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INTEGRABLE COUPLINGS OF SOLITON EQUATIONS BY
PERTURBATIONS I. A GENERAL THEORY AND APPLICATION
TO THE KDV HIERARCHY"

WEN-X1U Mal

Abstract. A theory for constructing integrable couplings of soliton equations is developed by
using various perturbations around solutions of perturbed soliton equations being analytic with re-
spect to a small perturbation parameter. Multi-scale perturbations can be taken and thus higher
dimensional integrable couplings can be presented. The theory is applied to the KdV soliton hi-
erarchy. Infinitely many integrable couplings are constructed for each soliton equation in the XdV
hierarchy, which contain integrable couplings possessing quadruple Hamiltonian formulations and two
classes of hereditary recursion operators, and integrable couplings possessing local 2+ 1 dimensional
bi-Hamiltonian formulations and consequent 2 + I dimensional hereditary recursion operators.

1. Introduction. Integrable couplings are a quite new interesting aspect in the
field of soliton theory [1). It originates from an investigation on centerless Virasoro
symmetry algebras of integrable systems or soliton equations. The Abelian parts of
those Virasoro symmetry algebras correspond to isospectral flows from isospectral
Lax pairs and the non-Abelian parts, to non-isospectral flows from non-isospectral
Lax pairs [2, 3). If we make a given system of soliton equations and each time part
of Lax pairs of its hierarchy to be the first component and the second component of
a new system respectively, then such a new system will keep the same structure of
Virasoro symmetry algebras as the old one. Therefore this can lead to a hierarchy of
integrable couplings for the original system. ,

Mathematically, the problem of integrable couplings can be expressed as: for a
given integrable system of evolution equations uy = K{(u), how can we construct a non-
trivial system of evolution equations which is still integrable and includes uy = K{u)
as a sub-system?

Therefore, up to a permutation {note that we can put some components of u; =

K (u) seperately), we actually want to construct a new bigger integrable system as
follows

(1.1} { uy = K{u},

v = S(u,v),

which should satisfy the non-triviality condition 35/8{u] # 0. Here {u} denotes a vector
consisting of all derivatives of u with respect to a space variable. For example, we have
fu] = (u,ug, gz, --) in the case of 1+ 1 dimensions. The non-triviality condition
guarantees that trivial diagonal systems with S{u,v) = ¢K{v) are excladed, where ¢
is an arbitrary constant.

There are two facts which have a direct relation to the study of integrable cou-
plings. First, all possible methods for constructing integrable couplings will tell us
how to extend integrable systems, from small to large and from simple to compli-
cated, and/for how to hunt for new integrable systems, which are probably difficult to
find in other ways. The corresponding theories may also provide useful information
for completely classifying integrable systems in whatever dimensions. Secondly, the
symmetry problem of integrable systems can be viewed as a special case of integrable
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couplings. Strictly speaking, if & system of evolution equations w, = K(u) is inte-
grable, then a new systern (called a perturbation system) consisting of the original
system and its linearized system

uy = K{u),

v = K'(w)f],

must be still integrable [1]. The second part of the above new system is exactly
the system that ali symmetries need to satisfy, but new system itself is a special
integrable coupling of the or:gmai system uy = K({u). Generally, the search for the
approximate solutions 4y = Z,_.u e*n;, N > 1, of physical interest to a given system
u = K (u) can be cast into a study of the general standard perturbation systems
N = > —%‘,‘—"l 0 < i € N. These perturbation systems were proved to form
mtegrable couplings of the original system u, = K(u) [4, 5], the simplest case of
which is the above system associated with the symmetry problem. This fact is also a
main motivation for us to consider the problem of integrable couplings.

However the standard perturbation systems above are just special examples of
integrable couplings. They keep the spatial dimensions of given integrable systems
invariant and only the perturbations around solutions of unperturbed integrable sys-
tems have been considered. We already know [8] that it is possible to extend the
standard perturbation systems and to change the spatial dimensions, in order to make
more examples of integrable couplings. The guestion we want to ask here is how to
do generally, or what related theory we can develop. In this paper, we would like to
provide our partial answer to this extensive question, by establishing a theory on the
multi-scale perturbation systems of perturbed integrable systems. An approach for
extending the standard perturbation systems and for enlarging the spatial dimensions
by perturbations will be proposed.

Let us now introduce our basic notation and conception, some notation of which
comes from Refs. {7, 8, 1, 5l. Let M = M(u) be a suitable manifold possessing
a manifold variable u, which is assumed to be a column vector of g functions of
t € R and z € R? with ¢ playing the role of time and =z representing position in
space. We are concerned with coupling systems by perturbations and thus need to
introduce another b:gger suitable manifold My = Mpy{fin) possessing a manifold
variable iy = (0,18, -+ k), N 2 0, where n;, 0 < ¢ < N, are also assumed to
be column function vectors of the same dimension as v and T' means the transpose
of matrices. Assume that T{M),T(Mp) denote the tangent bundles on M and Mn,
T*{M), T*(Mp) denote the cotangent bundles on M and My, and C°(M), C= (M)
denote the spaces of smooth functionals on M and My, respectively. Moreover let
TT{M) be the s-times co- and r-times contravariant tensor bundle and 77| (M), the
space of s-times co- and r-times contravariant tensors at u € M. We use X (u) (not
X}.) to denote a tensor of X € T7 (M} at u € M but sometimes we omit the point
for brevity if there is no confusion. Note that four linear operators & : T (M) — T(M},
U TH(M) = TM), J: T*(M) = T(M), © : T(M) - T*(M) can be identified
with the second-degree tensor fields Ts € THM), Ty € T (M), Ty € T¢(M), Te €
TI(M} by the following relations

T (u}(a(u), K (v)) =< ou), B(u)K (u) >, a € T*(M), K € T(M),
Ty (uw){a(u), K (u)) =< T(w)a(u), K(u) >, a € T(M), K € T(M),
Ti(u){au), B(w) =< alu), J(w)B) >, o, f € T (M),
To(u) (K (u), S(u)) =< @(u)K(u), S{u) >, K,S € T(M),



INTEGRABLE COUPLINGS BY PERTURBATIONS 1 23

where < -,- > denotes the duality between cotangent vectors and tangent vectors.

Of fundamental importance is the conception of the Gateaux derivative, which
provides a tool to handle various tensor fields. For a tensor field X € TT(M), its
Gateaux derivative at a direction ¥ € T'(M) is defined by

X (u-r el {u)

(1.2) Xy ()] = Z=257

e=0

For those operators between the tangent bundle and the cotangent bundle, their
Gateaux derivatives can be given similarly or by means of their tensor fields. The
commutator of two vector fields K,5 € T(M) and the adjoint map adg : T(M)} =
T(MY are commonly defined by

(1.3) (%, S}u) = K'(u)[S(w)] - S'@W){K (w)], adxS = [K,S].
Note that there are some authors who use the other commutator
(K, S}(u) = S"(u}{K (u)] — K'(u)[S(w)].

Tt doesn't matéer of course but each type has many proponents and hence one must
be careful of plus and minus signs in reading various sources.

The conjugate operators of operators between the tangent bundle and the cotan-
gent bundle are determined in terms of the duality between cotangent vectors and
tangent vectors. For instance, the conjugate operator &% : T*(M) — T™(M) of an
operator @ : T(M) — T(M) is established by

< ®t(walw), K(u) >=< afu), ®(u)K (u) >, o € T*(M), K € T(M).

If an operator J : T*(M) — T{M) {or @ : T{M) — T*(M)) plus its conjugate
operator is equal to zero, then it is called to be skew-symmetric,

DEFINITION 1.1. For a functional H € C®{M), is variational derivative %{f— €
T*(M) is defined by '

< F ), K(w) >= B@K W), K € T(M).

If for v € T*(M) there exists a functional H € C°(M) so that

M oy, e, H@IKW)] =< (), K@) >, K € T(M),

then y € T*{M) is called ¢ gradient field with o potential H.
A cotangent vector field v € T*(M) is a gradient field if and only i

(1.4) (A7) (u)(K (u), S{u})
=< Y WK @] S@) > ~ < v @[S}, K () >=0, K,5 € T(M).

I v € I (M) is gradient, then its potential H is given by

. 1
) = /0 <v(u),u > di.



24 W. X, MA

DEFINITION 1.2, For a linear operator @ : T(M) — T(M) and o vector field

K € T(M), the Lie derivetive Lx® : T(M) — T(M)} of ® with respect to K is
defined by

(1 5) (LK@)(U)S(U)
; = ®'(w)[K (w)]S{u) — K'(u)[@(u)S(u)] + S(w)K'(w){S{v)], § € T(M).

An equivalent form of the Lie derivative is
(1.6) (Lx®)(u)S(v) = Bu)K(u), S{u)] — [K(v), B(u}S{u)],

where & : (M) — T(M), K, S € T(M), and the commutator [+, ] is defined by (1.3).

DeriNiTION 1.3. A linear operator @ : T(M) — T(M) is colled a recursion
operator of uy = K(u), K € T(M), if for all S € T(M) end u € M, we have

an) 250y + @K @ISEW - K0@SW)] + WK WISW)] = 0.

Obviously a recursion operator ® : T(M) — T(M) of a system u; = K(u}, K €
T{M), transforms a symmetry into another symmetry of the same system u, = K{(u).
Therefore it is very useful in constructing the corresponding symmetry algebra of a
given system and its existence is regarded as an important characterizing property
for integrability of the system under study.

DEFINITION 1.4. A lineer operator & + T(M) — T(M) is called a hereditary
operator or to be hereditary [9], if the foliowing equality holds

(18) #'(u)[2(w) K (w)]S () ~ () (u) K (w)] S (u)
' - @' (w)[® (1) S (u)}K (u) + 2(u)@ (w)SW))K (v) =0

for all vector fields K, 8 € T(M).

For & linear operator & : T(M) — T (M), the above equality {1.8) can be replaced
with either of the following equalities:

(Lox)(u)®(u) = 2(u)(Lx®)(u), K € T(M),
®* () (u), S(u)] + [B(u) K (u), 8(u)S(u)]
~®(w){{K (u), B(w)S(u)] + [2u) K (v), S(u)]} = 0, K, 5 € T(M).

it follows directly from (1.6) that these two equalities are equivalent to each other.
We point out that hereditary operators have two remarkable properties. First, if @ :
T{M) - T(M) is hereditary and Lx® = 0, K € T(M}, then we have [$" K, K] =
0, m,n > 0 (see, for example, {9, 10, 11]). Therefore, when a system u; = K{u), K €
T (M), possesses a time-independent hereditary recursion operator ® : T(M) —
T(M), a hierarchy of vector fields ®"K, n > 0, are all symmetries and commute
with each other, Secondly, if the conjugate operator ¥ = &1 of a hereditary operator
& T{M) — T(M) maps a gradient field v € T"(M) into another gradient field, then
Ty, n > 0, are all gradient fields (see, for example, [12]).
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DerFINITION 1.5, A linear skew-symmetric operator J : T (M) — T (M) is called
a Hamiltonien operator or to be Hamiltonian, if for ell o, 8,y € T*(M), we have

(1.9) <o, J'()[J(w) By > +eyele(e, B,y) =
Its Poisson bracket is defined by

5H1 SH,

(1.10) {H1, B2} s(u) =< == o (), Ju) ==

() >,
where Hy, Hy € C°(M). A pair of operators J,M : T*(M) = T(M) is called a
Hamiltonien pair, if cJ + dM is elways Homiltonien for any constants ¢, d.

When J : T*{(M) — T(M} is Hamiltonian, we have [13]

J{Hl,Hg}J 58, 58,

2,

where Hy, Hy € C(M). This implies that the operator J % is a Lie homomorphism
from the Poisson algebra to the vector field algebra. Moreover if J, M : T¥{(M} —
T{M) is a Hamiltonian pair and J is invertible, then & = MJ~' : T(M) — T(M)
defines a hereditary operator [13, 7].

J(u) (u} = [J(u) 5= (u}, J(u)

DEerFNITION 1.6, A linear skew-symmetric operator @ : T(M} ~» T*(M) is called
e symplectic operator or to be symplectic, if for oll K, 5,7 € T(M), we have

{1.11) < K(u), © (u)[Su)iT{u) > +eycle(K, 5, Ty =0

IO T{(M) - TH(M) is a symplectic operator, then its second-degree tensor
field T € TR(M} can be expressed as

1
To = dy with < y(u), K(u) >= f < B(Au)Au, K(u) > dX, K e T(M),
0

where dy is determined by (1.4). It is not dificult to verify that the inverse of
a gymplectic operator is Hamiltonian if it exists and vice versa. We also mention
that Hamiltonian and symplectic operators can be defined only in terms of the Dirac
structures [14].

DeFINITION 1.7. A system of evolution equations u; = K(u), K € T(M), is
" called o Homiltonian system or to be Homiltonian, if there exists a functional H &
C (M) so that

{1.12) g = K{u) = J{u)%g(u).

It is called a bi-Hamiltonien system, if there exist two functionals Hy, Hy € C®(M }
and a Hamiltonian poir J, M : T*{M} — T(M)} so thet

§H,

(1.13) w = K{u) = J(u)‘”{l w) = M) S ()
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There is the other kind of Hamiltonian systems, which can be defined by symplec-
tic operators. However, the above definition has more advantages in handling symme-
tries and conserved functionals. For a Hamiltonian system u; = J (u)%%(u), the linear
operator J 3’11; maps a conserved functional into a symmetry. For a bi-Hamiltonian sys-
tem, we will be able to recursively construct infinitely many commuting symimetries
and conserved functionals for the system, if either of two Hamiltonian operators is
invertible [15].

In what follows, we would like to develop a theory for constructing integrable
couplings of soliton equations, by analyzing integrable properties of the perturbation
systems resulted from perturbed soliton equations by multi-scale perturbations. The
paper is organized as follows. In Section 2, we first establish general explicit struc-
tures of hereditary operators, Hamiltonian operators and symplectic operators under
the multi-scale perturbations. We will go on to show that the perturbations preserves
complete integrability, by establishing various integrable properties of the resulting
perturbation systems, such as hereditary recursion operator structures, Virasoro sym-
metry algebras, Lax representations, zero curvature representations, Hamiltonian for-
mulations and so on. In Section 3, the whole theory will be applied to the KdV
equations as illustrative examples. This leads to infinitely many integrable couplings
of the KdV equations, which include Hamiltonian integrable couplings possessing two
different hereditary recursion operators and local bi-Hamiltonian integrable couplings
in 2-+ 1 dimensions. Finally, some concluding remarks are given in Section 5.

2. Integrable couplings by perturbations.

2.1. Triahguiar systems by perturbations. Let us takea perturbation series
forany N >0 andr 2 0:

(2.1}
N ) .
Ay == Zetﬂis = %¥o, Y1, Y2, Y t), =gz, tER, z€ RF, 0<i<N,
e

where ¢ is a perturbation parameter and n;, 0 < ¢ < N, are assumed to be column
vectors of ¢ dimensions as before. When 7 > 1, {2.1) is really a multi-scale perturba-
tion series. We fix a perturbed vector field X = K(¢) € T(M} which is required to
be analytic with respect to €. Let us introduce

1 8K(an,€)

@2) K9 = KO =(K0,0) ) = 5 =]

, 054N,

£=0

where iy = (08, 7%, -+ ,nk)7 as before, and then define the N-th order perturbation ‘
vector field on My

23)  (pernK)(An) = Rnlin) = (KOT(@Gn), KOT (@), - KT )T

Here the vector fields on M are viewed as column vectors of g dimensions, and the
vector fields on My, column vectors of g{¥ + 1) dimensions, as they are normally
handled. Since we have

OK(,6)| _ OK(e)
Jet o  O€

€

i i
=y ey, By =) e, 0SI<FEN,
Y k=0

= k=0
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it is easy to find that

(2 4) KN(ﬁN) = {K{D)T(ﬁﬂ) K(E)T(ﬁl):' o JK(N)T(ﬁN))Ts
‘z{ﬂg‘m{,' 1nz)T 0<ig<N.

Thus the perturbation vector field peryK = Ky € T(My) has a specific property
that the {-th component depends only on 50,7, - , 7, but not on any n;, j > 4.
Let us now consider & system of perturbed evolution equations

(2.5) uy = K{u,e), K = K(g} € T(M),

where K{g) is assuined to be analytic with respect to £, as an initial system that we
start from. It is obvious that the following perturbed system

{2.6) dine = K (G, e) +ole™) or iy, = K(ty,e) (mod ™),
leads equivalently to a bigger system of evolution equations

1 3K (i, €)

(27) T)Nt KN(”N)! Le. vy Thip = 21 85.'"'

»0Li<N,
Fw0
where iy is defined by (2.1). Conversely, a solution iy of the bigger system (2.7)
gives rise to an approximate solution @y of the initial systemn (2.5) to a precision
o{e™). The resulting bigger system (2.7) is calied an N-th order perturbation system
of the initial perturbed system (2.5), and it is a triangular system, owing to {2.4).

We will analyze its integrable properties by exposing structures of other perturba.tmn ’
objects.

2.2. Symmetry problem. Let us shed more right on an remarkable relation
between the symmetry problem and integrable couplings. Assume that a system
u = K(u), K € T(M), is given. Then its linearized system reads as v; = K'(u)[v].
What the symmetry problem requires to do is to find vector fields S € T'(M) which
satisfy this linearized system, Le., (S(u)): = K'(u)[S ()] when v, = K{u). Therefore
(w7, (S(u))T) solves the following coupling system

{ uy = K(u),
(2.8)
= K'(u)l],

if § € T{M) is found to be a symmetry of ¥, = K{u). This system (2.8) has been
carefully considered upon introducing the perturbation bundle [1]. It is the first-
order standard perturbation system of w; = K(u), introduced in Ref. [5]. Since it
keeps complete integrability, it provides us with an integrable coupling of the original
system uy = K (u). Therefore the symmetry problem is viewed as a sub-case of general
integrable couplings.

The commutator of the vector fields of the form (K (u), A{u}v)}T with A(u) being
linear has a nice structure:

K{u} S(u) (K (u), S(w)}
it Alw)y ) Blu )= [A(u), B(w)]v )

where the commutator [K{u), § (u)] is given by {1.3) and the commutator [A{u}, B(u)]
of two linear operators A(u), B(u) is defined by

[Afu), Bu)] = A'(w){S(w)] - B'(w)[K (v)] + A(u)B(u) - B(u)A(u),
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which was used to analyze algebraic structures of Lax operaters in [16}. Moreover for
linearized operators, we can have

(2.9) [K'(w),S'(w)] = T'(u), T=K,8], K,SeT(M),
which will be shown later on.

2.3. Candidates for integrable couplings. Let us illustrate the idea of how
to construct candidates for integrable couplings by perturbations. Assume that an
unperturbed system is given by

(2.10) up = K(u), K € T(M),

and we want to construct its integrable couplings. To this end, let us choose a simple
perturbed system

(2.11) gy = K (u) +eK(u),

which is analytic with respect to € of course, as an initial system. Obviously this
system doesn’t change integrable properties of the original system (2.10}. In practice,
we can have lots of choices of such perturbed systems. For example, if the system
(2.10) has a symmetry § € T(M), then we can choose either u, = K(u) +&5(u) or
uy = K(u) + £25(u) as another initial perturbed system. According to the definition
of the perturbation systems in (2.7), the first-order perturbation system of the above
perturbed system (2.11) reads as

{ Tigr = K(’?ﬂ):
e = K'(no}m] + K (m)-

This coupling system is a candidate that we want to construct for getting integrable
couplings of the original system uy = K(u}. In fact, we will verify that the perturba-
tion defined by (2.1} preserves complete integrability. Therefore the above coupling
system (2.12) is an integrable coupling of the original system u, = K{u), provided
that u; = K (u) itself is integrable. The realization of more integrable couplings, such
as local 2 + 1 dimensional bi-Hamiltonian systems, can be found from an application
to the KdV hierarchy in the next section.

(2.12)

2.4. Structures of perturbation operators. Rather than working with con-
crete examples, we would like to establish general structures for three kinds of pertur-
bation operators. The following three theorems will show us how to construct them
explicitly. For the proof of the theorems, we first need to prove a basic result about
the Gateaux derivative of the perturbation tensor fields.

LEmMMA 2.1. Let X = X(g) € T7(M) be anclytic with respect to ¢ and assume
that the vector field Sy = (ST,8T,--- ,SE)YT € T(Mn), where all sub-vectors 5;, 0 <
i < N, are of the same dimension. Then the following egualities hold:

BiX(ﬁN,E)

(2.13) ( o

1 - 3i . i . .
) mis = 55| Kmees] 0i <N,
= &= F=0
ReEMARK. Note that in {2.13), we have adopted the notation

(2.14)
X' (o, K (u)] = (X(an,e)) Em)[K ()], X = X(e) € T{(M), K € T(M),
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in order to save space. The same notation will be used in the remainder of the paper.

Proof. Let us first observe the Taylor series

N . n
e 9 X (G e) N
X (6N, €) -g i mo+0(e }.
It follows that

N ;

i ArE P8 X (i, -

(X(aw e (miSn = 3 5 (FEH0E] Y ()(5w] 4+ ofe™).
i==0 g=0 .

Secondly, we can compute that

(X (&, €)) (Hw)iSK] =

8 N N
= Y I8 &Y= X6 ,
55, X+ a'}:s Si,6) = X'(G, €) [Zsfs_.,].
F=0 F=0
A combination of the above two equalities leads to the required equalities in (2.13)},
again according to the Taylor series, The proof is completed. O

‘THEOREM 2.2. If the operator & = @{g) : T(M) — T(M) being anclytic with
respect to € is hereditary, then the following operator &y : T(M N) - T(MN) defined
by

(2.18)  (pern®)(iin) = I {iin)

N 1 Oid(in,€)
= [{®n{in))y —“—[ " e
[( m ))”L)jﬂo-lr“-N LA S A G N+1)xg(N+1)
@('&N,E)iezo 0
R T (I

i

1 9%(an.e)

1 3V e(hne)
T B

is elso hereditary, where Uy s a perturbation series defined by (2.1).

e=0 e [ 3 =B ®(ﬂN7£)§€=0

Proof. Let Ky = (K&, K¥,- \K})T, Sy = (87,87, ,8T)T € T(MN)
where the sub-vectors K;,5;, 0 <4 < N, are of the same d1mens1on Since ®n {(fin)
is obviously linear, we only need to prove that

(2.16) &y () @n () ENISN ~ & (A ()R NS
— (A En (AN )SNIK N + SN {An) PN (AN )[SN]E N = 0,
according to Definition 1.4. In what follows, we are going to prove this equality.

First, we immediately obtain the i-th element of the vector field @N(nN)K n and
the element in the {4, j) position of the matrix & NANINE N

1 T ®(iy, £)
— N e

(On(AN)EN): = z G

J=0

K;, 0<i<N,
=0
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1®(ay, )
gt~

oy L. _ 1

( N("?N)[KN])ij = G- (
R T
Il

the last equality of which follows from Lemma 2.1.
Now we can compute the i-th element of & (nN)[lI) N(An)EN]ISN as follows:

( ‘ by (in )@ () B NS )i

)’ (fin JEN]

€z=0

N
N i .,
(@’(urv,e")[kgoe KkD, 0<i,j <N,

Y N e 1 8 e(ay,e)

e s i CTIN & ! K|S
;(zw N =il _, (&N )[;,};n IZ k=D dek-t | ‘] g
L1 atd LA e" - Bk“‘@(u;\r £)

= iy @' (Gpr, €) gt ! K|S
port (G- eI o [Ez:; ZI (k ~ Okt e ] 1

oy L_a @'(ﬁN,E)[is'(é(ﬁw,s)+0(€N"))K;].S’J
=0 (3 J)' Jet =0 =0
L1 i J

= - &' (i, )| > e ®{hn,e)K)|S
> g ae| Yool ls

Ju =0

Z 1 gi—i-i
G=7 -1 Bei-1|__

0<3+l<z

&' (in, €) [cb(aN,a)m]S,-, 0<i<N.
0

On the other hand, we can compute the i-th element of &x{fin) &'y (i} En]Sw as
follows:

(@N(ﬁn)‘i’ﬂv(ﬁw)[f?wigfv)i

- J_ZQ (i —11)* 3*“"5;5??;,5) - :0 F_l‘ky 5%_;5 . P (an,¢e) [g E'Kz] Sk
g;o(z_l 5 3i_3§$ff’£) Emgg:’—z: G - i ;9::;; _ P @amelKilS,
= kz_:nri:z: s J), Py af—a;i;gf*f ,€) B ;;_’_’:_’! B &' (an, e)[ K]Sk
ikl i—7 & (5 o e
} ,{2;12, (%-—J)'(Jl— I ° jaifi&f 2 oo g;j—kk-t: o &' (an, ) Ki) S
- gg - ;_ . g;—_k; _, (2(in, )% (@n, &) ENSK )
= esgﬁ (i — ]i Y gi——k:t o (@(ﬁNvE)‘I”(ﬁN,E}[Kt]Sk), 0<i<N.

Therefore, it follows from the hereditary property of ®(u,¢) that each element in the
left-hand gide of (2.16) is equal to zero, which means that {2.16) is true. The proofis
completed. {1
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THEOREM 2.3. If the operator J = J(g) : T*(M) — T(M) being analytic with
respect to ¢ is Hamiltonian, then the following operator Jy : T*(MN) ~ T{Mn)
defined by

(217)  (pern D)) = Iwtiin) = [(Iw()),;).

i,4=0,1,--- \N

) 1 OHI~N J(iin, ) }
I R A A L= S WS S
. 0 J('&N, €)|e=0
SN, €} emo % §i(%e{v_-£l c=0

1t 8z

1 3NJ!&N,€!
N1 Be

is also Hemilionian, where @y is o perturbation series defined by (8.1).

TN, €)|emo & B €)

gx=0 =0

Pmof Let ay = (a{] 1a?7 : )aN)T F {ﬁg’aﬁz P rﬁN) s 'YN =
(s, v8)T € T*(Mpy), where the su§3~vectors at,ﬁ“%, 0 < i< N, are of the
same dimension. It suffices to prove that
(2.18) < &N, SB[ InBran > +eyde(@n, B, In) = 0,

since there is no problem on the linearity and the skew-symmetric property for the
perturbation operator. Jv (fin).

First, based on Lemma 2.1, we can calculate the element in the (4, §) position of
the matrix Ji (Gn)[Jn (Fin)Br] as follows:

(I (in)[In (n)BN)
1 gi+i-N

= GTi oW seew | ) [g <! (InBw)
1 Giti—N )
Sl N G|
. il N 1 SH-N Tl
J' iy, €) [g gt kw_;d FIT agk-;-IE-N ) . ﬁk]
i Gi+i-N
@i N e N |

N ghHi=N  ghH-N jg
N— N1 E)
J{uN,a)[Zs B %j TR B
k

)ﬁk]

[ e
1 geN !

T[S (o +0(e*)) B
k-t}

(@, €) Z N Iiw,€) ﬁk}

T @+~ N fetti-N
1 gHi—N
T {i+j - N) Geti-N

N 1 32+3-N Nek
- ka:o (i+j—N) 3E¢+g'-—wiwo( J'(ien ) [ (B, €)Bi})
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N i Hititk—2N

- § : — e T, e) [Jbn,€)8:], 04,5 S .
+i4+E- kRN ) ) ,0<14,5<
k=2N—-(i+j) (1 7 k ZN}! 88 3 =0

In what follows, let us give the remaining proof for the case of
(2'19) = ni(yoaylat} = ﬂ£($13$:t), 0 ﬁ ) S N.

Suppose that the duality between cotangent vectors and tangent vectors is given by
(2.20) <o, K >= fw oTKdz, z € R, a € T*(M), K € T(M).

Let us consider the case of © € R without loss of generality. For Erevity, we set

-Féjk (aN1 EN? ﬁN»éz)

221)  _ (ag'Jt(ﬁN,g)[J(ﬁN,g)ﬁk]’}*j + cycle(ad,ﬁk,’ﬁ)):

0<4,5,E<N,

where 8, = 0y, + 20y, , owing to (2.19), and we assume that the original Hamiltonian
operator J{u,£) involves the differential operator J;. Then we can have

< an, Jn (B INBrN > +eyele(@n, By, TN}
gititk-2N

/ww/_ Z !
oo < i+ ik~ ! i+j+k—2N
2N<i.+j+k 3N (% .7 2N). 351 ]

Fii(@n, B, v, 82) dyodyn -
1]

E==

-In order to apply the Jacobi identity of J{u,e}, we make a dependent variable trans-
formation

(2.22) Yo =P, Y1 =q+ P,
frc n which it follows that

(223} Op = Oy, + 8y, 85 = 0y,
Now we can continue to compute that

< an, Jn () InBnlin > +eyclelén, B, )

] - [ = Z 1 gititk—2N
N ; b
i 4§+ k— | Beititk—2N
T00 =00 RN GikiHRSIN (i3 +k—2N) Bettd —
Qo G
P - _ D g
Fip(an, B in:Ophidet o 5 dpdg
op g
fm - 1 Hi+itk—2N
h x
i+ f - 1 Hltirh—oN
T NI jLRSEN (Z + 7+ k 2N). Seiti =0

oo -
| Fsntom, ., 8, ) da
e 00

QO
=/ Odg = 0.
)

In the last but one step, we have utilized the Jacobi identity of J(u,£).
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The method used here for showing the Jacobi identity can be extended to the
other cases of the perturbations. Therefore the required result is proved. [

Similarly, we can show the following structure for the perturbation symplectic
operators.

THEOREM 2.4, If the operater © = O(g) : T(M} — T*(M) being analylic with
respect to £ is symplectic, then the following operator Oy : T{My) — T*(My) defined
by

(224)  (perw@)(iiw) = O (i) = [(On(in)) ]

Wlig=01, N

_ 1 N-3Q(ay, €) ]
_(N —i— j)! DelN—i~i £me0d g{N41) % g{N41)
[ 1 aVelin, 1 B0 i
A 4&%@ - .. . m.iéueﬁﬁzﬁl o O, €)=
4 oolineg) L, ©famE)le=o
O(@n, &)le=0 0

is also symplectic, where iy is ¢ perturbation series defined by (2.1).

2.5. Integrable Properties. In this sub-gsection, we study integrable properties
of the perturbation systems defined by {2.7), which include recursion hereditary op-
erators, K-symmetries (i.e., time independent symmetries), master-symmetries, Lax
representations and zero curvature representations, Hamiltonian formulations and ete.
Simultaneously we establish explicit structures for constructing other perturbation ob-
jects such as spectral problems, Hamiltonian functionals, and cotangent vector fields.

TuporeM 2.5. Let K = K(e) € T(M) be anelytic with respect to ¢ and assume
that @ = ¥{e) : T(M)} — T(M) is a recursion operator of vy = K{u,€). Then the
operator &y : T(Mn) = T(MN} determined by (2.15} is o recursion operator of the
perturbation system fAins = Ky (fin) defined by (2.7). Therefore if vy = K (u,&) has
o hereditary recursion operator ®(u, ), then the perturbation system iy = Kn ()
has o hereditary recursion operator @ 5 ().

Proof. Let Sy = (8T,87,---,8I)T € T(My), where the sub-vectors S;, 0 <
+ < N, are of the same dimension. By Lemma 2.1, we can compute that

#0609| Y gt = 2 wamafSeno
o ; ; Ny 05 (i, 2){K (i, )]
e 5;’; E=0(§’(“N:E}[K{HN,E)+O(E )} = ek . 0< k<N,
and
Batra P& 1§
(KDY (3n)[Sn] = =l K (ttn,€) [Z e‘“S;c]
’ k=0
i—3 1 .
_Z 1 ra JK(q,:iv;s)[S,i 0<i<N.
Fo=0 (1' —‘7} e ewxl}
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Therefore immediately from the first equality above, we obtain the i-th element of

@K NS as follows:

(2.25)

1 079 (an,e)[K (Tn, £))S;)

(& () NS ), z G

el U3

,0<i<N.

-
Dei—i c=n

Based on the second equality above, we can make the following computation:

(2.26)  (Kn(in)@n(n)Sn]),

L1 gk
= Z <= k) BeF | _

1 Bk
Z <G~ Rl e F |,

k
i 1

. (K (o, )[(En (7x)Sw)k])

I ®(in,€)
Ok—1

ak“j@(ﬁ]v,ﬁ)

Fonly fpan
Lo 1 oi—4

ai~k
ZZ(@-—&)‘(/« P Beit

K’('&N,E)[ Sck—3d

e=0

ek F-ig(ay,e)

I

P (3—3)1 Oet-i e=0

LS
e i
=]

A
(i — )

S
?' —j)! 65i”j e=0

Het-d

ta,
-
-]

ol
o I
[=]

(k-3
om0 K(UN,ﬁ)[Z

1 07K (G, €)[8(@n,€)S;))

K’(uw,r-:)[

Hek—1i
gh—J
k=)

*~IB (G, €)
Bek—i

k"a

K'(fin, €)[®(an)S; + ofet)]

— (i — j)!

'-Q

(&n(AN)E N @NSND),

“zi: 1 - *®(dn,e)
ik OeiE

(2.27)

i i

Hetimd

£=0 j=gp

"k @(a, )

» 0L N

=0

Eo1 BIR(aw, e)iS)]
Z{k M Dek~d :

el

OFIK' (i, €)[S4]

1
T2 ; G— Bk = )

it

et~k
1 89 (i, e) K (an,€)[S))

T
e=0 dekJ il

2T

862'—!:

,0<i<N.

gr=g

Tt follows directly from the above three equalities above (2.25), {2.26) and (2.27) that

00 D28 ()Siv + B iR )] —

=O,

K ()18 n ()] + S (in) B 3 () ISN)



INTEGRABLY - .OUPLINGS BY PERTURBATIONS 1 35

According to Definition 1.3, this implies that the perturbation operator & () de-
fined by (2.15) is a recursion operator of fing, = Kn(fn). A combination with Theorem
2.2 gives rise to the proof of the second reqmred conclusion. The proof is finished. {J

THEOREM 2.6. Let K = K(g),§ = S(g) € T(M) be analytic with respect to <.

For two perturbation vector fields Ky, Sy € T(My) defined by (2.3), there ezists the
following relation:

(2.28) [Bn(in), Snian)] = (Bn) () ISn(n)] — Bn) @ Ew (in)} = T (i),

where Tn € T(Mn) is the perturbation wvector field of the wector field
T(e) = [K(e), S(e)], defined by (2.8}, Furthermore we can hove the following:
(1) if o = ole) € T(M) is an n-th order master-symmetry of the periurbed system
= K{u,£), then 6y € T'(My) defined by (2.8) is an n-th order master-symmetry
of the perturbation system fiyy = K. w(iiv) defined by (2.7);
(2) the perturbation system finy = Kn(fin) defined by (2.7) possesses the same struc-
ture of symmetry algebras as the original perturbed system uy = K(u,€).

Proof. As usual, assume that
i
s,i = (S(D}T#S(I)T:' o !S(i)T)T) ﬁ‘i = (ﬂg‘r?ﬁ, tt Ty )T thy = Zﬁ'k"?k: 0 < z < N.
k=l
By the definition of the Gateaux derivative, we first have

(K(’&i,&‘})'(ﬁi){éi} - -% K +d Z Eks(k), E'}
&=0 k=0
= 2 K(a +68(0s,€) + o(eD), )
88 |50 -

= K'(it:,€)[S(d,€)] +ofe?), 0 < i < N.
Let us apply the equality above to the following Taylor series

et BFH (i, 6)

I((ﬂi: 6) = r &
ot k! de

+ofe*), 0 <i< N,

g=0

and then we arrive at

K (@,€)
ek

i k :
it el =S e AN J ;
K )86 = 3 55 ( _) @81 +ofe), 0i< N,
Taking the {-th derivative with respect to ¢ leads to
(229 (K'e)Stel) @) =((Kwe)?) (sl 0<i <N

Now it follows from (2.29) that for the i-th element of T we have

(T, )P = (K" (u, )5, )]) P (@) — (S () K (u,)]) P (52)
= (K (w,2)) Y (3)18:] - ((S(w,0)) V) ()R
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= (ENGn)SND), — (S (@n)iBN])» 0SS N,

This shows that (2.28) holds. All other results are a direct consequence of (2.28). The
proof is completed. O

The relation (2.28) implies that the perturbation series {2.1) keeps the Lie product
of vector fields invariant. In particular, the second component of {2.28) yields the Lie
product property (2.9) of linearized operators. In what follows, we will go on to
consider Lax representations and zero curvature representations for the perturbation

system defined by (2.7). In our formulation below, we will adopt the following notation
for the perturbation of a spectral parameter \:

N
(230) AN = Zﬁiﬂi) ﬁN = (#9;“11 e ’”N)Ts

Fam()

which is quite similar to the notation for the perturbation of the potential u. Here
i, 0 £¢ < N, will be taken as the spectral parameters appearing in the perturbation
spectral problems. A customary symbol 7.4, 7 € R?, will still be used to denote
the gradient of the spectral parameter X with respect to z.

THEOREM 2.7. Let K = K{e} € T(M) be anclytic with respect to &. Assume
that the system vy = K {u,£) has an isospectral Lox representation

(2.31) { L{u,e)¢ = M,
¢e = A(U,E)(ﬁ,

where L and A are two s x s matriz differential operators being analyiic with respect

to u and £. Define the perturbation specirel operator LEx and the perturbation Laz
operator Ayx by

(VA =0, z € R}, ie, (L{u,€)) = [A(u,&), Llu, )],

(pern B)iin) = B (i)

P 1 ai“jB(ﬁN,E
1i=01, N {3...._? : € e=03 g{ N41) xs(N+1)
B(&N,E)'g:g 0
é?gé'%g’ml . B(in,c}|e=p
= . y B=L,A,
.. . )
%—‘w—u geu”'s o %563 Sy o Bliy,£)|e=a

where iy is given by (2.1). Then under the condition for the spectral operator L that
(232) i L@ISEN)] = oe™), S € T(M), then San) = ofe™),

the N-th order perturbation system fiyy = Kn(iin) defined by (2.7} has the following
isospectral Lox representation

(2.33) (Lv(@n))e = [Av@n), Ly (Hnl,
which is the compatibility condition of the following perturbation speciral problem
{ Ln(inidn = Adw,

(2.34) R .
éne = Anliin)dn,

(vyo"\x vyt)‘ o= Vyr)\zo)r
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or the following perturbation spectral problem
' Envtin)dn = Adw,
(2.35) { nN(nN).éN be
éne = An{fin)dn,

where the matriz A reods as

MOIs
mls  pols
(2.36) A= . . . » Is = diag(1,1,-+-,1),
. . " M
pnly oo mle pols

with the spectrel parameter p;, 0 <1 < N, satisfying

(2.37) > Vum=0,0<i<N
k1=t

Proof. We first observe that the perturbed system
(2.38) iy = Ky, €) + ofe),

which engenders precisely the perturbation system iy, = K w~(fin} defined by (2.7).
Noting that L{u, &), A(u,&) are analytic with respect to u and ¢, it follows from (2.31)
that (2.38) is equivalent to the following

3k

(2.39) =

((Etan, o). - i, o), L(@w,e))) =0, 0 kS N,
g=0

by use of (2.32).

What we want to prove next is that (2.39) is equivalent to (2.33). Let us compute
the elements of the differential operator matrix [An(fn), Ly (fin)]- It is obvious that
[An{(fin), Ly (fin)] is lower triangular, that is to say,

(An(n), La(ini)i =0, 0<i<j < N.
For the other part of {An (n), Ly (fin)], we can compute that

1 9 *A(day,e) 1 o*IL{an,e)

(AN Inn )y = Z G
k=7

-k} dei—k =0 (F— ) Ogh=7 F=0
_ 1 Z ( -5\ O F Al )| O*-iL{uw,e)
T - Nk L .
1 6£”jA(ﬁN,E)L('&N,E) .
= e <
=7 e o 0<j<ish,

where the (;) are the binomial coefficients. In the same way, we can obtain

1 8iL{iy,e)AldN,e)

(Lv(im)An(in))g = T e

L0<i<i< N

g}



38 W. X. MA

Therefore we arrive at

(o), L))y = gy e D L0 IRCETETES

Now it is easy to find that (2.39) is equivalent to (2.33). Therefore the perturbation
system defined by (2.7) has the Lax representation {2.33).

Let us now turn to the perturbation spectral problems (2.34) and (2.35). Ob-
viously, the compatibility condition of the perturbation spectral problem (2.34) is
the Lax equation (2.33), since the spectral parameter A doesn’t vary whatever the
spatial variables change. Therefore let us consider the compatibility condition of the
perturbation spectral problem (2.35). First, we want to prove that

(2.40) AAn(in) = An(An)A,

if the spectral parameters g;, 0 < 4 < N, satisfy (2.37). Notice that the condition
(2.37) on the spectral parameters p;, 0 <14 < N, is required by

r N
Y}m‘iN = O(EN)w {l?m = ZEZ‘VM: XN = Zﬁéﬂi,
i=0 i=0
which i5 a perturbation veision of 7,A = 0. Therefore we have
Altn, e, ) N = AnAltin, €, T,) + ofe™).
This guarantees that

Lo
=) B

(tome,9080) = 2 25

T 5| (vt )

for 0 € j < i < N, which exactly means that the equality (2.40) holds. Now we can
compute from (2.35) that

g=0

(L(in))edn + Ln(in)An (Gw)én = AAn(in)dn
= An(inYhdn = AnGin)En(in)dn.

It follows that the compatibility condition of the perturbation spectral problem (2.35)
is also the Lax equation (2.33). The proof is completed. [

The perturbation spectral operator Ly is very similar to the perturbation recur-
sion operator &y, in spite of different orders of matrices. Actually, we may take any
recursion operator ¢ as a spectral operator and the system u, = K (u) can have a Lax
representation &, = [@, K’']. This Lax representation is usually non-local, because
most recursion operators are intego-differential. We also remark that two perturba-
tion spectral problems above are represented for the same perturbation system defined

by (2.7), which involve different conditions on the spectral parameters. For the case
of

N N
(241) iy =y e'mle,yt) = y_en(oex,t), z€R,

the condition (2.37) can be reduced to

(2.42) toe = 0, fhir + pic1,y =0, I<{< N,
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In the following theorem, a similar result is shown for zero curvature representations
of the perturbation systems defined by (2.7).

THEOREM 2.8. Let K = K(e) € T(M) be analytic with respect to €. Assume
that the initial system uy = K (u,¢€) has en isospectral zero curveture representation

{ be = Ulu, A €)d,
¢'t = V(U,)\,E)Q&,

(2.43) (Az =0, z € R),
(2.44) e, (Ulu, A 8)) — (V(u, A e))e + U, 26), Vg, A?E)] =0
where U and V are tweo s X s matriz differential {sometimes multiplication) operators

being analytic with respect to u, A and €. Define two perturbation matriz differential
operators Up and Viy by

{pern W) (i) = Wi (fiv, AN} = Wi (fn)

) ) 1 61*-7'W('&; ,A }38
[(WN(WN))ij}i‘j=g'1,---,N=[ =

emﬁj s(N+1)xs(N+1)

(i~ fei—7
Wiin v 0
oA Wi, Ane)|
— ) gl e=0

1 VWi A e) 1 W (G An.e)
t fe £=0 n 13 =

where W = Uor V, and 4y and XN are given by {2.41) and (2.30). Then under the
condition for the spectral operator U that

L Windwe)|

(2.45) if U(an)[Sam)] = ole™), S € T(M), then S(in) = o(e™),

the N-th order perturbation sysiem fiyy = K n{fin) defined by (2.7) has the following
tsospectral zero curveture represeniation

> Wény, = Un(iin, in)dn,
(2.46) par
v = U (iin, i )b,

(2.47) e, (UnGN))e — 3 VN (N))ye + O (), Vv ()] = 0,
i=(}

where the matriz 11 is defined by
o

(248) O= [ Ly 0

, Ly = diag(fsf" ,Is) - dia'g(la‘“ ’1)1
N e, o’

]s(N+1)xs(N+I} N sN
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and the spectrel parameters ps, 0 < 4 < N, satisfy

(2.49) > By =0, 0<i<N.
kti=%

Proof. Note that by use of {2.45), the zero curvature equation
((Ulu, hedde — (V{w, A €))e + U (u, A, 2), Viw, A6} = 0

for the system wy = K{u,€) yields an equivalent representation

(2-50) (U(ﬁN, XN,S))z - Zfi(v(ﬂ!\’, :\N-: 6))1;; + [U{’&N? iJ\';‘c--): V(ﬂ‘N‘) iJV) E)]

w0

.
= U'an)[K (@n,)] — Y e (V(an, An,€))y + [Uldn, A, ), Viin, Ax, £)]
=0
= o(e?)  (mod M)
for the perturbation system iy, = K ~(An). In order to recover dyy = K(@y,&) +

o(e™) from (2.50), we need to keep the spectral property Ay = 8:A = 0 under the
perturbation up to a precision o(e?”V). This requires

T N
B = o(e™), 8, = Ze‘ic‘}y,.,i;v = ZE"M,

im0 i=0

which generates (2.49). Similar to the proof of Theorem 2.7, differentiating the above
equation (2.50) with respect to 2 up to N times leads to the zero curvature equation
(2.47), and conversely, we have (2.50) if (2.47) holds. Therefore the perturbation
system fine = Ky {fn) has an isospectral zero curvature representation (2.47).

- The other thing that we need to prove is that the zero curvature equation (2.47)
is exactly the compatibility condition of the perturbation spectral problem (2.46).
From the first system of (2.46)}, we have

-
D Midnye = Unedn + Unde.
i=0
From the second system of (2.46), we obtain
‘ﬁNty.' = ?Nye(z’N + ffN&Nyn 0 < i <
A combination of the above equalities yields
r
(2.51) ZHI.(VN;U;QBN + Vivdny) = Unedn + UnVndn.
i=0
On the other hand, we have

N N
(2.52) D W VnGwy, =Y VnIlidny, = VnUndn,

=6 w0
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by using IVy = VyI and the first system of (2.46). It follows from (2.51) and
{2.52) that the zero curvature equation {2.47) is the compatibility condition of the
perturbation spectral problem (2.46). The proof is completed. [

If we consider the specific case of the perturbation defined by (2. 41}, then the
perturbation spectral problem and the perturbation zero curvature equation, defined
by (2.46) and (2.47), will be simplified to

(2.59) { Q}Nm + IE&N:; = 5N£ﬁmﬁw)$m
one = Vi, in)on,
and
(2.54) (On (@) = Ve (iw))e = TN i)y + (O (), Vv ()] =
respectively. The involved spectral parameters p;, 0 < i < N, need to satisfy a

reduction (2.42} of the general condition (2.49).
TBEOREM 2.9. Let K = K{g) € T(M) be analytic with respect to £. Assume

that the initial system w = K(u,&) possesses a Hemiltonian formulation

up = K(u,e) = J(u, E) (u £),

where J : T*(M) = T(M) is o Hamiltonian operator and H € C=(M) is o Hamil-

tonian functional. Then the perturbation system fiye = Kn(An) defined by {2.7) elso
possesses a Hamiltonian formulation

(2.55) ive = Kn(iw) = jN(ﬁN)a—(E%‘iﬂ(ﬁN%

where the Hamiltonian operator Jy(An) is determined by (2.17} and the Hamiltonian
functional pern H = Hy € C®(My) is defined by

1 8V H(uN,&}

(2.56) (perw H)(Av) = B n(iin) = N BN

gx=0

The corresponding Poisson bracket has the property
(2.57) {perwHy,pern 83} 5, = pern{fy, Ha}s, Hy, Hy € C®(M).

Moveover the perturbation systems finy = Kn (i) defined by (2.7) possesses e mulfi-
Hamiltonian formulation

eryH s B(pernH,
e = Kivlim) = i) 2R 1) = - = G i) 202 ) )
if up = K{u,¢) possesses an analogous multi-Hemiltonian formulation

u = Klu,¢) = J;(ut:) (u,) s J (u, s) (us)
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Proof. Assume that y(g) = Eﬁ(e) € IT*(M)}. Let us observe that

1 &N, e)yv(dn,e))
Nit =
2! 861 eo=f
1 8 J(Gy,E) Hyliy,e) ;
- St - , 0Si< N
]"ZU f(‘z — ])t 36’"-” eml) Oet i}

Thus, noting the structure of Jy, we can represent the perturbation system as follows
(2.58) fine = Kn(in) = In (v Yin (i),

where the cotangent vector field 5 € T+ (M ) reads as

o oo (1 3T (an,e) 1 N yTlay,€)
v ) = (T\ﬁ 8N | L (N T deht |
1 89T (i, e " T
(2.59) ,i—! l’”{”am"éﬁ—) €=G,’)’T(UN,E)§€20) R

Let us check whether this cotangent vector field 4, is a gradient field. Ifit is gradient,
the corresponding potential functional has to be the following

1
f < An(Nin),fin > dA
1]

Oy (Adipy,
/Zzl (::N £)

il
Lo
N oel |, _,

sTIN—g > dA

£k}

1 aNﬁ(ﬁN,E)

1
fo <N, 8), o > dh = g

e=0

The cotangent vector field 4 is indeed a gradient field, because we can show that
. e F(pern H
(2.60) Ane(fin) = (p il )( ).

According to Definition 1.1 and using Lemma 2.1, for any S; € T(M (m:)) we can
compute that

§ (1 8VHiy,e) 1 VB@Nne)| v
5 (W1 —er 0)’&'%) >= (7 T gert 0) (1)1Si(m))
g o
1 8N P ; B 1 g1 . .
=N aen |, e Sitnl) = i g | B @ )[Silnd)]
1 9n- §H
== WLW < ﬁ(uNaf)asi(’?i) >
I BNME .
T WS e, < y(lw, e}, Silms) >

1 3”"‘7('”1\',5)

=< BN

Silm) >, 0<i< N
=0
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This equality implies that (2.60) holds. It follows that the perturbation system (2.58)
is a Hamiltonian system.

_ Let us now turn to the property (2.57) for the Poisson bracket. Set m(e) =
1 (g), m(e) = &l () € T*(M). In virtue of {9.60), we can make the computation

. ~ . 8 ). o s . < SpernHs) .
{pery Hi,pern Hz} j, (fiv) =< “m”‘ll (’TN),JN(VIN)“@M(WN) >
i Gy

— g: < 1 8N—i’¥1 (ﬁN'ls)
- (N —i)! HeN-1

3i+j“NJ('&N, E)
Jeiti-N

N
B Z ——-“""—1‘—“""“; X
1 AN Iy, €) S
emp (N - i feN—d e=0

1 & (J(ay, ) ralin, )
g==0 ! il 6€£

i==0

N

3L Pl
(N=@1  Bel—

o=l g0

L1
T NI gl

<M (ﬂN? E)s J(ﬁN,E)")’Q(’&N,&') > (pEI‘N{Hl, ﬁ2}l)(ﬁN)-
g=0
This shows that the property (2.57) holds for the Poisson bracket.

Tyrther, noting the structure of the perturbation Hamiltonian operators, a multi~
Hamiltonian formulation may readily be established for the perturbation system.
Therefore the proof is completed. {1

We should tealize that two formulas (2.56) and (2.59) provide the explicit struc-
tures for the perturbation Hamiltonian functionals and the perturbation cotangent
vector fields. The whole theory above can be applied to all soliton hierarchies and
thus various interesting perturbation systems including higher dimensional integrable
couplings may be presented. In the next section, we will however be only concerned
with an qpplication of the theory to the KdV soliton hierarchy.

3. Application to the KdV hierarchy. Let us consider the case of the KdV
hierarchy

(31)  up =Ky = Knu) = (8@) e, &= Blu) = 82 + 2ug 87" + 4u, n 2 0.

Except the first linear equation uy = Uz, each equation uy = K(u) (n 2 1) can be
written as the following bi-Hamiltonian equation 153

o 6H, o 8Hn
(3.2) wp = Ky = Tt = Mg

The corresponding Hamiltonian pair and Hamiltonian functionals read as

(33)  J =8, M= Mu) =085 +20u +ude),

1
(34) H,= f H, do, Hy, = Ha(u) = f wfaO)dA, fo =Ty, n 20,
0

where ¥ = & = 82 + 4u — 287 us. Therefore each equation in the KdV hierarchy
(3.1) has infinitely many commuting symmetries { K} 80d conserved densities
{Hn}or

The second equation in the hierarchy (3.1) gives the following KdV equation

(3.5) Ug = Usgz + Bulle,
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which serves as a well-known model of soliton phenomena. Iis many remarkable
properties were reviewed by Miura {17]. In our discussion, we are concerned only with
bi-Hamiltonian formulations and consequent symmetries and conserved densities. The
bi-Hamiltonian formulation of the KAV equation (3.5) can be written down

(3.6) w = g2 - g2l

with two Hamiltonian functionals

37)  Ho= f Hodz = f -;—uz dz, f) = f Hyde = f(%uum + %) de.

I} has also an isospectral zero curvature representation Uy ~ V + [, V] = 0 with

0 -—u—-)\} [ Uy muzz—2u2+2)\u+4)\2]

(3.8) U=
1 0 2u — 4 gy

where } is a spectral parameter (see [18] for more information). These two properties
will be used to construct bi-Hamiltonian formulations and zero curvature representa-
tions for the related perturbation systems.

In order to apply the general idea of constructing integrable couplings to the KdV
equations, let us start from the following perturbed eguation

(3.9) uy = KP¥ (u) = Z ;e 8;(u),

i=0
where oy are arbitrary constants and the S; are taken from zero function and K., n >
0, so that the series (3.9) terminates. To obtain integrable couplings of the n-th order
KdV equation u; = Ky, we need to fix Sy = K,. Various integrable couplings can

be generated by making the perturbation defined by (2.1). In what follows, we would
only like to present some illustrative examples.

3.1. Standard perturbation systems. First of all, let us choose the n-th order
KdV equation itself as an initial equation:

wp = KP (1) = Kp(u)

for each n > 1. In this case, the single scale perturbation iy = Zf\;o g*ni(z, t) leads
to a type of integrable couplings:

(3.10) ive = Kan(fin), N 20,

which are called the standard perturbation systems of w; = K, and have been dis-

cussed in [19, 20]. These systems have the following bi-Hamiltonian formulations
{20]

. R . d{pernH, i 8 H,
(B11) e = Ronlin) = $iine = Jy RSN Hn) _ o SpernHn)
b7 5 fin

where the Hamiltonian functionals pery H,, the hereditary recursion operator &
and the Hamiltonian pair {JN, M w} are given by

1 8V i, (o)
NU el ’

gal}

pery Hy, =
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[ Bo(n0) 0
i @1(m)  Polm)
@N = L
L o) - Balm) Tolmo)
"0 By 0 Mo(mo)
. Oz . Mo(mo)  Mi(m)
I]N = i 1 MN = 3
| O Y Mo(mo) Ma{m) -+ My(gn)
with
(3.12) My = Mi(m;) = 8083 + 2(0em;i + 1:85),

B; = Bu(m) = 61002 + 200t + 1), OSSN

Moreover they have infinitely many commuting symmetries {Kmn}E.s and conserved
densities {Hmn 100
We list the first two standard perturbation systems of the KdV equation {3.5):

(3.13) { Mot = Morze + 690702,

Tt = Meea + 60T )a;
Mot = Mozes + 61070z,
(3.14) Mt = Nezs + 6(0m Jzs
ot = Thzza + MMz + 6(No72)s.

The first-order perturbation system (3.13) has the following bi-Hamiltonian formule-
tion

(3.15)

Fre= 0 & 5(1381’1}}1) _ 0 83 + 2oz + 4100 d(pery f}o)
. d: 0O o 33 4 2n0z + 408, 2ma + 4 8y 674

with i, = {9, m )T and the Hamiltonian functionals
per; Hg = fﬂox de, Hoy = nom,
. - - 1
per; Hy = fHu dz, Hy; = §(ﬂo7hm: + Nozat) + 305m .

The second-order perturbation system {3.14) has the following bi-Hamiltonian formu-
lation

. s 8(pergH;) - &(peraHp)
3.16 = Jo wtimtiiniae = Py et T
{ ) Tat 2 37n 2 37

with the Hamiltonian functionals

3 ﬁZ = (770:1?1'7}2}7‘

o . - 1
peraHp = [Haz dz, Hog = nom + ETIf,
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. - N 1
pers H; = me dz, Hip = 5(770712:::1: + ez + TowsN2) + 30077 -+ 3nEne.

Another example that we want to show is the first-order standard perturbation
system of the fifth order KdV equation u, = Ko(u):
Mot = M52 + 1000T0xes + 2000270ze + 30773770:1:1
(3-17} Me = T 5z + 100ogeem + 10m0Mags + 20002 Me
+2010s 122 -+ 60n0702 M + 30nE 12,

where 70,5 and 71,52, as usual, stand for the fifth order derivatives of 7jp and 7 with
respect to z. It has the following bi-Hamiltonian formulation

_ o O(peri Hy)

(3.18) flze = J1 T A

where the Hamiltonian function per; Hy is given as before and the Hamiltonian func-
tion per; Hy, given as follows

- 1 1 20 10
pery Hy = / ('z'm}:czmz"?l + 570Mazes + 7 Mooz + ?ﬂgﬂam

5 10 40
+ gn&m + 3 ToT0zTa + —é—m‘}m)dz.

3.2. Nonstandard perturbation systems. Secondly, let us choose a per-
turbed equation

ug = KP*(u,£) = Ky + agK,, a = const,, a # 0,

as an initial equation for each n > 1. This equation can be viewed as

(319) ut o err(u’g) = Ja(Hn + aeHn) - Mé(Hﬂ_l ..{,. aEHﬂ,—l)

du du
— 6Hﬂ — 5Hn—1
= (J + asJ) i = (M +acM) o

Therefore the corresponding perturbation systems also have quadruple Hamiltonian
formulations. We focus on the first-order perturbation system under the single scale
perturbation. It has the quadruple Hamiltonian formulation

(3.20)

5 = {per; A xM(1)5(per1H5z1—}1) — §® 8{per; {2 _ M(z;rS(peraI?ff_);)
) P TeR LT e 1 3
namely,

(321) =] 0 0 d(periHnt+ala(m)) [ 0 My) dpers Hns+akln.a(no)
e o Me M, 87,
_ 10 9 e i) | O Mo d(per; Hp—1)
A 5t My M +aM &

¥
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where the functionals pery Hy,, pery H,_; and the operators M; are defined by (3.12)
and (3.12), respectively. Since two Hamiltonian operators jl(l) and jl(?) are invertible,
we can obtain five hereditary recursion operators for the equation (3.20):

22y, 8 1 0 S1), 5 1 0
Jf”ufﬂwu[a 1],J§"<J§‘~”)**m[_a 1],

- = q’o 0 ~ = ‘I’n 0
DI = , PP = ,
B —~aby Dy Oy +ad; Dy

- “ N u b, O
MY = ) = :
P &y

where the operators ®; are defined by (3.12). These operator structures suggest two
classes of hereditary recursion operators for the equation (3.20)

. fo O % boa 0
322)  8M(p) = { } , $7(6) = [ ]
{ ) 1 (-B) ﬁj ,60 1 (ﬁ) ﬁo@l + .61 (I’G 160@9

where 8 = (5, /1) with the f; being arbitrary constants. They are really hereditary
operators and recursion operators for the equation (3.20), which can be verified by
direct computation or by viewing them as the first-order perturbation operators of the
initial operators Jg + Gr€ and Go® + f1e®. Therefore the integrable coupling (3.20) of
the n-th order KdV equation u; = K, (u) possesses two classes of hereditary recursion
operators defined by (3.22). These two classes of operators have the property
(3.23)
Bovo®o 0

V()2 (1 = 27 ()2 (1) =

! Bovo®r + (Bor + Br170)Pe  BovoPe

for any two constant vectors g = (f, B1)T and v = (70,71)7, which also shows that
their product can not constitute completely new recursion operators.
We -int also start from the perturbed KdV type equation

(3.24) w = KP™(u,6) = Ky + ae’ Ky, a = const., a # 0,

where ; is a natural number. Let us illustrate the idea of construction by the following
specific example

(3.25) up = KP¥(u,e) = Ky + 0e”Kpia (n 2> 1),
which can be viewed as a tri-Hamiltonian system:
{3.26) \
. . o . 253
= Koo = g On +;’: Hots) _ (74 aai’M)é;i" = p3Hn (;;"‘5 Ha),

Therefore, according to Theorem 2.9, the second-order perturbation system of the the
perturbed system (3.25)

Tor = Ku(mo),
(3.27) T = K {no)lm}
N = % —'——W ’§,: 2 .

ot @K1 (o)
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possesses the following tri-Hamiltonian formulation

(1) 7(2) 77(3)
e o= gWOHR s dHyT g HY T
(328) 2t JZ 57?2 - Jz 6ﬁ2 = J2 6?72 y Mo == (7707 'fh:ﬂz)

with a triple of Hamiltonian operators

(3.29)
0 0 & 00 8, 0 0 M
=108 0o, M=|0 a4 o |,i®=]| 0 M M
am 0 0 3,-,; 0 O.'Mg Mo M1 Mz

and the corresponding three Hamiltonian functionals

B () = (pera o) (i) + allnia{mo),
(3:30) B3P () = (per2Ha) (),

D (fa) = (pexzfin-1)(fn) + offn(m).

Similarly, the perturbation system (3.27) has also two classes of hereditary recursion
operators:

B 0 0
=6 B ,
| B A B
{3.31) -
Bo%y 0 0
76y = Bo®y + 1 &0 Bodo '
| Bo®2+ 5121+ B0 Godi + 5180 fodo

where the operators @; are defined by (3.12) and 3 = (B, B1, B2)7 is a constant vector,
Let us fix n = 1 and then the system (3.27) gives an integrable coupling of the
KdV equation (3.5), which possesses the following tri-Hamiltonian formulation

(1) £7(2) (8)
ho = JOOHL T sy 0HIT ) 8H]
(3.32) flar = Jy 75 Jz 55 Jy 5

with three Hamiltonian functionals

APe) = | [3 (o322 + MMiws + Nozans) + Snon? + 302
+af %nﬂﬁﬂmzwm + %Wg"?ﬂzx + %nﬁngw + :3_0773)]‘19:’

(3.33) (2 v 1,2 1 3
HY (i) = [ [nomz + 508 + ol $motioas + 1)) da,

A (52) = [[3(omaas + MTise + Tosemz) + 3noni + 3n3n:ldz.

In order to distinguish the standard perturbation systems defined by {3.10), the
integrable couplings of the n-th order KdV equation 4y = K,,, defined by (3.20) and
(3.27), are called the non-standard perturbation systems. Interestingly, each of these
systems has both a local multi-Hamiltonian formulation and two classes of hereditary
recursion operators.
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3.3. 241 dimensional integrable couplings. Thirdly, let us consider a case
of bi-scale perturbations (2.41), i.e.,

N

iy = Zainh i = n;(m,y, t)i Y = gx.
im0

In order to present explicit results for integrable couplings, we take the K4V equation
(3.5) as an illustrative example, due to its simplicity. We recall that the K4V equation
(3.5) has the bi-Hamiltonian formulation (3.6} and the Lax pair {3.8).

Let us introduce the bi-scale perturbation series above into the KdV equation

(3.5) and equate powers of . As an N-th order approximation, we obtain a 2+ 1
dimensional perturbation systems of evolution equations

Moty = Moz + 671070z
Mty = Meze + Mocey + 60 )z + 6no%loy,

{3.34) oty = Nagrs + Mzzy + IMozyy + 6(nomz)e + 6mme + 6(mom )y,
ity = Njeza + 3Mj-1,22y + SNj-2,29p + N300

+6 (Z'Ln Mlj—ie + Lino ??i??j-—i—l.y): 3Kis N

This systern has been already presented in [20]. It follows from our general theory
that it gives an integrable coupling of the KAV equation (3.5).

In what follows, we would like to propose a bi-Hamiltonian formulation and the
consequent hereditary recursion operator for the system (3.34). To the end, we first
need to compute a perturbation Hamiltonian pair by Theorem 2.3:

0 8,
O, 8,
(3.35) Jy = 8 8 O |
8, 8, 0 0
0 P(©)les
POk 50
¥ ap 5? Ple)
(3.36) My = Ple)le=0 317 _B—iel =0 _217 8¢ - g=0 | ?
ol id ap v Pie)
"’P{E)Ee=n %T —”5555)" e=0 %T ﬁ;ﬁl g=0 Y % ¢ : £={.

where the differential operator P(e) represents
P(e) = (8; +e8y)® + 2[(0: + e8y)in + 4N (0 + £8,))-

The explicit expressions for various derivatives of P{g} with respect to £ can be ob-



50 W. X, MA

tained as follows:
( P(E)iezﬂ = 8;3 -+ 2(63770 + 7706:':)?

L
1!

o = 33531, + B + méz) + 2(63;770 + 7703!.!)’

2

(3.37) { 2 == 38:!:63 +2(0zma + 720;) + 2(8ym: +m ay):

= 0 + 2(8ams + 1a00) + 2(8ym2 + M),

-

&
€

i)
=}

e

BP(c}
¢

82Pgez
B¢’

Bngs!
B¢

' Ple)
et

=0 = 2(Bam: +m:0:) + 2(61;7]:'—1 + Ui—lay)v 4<i<N,

\

which gives rise to an explicit expression for the Hamiltonian operator My. Secondly,
we need to compute the Hamiltonian functionals for the system (3.34). Note that
Oz = 8; + €0y, and thus, under the perturbation {2.41), we have
N .
Upg ¥ Zfz(mzx + 260y + Ezﬂiyy)-
i=0

Further, by Theorem 2.9, we obtain two perturbation Hamiltonian functionals:

- 1 8N Holiin) 1<
(3.38) perNHO—uffmw[modxdwafﬁ;mmwi dxdy,

. 1 VH (B 1
(3.39) peryH; = f = & Hh{ty) o TE = / [ [5 Z NiMjaz

i N
N oe itj=N
1
+ Z NiMey + 5 z NiMjyy + Z Nt | dzdy.
i1 i je N2 i k=N

Now the following bi-Hamiltonian formulation for the system (8.34) becomes clear:

(3.40) fine = jNM = MNM,
&?N IST?N

where Ji, My, pery Ho and peryHy are defined by (3:35), (3.36), (3.38) and {3.39),
respectively. It should be realized that the 24+ 1 dimensional bi-Hamiltonian system
(3.40) is local, because the Hamiltonian pair {Jy, My} involves only the differential
operators 8, and §,.

Theorem 2.5 guarantees the existence of a hereditary recursion operator for the
system (3.34). It is of interest to get its explicit expression. Note that the first
Hamiltonian operator Jy has an invertible operator

Fy Pna - B
. Pr_y
(3.41) n)yt=1 ,
Py 4]
where the operators P; are defined by
(3.42)

Po=0;t, P, = ~8%9,, .-, P = (-1y0;%18i, -+, Py = (~DNa7N-1al,
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Therefore the corresponding hereditary recursion operator is determined by & =
MyJ3d N> but it can also be computed directly by Theorem 2.2:

uNNe—O 0
) L _‘?(u_wl‘ B(an)lemo
{3.43) Oy = .
) B S

Here the operator ®(dy) is defined by
Plan) = (B +28y)* + 2bing + clny B + €8,) 7} + iy,
and thus its V + 1 derivatives with respect to £ are found to be

(3 44)
‘I’(u;\r}!s —— 82 4 206,07 + o,

FOREN| = 20,8, o A +7y)B5" — 20,0528y + A,

HEGED] = 88 2+ )07 — 2tsa + 1iog)O5 2By + 20 O726E + i,

k o - . .
%g—%ié%’ﬂ!s:ﬂ = Tanjo (1 (@00 + 1i-1,4)057 718+ 4, <K SNV,

.\

where we accept 7.y = 0. _

Let us now show the corresponding zero curvature representation for the 2 + 1
dimensional perturbation system (3.34). By Theorem 2.8 or (2.54), the zero curvature
representation for the system {3.34) can be given by

(345) ErNt - I?N,,—_- - ﬁvN‘y + E(:TN:?N] = 0,

where three matrices II, Uy and Vi read as

0
(3.46) I1 = [ } » Ian = dxag(fz, Iz) diag(l,---,1),
v 0 AN+ =2 (N+1)
Uy 0 Vo 0
. U1 Un . W VO
(347) Uy = . i , Vv = .
Uy - Uy U Vw - Wi W

with the U;, V; being determined by

0 —m—gy
(348){]*_1_@.;_%’_1@ =|: 7 m},OgiSN,
e=0 5"‘0 0
18N, AN) | | e ieny Qi .
(3.49) Vi = q——gmr—sl = ot~ Aty e — s » 0<igN,
=0 % 1 £ ~31,2
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(8:50) @i = ~Thioa = Myt 0y ~ Mic2gy — 2 3 (e ~ pmn — 2uapw), 0 <5 < N,
kpl=i

where we accept that 7.y = 7, = 0, and U,V are defined by (3.8). Of course, we
require the condition (2.42) on the involved spectral parameters P, 0<i< N, in
order to guarantee the equivalence between the system (3.34) and the zero curvature
equation {3.45).

In particular, the first-order bi-scale perturbation system

(351) { N0t = Nozaz + 670M0z,

Mt = Mzzx + IMozzy + 6(Noth ) 4 67707703;,

has a local 2 + 1 dimensional bi-Hamiltonian formulation

- % 5(Perlﬂl} ~ 6(})81‘1&0) . o R 0 &
= J e — M ———— o , J o ,

it H 5 1 9y Ui m 3 8 o,

’ 0 83 + 2o, + 410, }

I ey
02 + 2o + 4mB, 3828, + 2o + 2n0y + 4B, + 4nody

" - 1 1
per Hy = f f noth dzdy, per Hy = / f (~2~nenm + NoMozy + 5M7ze + 3iigm) dady.
Here the extended variables no(z,y,t) and m;(x,y,t) are taken as a potential vector

1. Moreover the above Hamiltonian pair yields a hereditary recursion operator in
2 + 1 dimensions

(3.52)

- 82 + znﬂma—l + dng 0
$:1 (i) = [ : :

2020y — 2n0a 0728y + 2(me + Moy )00 + Ay B2 + 2Bl + A |

The system (3.51) was furnished in [20], its Painlevé property and zero curvature
representation were discussed by Sakovich [21], and its localized soliton-like solutions
were fon in [22). All these properties show that the system (3.51) is a good example
of typical soliton equations in 2 4 1 dimensions.

4. Concluding remarks. We have developed a theory for constructing inte-
grable couplings of soliton equations by perturbations. The symmetry problem is
viewed as a special case of integrable couplings. The general structures of heredi-
tary recursion operators, Hamiltonian operators, symplectic operators, Hamiltonian
formulations etc. have been established under the multi-scale perturbations. The per-
turbation systems have richer structures of Lax representations and zero curvature
representations than the original systems. For example, in the higher dimensional
cases, the involved spectral parameters p;, 0 < ¢ < N, may vary with respect to the
spatial variables, but they need to satisfy some conditions, for example,

oz =0, g + i1, =0, 1 <I < N,
in the 2 + 1 dimensional case of the perturbation

N N
U = %szm(mayat) = .E:D&"Ti(a:,e.'t:,t), z € R.
= Fid
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The resulting theory has been applied to the KdV soliton hierarchy and thus various
integrable couplings are presented for each soliton equation in the XdV hierarchy.
The obtained integrable couplings of the original KdV equations have infinitely many
commuting syminetries and conserved densities. Linear combinations of the KdV hi-
erarchy containing a small perturbation parameter may yield much more interesting
integrable couplings. For example, the KdV type systems of soliton equations pes-
sessing both multi-Hamiltonian formulations and two classes of hereditary recursion
operators have been presented and what’s more, local 2+1 dimensional bi-Hamiltonian
systems of the KAV type with hereditary structures have also been constructed.

Qur success in extending the standard perturbation cases to the non-standard
cases and the higher dimensional cases are based on the following two simple ideas.
First, we chose the perturbed systems as initial systems to generate integrable cou-
plings for given integrable systems. The method of construction is similar to that
in [5]. Only a slight difference is that new initial systems themselves involve a small
perturbation parameter, but importantly, such initial perturbed systems take effect in
getting new integrable couplings. In particular, our result showed that the following
non-standard perturbation system

: = K( ):
(4.1 { ::z K'(Z)[v}»i»K(u),

keeps complete integrability. Therefore, this also provides us with an extension of
integrable systems. Secondly, we took the multi-scale perturbations, by which higher
dimensional integrable couplings can be presented. Indeed, the multi-scale perturba-
tions enlarge the spatial dimensions and keeps complete integrability of the system
under study. A conerete example of integrable couplings resulted from the multi-scale
perturbations is the following system

{ Mot = Nozee + 69670z,
Mt = Maze + 3"70:::9- + ﬁ(ﬂo"h):n + 6770"}91;;

which has been proved to be a local bi-Hamiltonian system.
A kind of reduction of the standard multi-scale perturbations defined by (2.1)
may be taken, which can be generally represented as

N

Gy = Zsijﬂj; = {0, Y1 Y20 2 Uy B W =¢%iz, teR, z€R?, 0 <i< N,
=0

where the i;,4} can be any two finite sets of natural numbers. This kind of pertur-
bations can be generated from the standard perturbations (2.1), if some dependent
variables 7; are chosen to be zero and the other dependent variables are assumed to
be independent of some dependent variables y;. They yield more specific integrable
couplings. There is another interesting problem related integrable couplings. Could
one reduce the spatial dimensions of a given integrable system while formulating inte-
grable couplings? If the answer is yes, it is of interest to find some ways to construct
such kind of integrable couplings, i.e., to hunt for the second part S{u,v) with v be-
ing less dimensional than v to constitute integrable systems with the original system
uy = K{u).

There exist some important works to deal with asymptotic analysis and asymp-
totic integrability [23, 24, 25, 26}, to which the study of the perturbation systems
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may be helpful. It is also worthy mentioning that our 2 + 1 dimensional hereditary
recursion operators, for example, the operators defined by (3.43) and (3.44), are of the
form described only by independent variables involved. Thus they are a supplement
to a theory of recursion operators in 2 + 1 dimensions discussed by Zakharov and
Konopelchenko [27], and a theory of the extended recursion operators in 2+ 1 dimen-
sions including additional independent variables, introduced by Santini and Fokas [28]
and Fokas and Santini [29]. The other properties such as Bicklund transformations,
bilinear forms and soliton solutions might be found for the resulting perturbation sys-
tems. A remarkable Miura transformation {30} might also be introduced for the 2 -+ 1
dimensional perturbation systems (3.34), which will lead to new 2 + 1 dimensional
integrable systems of the MKdV type. All these problems will be analyzed in a further
publication.
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