 0, (1.8)

nder the logarithmic derivative transformation u = 2(ln f )xx . The connection between the two equations is

N (u) = (B( f )/ f 2)xx , u = 2(ln f )xx . (1.9)

In this paper, we would like to construct N -soliton solutions and analyze the corresponding Hirota conditions.
generalized algorithm will be proposed for verifying the Hirota N -soliton conditions by comparing degrees of

he multivariate polynomials derived from the Hirota function in N wave vectors. An application will be made for
general (2+1)-dimensional combined bilinear equation associated with

P(x, y, t) = a1(x4
+ xt) + a2(x3 y + yt) + a3x2

+ a4xy + a5 y2, (1.10)

here ai ’s are arbitrary constants satisfying a2
1 + a2

2 ̸= 0, thereby presenting a proof of existence of its N -soliton
olutions. The considered model equation includes the three integrable equations in (2+1)-dimensions: the (2+1)-
imensional KdV equation, the Kadomtsev–Petviashvili equation and the (2+1)-dimensional Hirota–Satsuma–Ito
quation, as specific examples.

. Formulating N-soliton solutions and their conditions

Let N ≥ 1 be an arbitrary integer. For a general Hirota bilinear equation (1.6), we construct its N -soliton
olutions and analyze their sufficient and necessary conditions.

.1. Bilinear formulation of soliton solutions

Let us assume that N wave vectors are denoted by

ki = (k1,i , k2,i , . . . , kM,i ), 1 ≤ i ≤ N , (2.1)

here k1,i , k2,i , . . . , kM,i , 1 ≤ i ≤ N , are constants to be determined. An N -soliton solution to the Hirota bilinear
quation (1.6) is given by [8]:

f =

∑
exp(

N∑
µiηi +

∑
ai jµiµ j ), (2.2)
µ=0,1 i=1 i< j
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where µ = (µ1, µ2, . . . , µN ), µ = 0, 1 means that each µi takes values, either 0 or 1, the wave variables read

ηi = k1,i x1 + k2,i x2 + · · · + kM,i xM + ηi,0, 1 ≤ i ≤ N , (2.3)

ηi,0’s being arbitrary constants, and the phase shifts are determined by

eai j = Ai j := −
P(ki − k j )
P(ki + k j )

, 1 ≤ i < j ≤ N . (2.4)

Note that only the constants eai j ’s, but not ai j ’s, are needed in the definition of f , (2.2).
Let us further introduce

H (ki1 , . . . , kin ) =

∑
σ=±1

P(
n∑

r=1

σr kir )
∏

1≤r<s≤n

P(σr kir − σskis )σrσs, 1 ≤ n ≤ N , (2.5)

where 1 ≤ i1 < · · · < in ≤ N , σ = (σ1, σ2, . . . , σn), and σ = ±1 means that each σr takes values, either 1 or −1.
These functions are called the Hirota functions.

Observing the basic properties

P(Dx1 , . . . , DxM )eηi · eη j = P(ki − k j )eηi +η j , (2.6)

and

P(Dx1 , . . . , DxM )eηn f · eηn g = e2ηn P(Dx1 , . . . , DxM ) f · g, (2.7)

where ηi , η j and ηn are arbitrary wave variables defined by (2.3), we can have the following formulation [18,19].

Theorem 2.1. Let the function f be given by (2.2) and ξ̂ denote that the term ξ is not involved. Then we have

P(Dx1 , . . . , DxM ) f · f

= (−1)
1
2 N (N−1) H (k1, k2, . . . , kN )∏

1≤i< j≤N P(ki + k j )
eη1+η2+···+ηN

+

N−1∑
n=1

(−1)
1
2 (N−n)(N−n−1)

∑
1≤i1<···<in≤N

H (k1, . . . , k̂i1 , . . . , k̂in , . . . , kN )∏
1≤i< j≤N

i, j ̸∈{i1,...,in }

P(ki + k j )
eη1+···+η̂i1 +···+η̂in +···+ηN

+

N−1∑
n=1

∑
1≤i1<···<in≤N

e2(ηi1 +···+ηin +
∑

1≤r<s≤n air is ) P(Dx1 , . . . , DxM ) f̃i1···in · f̃i1···in

(2.8)

ith

f̃i1···in =

∑
µ̃i1···in =0,1

exp(
∑

1≤i≤N
i ̸∈{i1,...,in }

µi η̃i +

∑
1≤i< j≤N

i, j ̸∈{i1,...,in }

ai jµiµ j ), η̃i = ηi +

n∑
r=1

ai ir , (2.9)

here µ̃i1···in = (µ1, . . . , µ̂i1 · · · , µ̂in , . . . , µN ) and µ̃i1···in = 0, 1 means that each µi in µ̃i1···in takes values, either
or 1.

Based on this formulation, we readily know that the Hirota bilinear equation (1.6) possesses an N -soliton solution
2.2) if and only if the following condition

H (ki1 , . . . , kin ) = 0, 1 ≤ i1 < · · · < in ≤ N , 1 ≤ n ≤ N , (2.10)

s satisfied. This is called the Hirota condition for an N -soliton solution, or simply, the N -soliton condition (see
10], p165). On account of the even property of P , the case of (2.10) with n = 1 presents the dispersion relations

P(ki ) = P(k1,i , k2,i , . . . , kM,i ) = 0, 1 ≤ i ≤ N . (2.11)

here exist very few studies (see, e.g., [23,27]) about the Hirota N -soliton condition, because of its complexity

nvolved in the Hirota functions.
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2.2. Illustrative examples

The one-soliton condition is exactly the dispersion relation: P(k1) = 0, which means that f = 1 + eη1 is a
olution if P(k1) = 0.

Besides the dispersion relations P(k1) = P(k2) = 0, the two-soliton condition requires

2(P(k1 + k2)P(k1 − k2) − P(k1 − k2)P(k1 + k2)) = 0, (2.12)

hich is an identity. Therefore, a Hirota bilinear equation always has a two-soliton solution:

f = 1 + eη1 + eη2 + A12eη1+η2 , (2.13)

where P(k1) = P(k2) = 0.
Upon taking N = 3, it is easy to see that the three-soliton condition [6,7] requires∑

σ1,σ2,σ3=±1

P(σ1k1 + σ2k2 + σ3k3)P(σ1k1 − σ2k2)

×P(σ2k2 − σ3k3)P(σ1k1 − σ3k3) = 0, (2.14)

n addition to the dispersion relations P(k1) = P(k2) = P(k3) = 0. Clearly, this is equivalent to∑
(σ1,σ2,σ3)∈S

P(σ1k1 + σ2k2 + σ3k3)P(σ1k1 − σ2k2)

×P(σ2k2 − σ3k3)P(σ1k1 − σ3k3) = 0, (2.15)

here S = {(1, 1, 1), (1, 1, −1), (1, −1, 1), (−1, 1, 1)}. Obviously, the corresponding three-soliton solution reads

f = 1 + eη1 + eη2 + eη3 + A12eη1+η2 + A13eη1+η3

+A23eη2+η3 + A123eη1+η2+η3 , A123 = A12 A13 A23. (2.16)

t is generally accepted that the three-soliton condition implies the general N -soliton condition, without proof of
ts accuracy.

If a sufficient Hirota N -soliton condition (see [20], p951):

P(ki − k j ) = 0, 1 ≤ i < j ≤ N , (2.17)

s satisfied, we arrive at a resonant N -soliton solution:

f = 1 + c1eη1 + c2eη2 + · · · + cN eηN , (2.18)

here ci ’s are arbitrary constants. Note that all wave vectors ki ’s associated with resonant solutions form a vector
ub-space in RM [21], p7178.

.3. Basic properties of the Hirota functions

In order to prove the Hirota N -soliton conditions, we usually need to factor out as many common factors out of
he Hirota function H (k1, . . . , kN ) as possible. To this end, we will use the following two theorems. The first one
s an automatic consequence of the definition of the Hirota functions.

heorem 2.2. The Hirota functions defined by (2.5) are even and symmetric functions in the involved wave vectors.

When taking k2 = ±k1, we immediately have

P(σi ki − k2)P(σi ki ± k1) = P(ki − k1)P(ki + k1) (2.19)

n both cases of σi = ±1, based on the even property of the polynomial P . Utilizing this basic property, we can
erive the following consequence [19], with a careful computation.
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Theorem 2.3. If k2 = ±k1, then we have

H (k1, . . . , kN ) = 2H (k3, . . . , kN )P(2k1)
N∏

i=3

P(ki − k1)P(ki + k1), (2.20)

here H (k1, . . . , kN ) and H (k3, . . . , kN ) are two Hirota functions defined in (2.5).

This specific theorem will be used to factor out common factors out of the Hirota function H (k1, . . . , kN ), in
rder to verify the Hirota N -soliton conditions.

. A generalized algorithm and its applications

.1. A generalized algorithm

Let us focus on the (2+1)-dimensional case and state the corresponding N wave vectors as

ki = (ki , li , −ωi ), 1 ≤ i ≤ N . (3.1)

e also assume that the dispersion relations (2.11) determine all frequencies in terms of wave numbers ki , li :
i = ω(ki , li ), 1 ≤ i ≤ N . In this way, P(σi ki − σ j k j ) becomes functions of ki , li and k j , l j only.

First, we suppose that under the substitution

li = γ kw1
i lw2

i , 1 ≤ i ≤ N , (3.2)

or some integer weights w1 and w2 and a nonzero constant coefficient γ , the two functions P(σi ki − σ j k j ) and
P(σ1k1 + · · · + σN kN ) are simplified into rational forms as follows:

P(σi ki − σ j k j ) =
σiσ j ki k j Q1(ki , li , k j , l j , σi , σ j )

Q2(ki , li , k j , l j )
, (3.3)

nd

P(σ1k1 + · · · + σN kN ) =
Q3(k1, l1, . . . , kN , lN , σ1, . . . , σN )

Q4(k1, l1, . . . , kN , lN )
, (3.4)

where Q1, Q2, Q3 and Q4 are polynomial functions in the indicated variables.
Second, note that Theorem 2.3 implies that under the induction assumption, the Hirota function H (k1, . . . , kN )

ill be zero, if there exist two equal wave vectors ki = k j for some pair 1 ≤ i < j ≤ N . It also follows from
the symmetric property in Theorem 2.2 that under the transforms in (3.2), H (k1, . . . , kN ) is still even with respect
to ki , li 1 ≤ i ≤ N , while w1 + w2 is odd, and it is even only with respect to ki , 1 ≤ i ≤ N , while w1 is odd.

herefore, in both cases, we can simplify the Hirota function H (k1, . . . , kN ) into the following form:

H (k1, . . . , kN ) = (k2
i − k2

j )
2gi j + (li − l j )2hi j , for each pair 1 ≤ i < j ≤ N , (3.5)

here gi j and hi j are rational functions of the wave numbers kn, ln, 1 ≤ n ≤ N . Then we see that the Hirota
unction H (k1, . . . , kN ) can be expressed as

H (k1, . . . , kN ) =

∏
1≤i< j≤N k2

i k2
j [
∏

1≤i< j≤N (k2
i − k2

j )
2g +

∏
1≤i< j≤N (li − l j )2h]

Q4(k1, l1, . . . , kN , lN )
∏

1≤i< j≤N Q2(ki , li , k j , l j )
(3.6)

nder the substitution (3.2), where g and h are polynomials of the wave numbers kn, ln, 1 ≤ n ≤ N , and g can be
onzero when H (k1, . . . , kN ) ̸= 0.

Now, if H (k1, . . . , kN ) ̸= 0, we readily know that the degree of the polynomial

H̃ (k1, . . . , kN ) := H (k1, . . . , kN )Q4(k1, l1, . . . , kN , lN )
∏

1≤i< j≤N

Q2(ki , li , k j , l j )

=

∏
1≤i< j≤N

k2
i k2

j [
∏

1≤i< j≤N

(k2
i − k2

j )
2g +

∏
1≤i< j≤N

(li − l j )2h] (3.7)

s at least 2N (N − 1) + 2N (N − 1) = 4N (N − 1). From (3.3), (3.4) and (3.7), we have

H̃ (k1, . . . , kN ) =

∑
Q3(k1, l1, . . . , kN , lN , σ1, . . . , σN )

∏
σiσ j ki k j Q1(ki , li , k j , l j , σi , σ j ), (3.8)
σ=±1 1≤i< j≤N

274



W.X. Ma Mathematics and Computers in Simulation 190 (2021) 270–279

w
m

T

w

u

T
e

a

u
d
b
m
o

3

3

w
e

and so the degree of the polynomial on the left-hand side should not be less than 4N (N − 1). Otherwise, we will
have H (k1, . . . , kN ) = 0, which is what we want to prove. Therefore, the final task is to compute Q1 and Q3 and
check if the degree of the polynomial H̃ (k1, . . . , kN ) is less than 4N (N − 1), based on (3.8). If we can make a
contradiction, then we verify the Hirota N -soliton conditions, thereby proving the existence of N -soliton solutions.

3.2. Application to a (2+1)-dimensional combined equation

We consider a (2+1)-dimensional combined bilinear equation associated with a polynomial P given by (1.10).
We restate P here for ease of reference:

P(x, y, t) = a1(x4
+ xt) + a2(x3 y + yt) + a3x2

+ a4xy + a5 y2, (3.9)

here ai ’s are arbitrary constants, which satisfy a2
1 + a2

2 ̸= 0 to guarantee the nonlinearity of the corresponding
odel equation. The resulting (2+1)-dimensional combined bilinear equation is

B( f ) := [a1(D4
x + Dx Dt ) + a2(D3

x Dy + Dy Dt ) + a3 D2
x + a4 Dx Dy + a5 D2

y] f · f

= 2[a1( fxxxx f − 4 fxxx fx + 3 f 2
xx + fxt f − fx ft )

+a2( fxxxy f − 3 fxxy fx + 3 fxy fxx − fy fxxx + fyt f − fy ft )
+a3( fxx f − f 2

x ) + a4( fxy f − fx fy) + a5( fyy f − f 2
y )] = 0. (3.10)

his is equivalent to the (2+1)-dimensional combined nonlinear equation:

N (u, v) := a1(ut + 6uux + uxxx ) + a2[vt + 3(uv)x + vxxx ] + a3ux + a4vx + a5vy = 0, (3.11)

here uy = vx , and the direct link is

N (u, v) = (B( f )/ f 2)x , (3.12)

nder the logarithmic derivative transformations

u = 2(ln f )xx , v = 2(ln f )xy . (3.13)

herefore, if f solves the bilinear equation (3.10), then u and v defined by (3.13) solve the corresponding nonlinear
quation (3.11).

Obviously, we can work out that

ωi = k3
i +

a3 + a4γ + a5γ
2

a1 + a2γ
ki , 1 ≤ i ≤ N , (3.14)

nd

Q1 = −3(a1 + a2γ )(σi ki − σ j k j )2, deg Q3 = 4, Q2 = 1, Q4 = 1, (3.15)

nder the substitution (3.2) with w1 = 1 and w2 = 0. Therefore, if H (k1, . . . , kN ) ̸= 0, then based on (3.8), the
egree of the polynomial H̃ (k1, . . . , kN ) (=H (k1, . . . , kN )) is 2N (N − 1) + 4 = 2N 2

− 2N + 4, which could not
e greater than 4N (N − 1) when N ≥ 3. Then it follows that H (k1, . . . , kN ) = 0, N ≥ 1, since the nonlinear
odel equation (3.11) passes the three-soliton test, which just needs a direct computation (this is important, though

mitted).

.3. Specific reductions

.3.1. (2+1)-dimensional KdV equation
The case of a2 = 1 and all other zero coefficients presents

P(x, y, t) = x3 y + yt, (3.16)

ith which the (2+1)-dimensional KdV equation is associated. The corresponding (2+1)-dimensional bilinear KdV
quation reads

B( f ) := D (D + D3) f · f = 2( f f − f f + f f − 3 f f + 3 f f − f f ) = 0, (3.17)
y t x yt y t xxxy xxy x xy xx y xxx
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which is equivalent to the (2+1)-dimensional KdV equation [3]:

N (u, v) := vt + 3(uv)x + vxxx = 0, (3.18)

here u y = vx , under the logarithmic derivative transformations in (3.13).
We can also have a direct verification for the Hirota N -soliton condition under a different selection of weights:

1 = 0 and w2 = 1, and γ = 1 [18]. In this case, we have

ωi = k3
i , 1 ≤ i ≤ N , (3.19)

nd

Q1 = −3(σi ki − σ j k j )(σi li − σ j l j ), deg Q3 = 4, Q2 = 1, Q4 = 1. (3.20)

herefore, if H (k1, . . . , kN ) ̸= 0, then based on (3.8), the degree of the polynomial H̃ (k1, . . . , kN ) (=
H (k1, . . . , kN )) is 2N (N − 1) + 4 = 2N 2

− 2N + 4, which could not be greater than 4N (N − 1) when N ≥ 3.
hus, H (k1, . . . , kN ) = 0, N ≥ 1.

It is known that the spatial symmetric version of the (2+1)-dimensional KdV equation (3.18):

vt + 3(uv)x + 3(vw)y + vxxx + vyyy = 0, (3.21)

here u y = vx and vy = wx , has been discussed (see [24], p707 and [28], p589), and its inverse scattering transform
nd algebro-geometric solutions have been announced in [24,28], respectively. However, this (2+1)-dimensional
ymmetric equation does not pass the three-soliton test.

.3.2. The Kadomtsev–Petviashvili equation
The case of a1 = a5 = 1 and all other zero coefficients tells

P(x, y, t) = x4
+ xt + y2, (3.22)

ith which the Kadomtsev–Petviashvili equation is associated. The corresponding bilinear Kadomtsev–Petviashvili
quation reads

B( f ) := (D4
x + Dx Dt + D2

y) f · f

= 2( fxxxx f − 4 fxxx fx + 3 f 2
xx + fxt f − fx ft + fyy f − f 2

y ) = 0, (3.23)

hich is equivalent to the Kadomtsev–Petviashvili equation [13]:

N (u) := ut + 6uux + uxxx + vy = 0, (3.24)

here u y = vx , under the logarithmic derivative transformations in (3.13).
We can also give a direct proof for the Hirota N -soliton condition under a different selection of weights:

1 = w2 = 1, and γ = 1 [18]. In this case, we have

ωi = k3
i + l2

i ki , 1 ≤ i ≤ N , (3.25)

nd

Q1 = −3(σi ki − σ j k j )2
+ (li − l j )2, deg Q3 = 4, Q2 = 1, Q4 = 1. (3.26)

herefore, if H (k1, . . . , kN ) ̸= 0, then based on (3.8), the degree of the polynomial H̃ (k1, . . . , kN ) (=
H (k1, . . . , kN )) is 2N (N − 1) + 4 = 2N 2

− 2N + 4, which could not be greater than 4N (N − 1) when N ≥ 3. It
hus follows that H (k1, . . . , kN ) = 0, N ≥ 1.

We point out that the N -soliton solutions of the Kadomtsev–Petviashvili equation have been also presented
n [2,26] and the quasiperiodic multiphase solutions of the Kadomtsev–Petviashvili equation can be decomposed

nto finite-dimensional canonical Hamiltonian systems [4].
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3.3.3. (2+1)-dimensional Hirota–Satsuma–Ito equation
The case of a2 = a3 = 1 and all other zero coefficients gives

P(x, y, t) = x3t + yt + x2, (3.27)

nder an exchange of y and t , with which the Hirota–Satsuma–Ito equation is associated. The corresponding
2+1)-dimensional bilinear Hirota–Satsuma–Ito equation reads

B( f ) := (D3
x Dt + Dy Dt + D2

x ) f · f

= 2( fxxxt f − 3 fxxt fx + 3 fxt fxx − ft fxxx + fyt f − fy ft + fxx f − f 2
x ) = 0, (3.28)

hich is equivalent to the (2+1)-dimensional nonlinear Hirota–Satsuma–Ito equation:

N (u) := vy + 3(uv)x + vxxx + ux = 0, (3.29)

here ut = vx , under the logarithmic derivative transformations in (3.13). If we take a potential form v = ṽt , then
he above equation becomes the original (2+1)-dimensional Hirota–Satsuma–Ito equation [7]:

ṽxx + ṽt y + 3(ṽt ṽx )x + ṽt xxx = 0. (3.30)

f this equation does not depend on y, it reduces to the Hirota–Satsuma equation in (1+1)-dimensions [12].
We can similarly present a direct verification for the Hirota N -soliton condition under a different selection of

eights: w1 = 1 and w2 = 2, and γ = 1 [18]. In this case, we can directly get

ωi =
ki

k2
i + l2

i
, 1 ≤ i ≤ N , (3.31)

and ⎧⎪⎨⎪⎩
Q1 = (k2

i + k2
j )

2
+ (l2

i − l2
j )

2
+ 2k2

i k2
j + 2k2

i l2
i + 2k2

j l
2
j + k2

i l2
j + k2

j l
2
i

−3σi kiσ j k j (k2
i + k2

j + l2
i + l2

j ),
deg Q3 = 2(N + 1), Q2 = (k2

i + l2
i )(k2

j + l2
j ), Q4 =

∏N
i=1(k2

i + l2
i ).

(3.32)

herefore, if H (k1, . . . , kN ) ̸= 0, then based on (3.8), the degree of the polynomial H̃ (k1, . . . , kN ) is 3N (N −

) + 2(N + 1) = 3N 2
− N + 2, which could not be greater than 4N (N − 1) when N ≥ 4. It then follows that

H (k1, . . . , kN ) = 0, N ≥ 1.
The N -soliton solution of the (2+1)-dimensional Hirota–Satsuma–Ito equation can be reduced to diverse other

nteresting solutions such as breather, lump and rogue wave solutions and their interaction solutions [14,30].

. Concluding remarks

We have discussed the Hirota N -soliton conditions for a combined bilinear differential equation in (2+1)-
imensions, and shown the existence of its N -soliton solutions. The general model equation includes three
2+1)-dimensional integrable equations: the (2+1)-dimensional KdV equation, the Kadomtsev–Petviashvili equation
nd the (2+1)-dimensional Hirota–Satsuma–Ito equation, as specific examples. It would always be intriguing to
xplore new examples of bilinear equations in (2+1)-dimensions, which possess N -soliton solutions. Along with
he presented generalized efficient algorithm, symbolic computations would be extremely helpful in determining
uch bilinear (and then nonlinear) equations in (2+1)-dimensions.

There are various generalized bilinear derivatives which allow us to deal with bilinear differential equations,
ncluding odd-order ones (not as in the Hirota case). The Dp,x -operators are particular examples [15]:

Dm
p,x Dn

p,t f · g =

m∑
i=0

n∑
j=0

(
m
i

)(
n
j

)
αi+ j

p (∂m−i
x ∂

n− j
t f )(∂ i

x∂
j

t g), m, n ≥ 0, m + n ≥ 1, (4.1)

here the powers of αp determine the corresponding signs as follows:

αi
p = (−1)r (i), i ≡ r (i) mod p, i ≥ 0, (4.2)
ith 0 ≤ r (i) < p. In particular, the patterns of those signs for i = 1, 2, 3, . . . read
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p = 3 : −, +, +, −, +, +, . . . ;

p = 5 : −, +, −, +, +, −, +, −, +, +, . . . ;

p = 7 : −, +, −, +, −, +, +, −, +, −, +, −, +, +, . . . .

Two such simple generalized bilinear derivatives are D3,x and D5,x , associated with the two smallest odd prime
numbers: p = 3, 5. The cases of p = 2k, k ∈ N, are exactly the same as the Hirota case. The corresponding
generalized bilinear expressions can exhibit new characteristics, indeed. For example, we have

D2
3,x D3,t f · f = 2 fxxt f, D3

3,x D3,t f · f = 6 fxx fxt , (4.3)

which are totally different from the Hirota derivatives. Of course, we can have many other generalized bilinear
derivatives such as D9,x and D15,x .

We point out that resonant N -solitons have been analyzed for generalized bilinear equations [16] and trilinear
equations [17]. When a multivariate polynomial P satisfies

P(ki + αpk j ) + P(k j + αpki ) = 0, 1 ≤ i ≤ j ≤ N , (4.4)

where ki ’s are wave vectors defined earlier, the corresponding generalized bilinear equation

P(Dp,x1 , . . . , Dp,xM ) f · f = 0 (4.5)

can possess the resonant N -soliton solution [16]:

f = 1 + c1eη1 + c2eη2 + · · · + cN eηN (4.6)

where ηi ’s are the wave variables defined previously and ci ’s are arbitrary constants.
We are interested in searching for concrete examples of generalized bilinear equations, which possess N -

soliton solutions. There are various basic questions in the corresponding theory. Those include how to formulate a
generalized N -soliton condition; and how to identify generalized bilinear equations, for example,

P(D3,x , D3,t ) = 0, P(D3,x , D3,y, D3,t ) = 0,

in both (1+1)-dimensions and (2+1)-dimensions, which have N -soliton solutions. All related studies will be helpful
in improving our understanding of bilinear partial differential equations and their associated nonlinear wave
phenomena [29].
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