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Abstract. A 2n-dimensional Lax integrable system is proposed by a set of specific spectral problems. 
It contains Takasaki equations, the self-dual Yang-Mills equations and its integrable hierarchy as 
examples. An explicit formulation of Darboux transformations is established for this Lax integrable 
system. The Vandermonde and generalized Cauchy determinant formulas lead to a description for 
deriving explicit solutions and thus some rational and analytic solutions are obtained. 
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1. Introduction 

Darboux transformations provide us with a purely algebraic, powerful method to 
construct solutions for systems of nonlinear equations [I]. The key is to expose a 
kind of covariant properties that the corresponding spectral problems possess. There 
have been many tricks to do this for getting explicit solutions to various soliton 
equations including the KdV equation, KP equation, DaveyStewartson equation, 
Veselov-Novikov equation, etc. (see, for example, [2-6] and references therein). 
Darboux transformations can also be applied to generating multi-soliton solutions 
to soliton equations and the Darboux covariance makes it possible to construct a 
series of exactly solvable systems of supersymmetric quantum mechanics [I]. 

In this Letter, we would like to establish a kind of Darboux transformation for 
a Lax integrable system in 2n-dimensions, which we will introduce. The dirnen- 
sion reductions of this system contain some interesting and important equations 
as examples. Among them are Takasaki equations [7], the self-dual Yang-Mills 
(SDYM) equations, and the self-dual Yang-Mills hierarchy [8], etc. It is well- 
known that the SDYM equations (even the SDYM hierarchy), may be reduced to 
many integrable equations in 1 + 1 dimensions and in 1 + 2 dimensions, when 
certain symmetry conditions are imposed (see, for instance, [8,9]). Therefore our 
Lax integrable system also includes a lot of integrable soliton equations in 1 + 1 
dimensions and in 1 +2 dimensions. Recently, considerable interest has been shown 
in the aspect of symmetry reductions of the SDYM equations (see [lo, 111, a quite 
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detailed list of the relevant references is included in [lo]). This also increases, 
to a great extent, the validity, of Ward's conjecture [12]: many (and perhaps all?) 
integrable equations may be derived from the SDYM gauge field equations or its 
generations by reduction. 

This Letter is organized as follows. In Section 2, we derive a Lax integrable 
system starting from a set of specific spectral problems and display a few concrete 
systems of nonlinear equations. The corresponding Darboux transformations are 
established in Section 3 and an explicit description of a broad class of solutions is 
proposed by means of the resulting Darboux transformations. Section 4 contains 
some further discussions and two remarks, along with a more general system whose 
spectral problems include negative powers of a spectral parameter. 

2. Lax Integrable System 

Let the differential operators Li, 1 < i < n, be defended by 

a a 
Li = Li (A) = - - ai (A) a ~ i  

where the coefficients aik, 0 < k < M, 1 < i < n, are constants, and p = 
(pl,pZ,. . . , p n ) ,  x = (xl,  x2,. . . , xn) E UT or Rn, are two vectors of independent 
variables. We consider a set of spectral problems 

where A is a spectral parameter, Q is a N x N matrix of eigenfunctions, and Ail, 
1 < i < n, 0 < 1 < M I  are all N x N matrices of potential functions depending 
on p, x. This spectral problem contains the Takasaki case 171: M = 0, ai (A) = A, 
1 < i < n; the Gu and Zhou case [6]; ai(A) = 0, 1 < i < n, Ai(A) = A Ji + Pi, 
1 < i < n - 1, where J i ,  Pi are the matrices given in [6]; and the Gu case [13]: 
ai(A) = A, 1 < i < n - 1, a,(A) = 0, Ai(A) = Aio, 1 < i < n - 1. We assume 
that n ,  N 3 2 in order to obtain nonlinear integrable systems (we shall explain this 
later). Noting that Li, 1 < i < n,  are all linear operator, we can calculate that 
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Therefore, we see that the compatibility conditions 

are expressed as 

Equating coefficients of the terms AO; Am, 1 < m < M ;  Am, M + 1 < m < 2 M  
and x ~ ~ + '  in the above equation, lead to the following Lax integrable system in 
2n-dimensions 

aAio a A j o = ~ l  l < i ,  j < n ,  [Aio, Ajo] - - +- 
Bpj Bpi 
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where [. , -1 denotes the Lie bracket of matrix Lie algebras. Evidently for the case 
of N = 1, the commutators of the matrices Aik, Ajl are all equal to zero and 
thus the above system is simplified into a linear system, which isn't what we need. 
Besides, if n = 1, the above system holds automatically and thus doesn't need 
any consideration. The Lax integrable system consisting of (2.5)' (2.6), (2.7) and 
(2.8)' includes some interesting and important systems of equations as examples. 
For instance, we have a few systems of equations as follows. 

EXAMPLE 1. M = 0, ai(X) = 1, 1 < i < n, correspond to the Takasaki case [7], 
which gives rise to the equations 

This system may be changed into 
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after making a transformation 

respectively. Equations (2.12) with n = 2 is a kind of version of the anti-self- 
dual Yang-Mills equations due to Pohlmeyer [14]. Its inverse scattering has been 
analyzed by Beals and Coifman [15] and it may be rewritten in the original Yang 
equation 'in R-gauge' [16], upon choosing 

EXAMPLE 2. Let M = 1, n = 2, al(A) = -A, a2(A) = A. We obtain the 
equations 

aAll aA21 
[All, A211 + +-- 

ax  1 
- 0, 

which yield the SDYM equations discussed in [17], upon making + - A21. 
Here AlO, All,  A20, A21 are all the Yang-Mills potentials. The corresponding 
inverse scattering problem was introduced by Belavin and Zakharov [18], many 
years ago. Recently, a scheme of symmetry reduction of the Lax pairs for the 
SDYM equations with respect to an arbitrary subgroup of their conformal group, 
has been described by Legarh and Popov [lo] and, accordingly, the compatibility 
conditions of the reduced Lax pairs, lead to the SDYM eciuations reduced under 
the same symmetry group. 

EXAMPLE 3. The case of M = 1, ai(A) = A, 1 < i < n, yields the equations 
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In comparison with the SDYM equations (2.13), (2.14), (2.15), these equations 
may be referred to as the generalized SDYM equations. 

EXAMPLE 4. Let M = 1 ,  ai ( A )  = A2, 1 < i < n. We obtain the equations 

EXAMPLE 5.  The case of M = 1 ,  ai(A) = X + X 2 ,  1 < i < n, leads to the 
equations 

'Ail aAjl 
[Aio, Ajl] + [Ail Ajo] - [Ail AjlI - - +-- 

apj api 
- 0 ,  

The systems in Examples 4 and 5 are new to our knowledge. Obviously each system 
of Examples 3-5, is a generalization of the Takasaki system of (2.9), (2.10), since 
all corresponding reductions of potentials Ail = 0 , l  < i $ n, lead to the Takasaki 
system. 

EXAMPLE6. Let M 3 2,n = 2, al(X) = - A ,  a2(X) = A M ,  Al(A) = AIO+A1iX. 
We obtain all equations but the SDYM equations (Example 2), in the SDYM 
integrable hierarchy [17] 
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aAii aA21 aA20 
[A103 A211 + [All, A201 - - +-+-- 

3132 apr 3x1 - 0, 

Note that when M = 2, Equation (229) doesn't appear. Recursion operators, sym- 
metries and conservation laws associated with this hierarchy have been considered 
by Ablowitz et al. [8]. In fact, it follows from (2.29), that we have a recursion 
relation 

where R is exactly a recursion operator of the SDYM equations. The above four- 
dimensional SDYM hierarchy can also be considered as a 'universal' integrable 
hierarchy. Upon appropriate reduction and suitable choice of gauge group, it can 
produce virtually all well-known hierarchies of soliton equations in 1 + 1 or 1 + 2 
dimensions [8]. 

3. Darboux Wansformations 

We recall the spectral problems (2.2) 

The Darboux transformation problem means we need to obtain a new set of 

from an old set of 
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so that the spectral problems (2.2) hold covariantly. The purpose of this section 
is just to give an answer to this problem. We shall prove that for certain a to be 
determined, 

$ = (XI + a ) Q ,  I = diag(1,1,. . . , 1  ) - 
N 

will give a practicable new matrix of eigenfunctions. Of course, this matrix a has 
to satisfy some conditions. 

For the time being, let us observe what kind of conditions they should be. 
Because we have 

L~ (A) 5 = Li (A) [(XI + a )  Q] 

= (Li(X)a)S + ( X I  + a)Li(X)Q 

= (Li(X)a)q - ( X I  + a)Ai(X)q 

and 

-&(A)$ = - C&X' ( X I  + a)Q,  1 < i < n;  Lo 
a balance of the coefficients of the powers XO; Am, 1 < m < M and XMf of 
L~ (A)% = -Ai (A) \ir, 1 < i < n,  yields that for 1 < i < n,  

From these equalities, we get the condition for a 
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and at the same time a recursion formula to determine Aim 

We observe (3.4) and (3.3) a little more. Notice that for 1 < r < M ,  1 < i < n, we 
may make a further calculation 

+ A i M  (-a) M-r+1 

Therefore (3.4) becomes 

and further, the condition (3.3) reads as 



M 
+xa~~~(-a)~,  I <  i < n. (3.7) 

k=O 

This is the final condition to restrict the matrix a, in the construction of new 
matrices of eigenfunctions according to (3.2). The following result can provide us 
with such a kind of useful matrices. 

THEOREM 3.1. Let h,, 1 < s < N ,  be N-dimensional column eigenvectors 
corresponding to the spectral parameters X I ,  X2, . . . , AN, respectively, thut is to 
say, that the N-dimensional column eigenvectors h,, 1 6 s N ,  satisfy 

Assume thut the determinant of the matrix H = [hl , hz,  . . . , hN]  is nonzero. Then 
the matrix defined by 

satisfies the condition (3.7). Therefore, we have a Darbour transformation 5 = 
(XI + a)@ and a new solution Ail, 1 < i Q n, 0 Q 1 Q M ,  defied by (3.6). 

Proof. Noting that 

we have for any 1 < i 6 n 

On the other hand, from (3.8) we obtain 
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In this way, we can compute that 

This shows that the matrix a defined by (3.9) indeed satisfies the condition (3.7). 
The rest of the proof is evident. The proof is completed. 0 

We mention that we need a requirement that there are at least two different 
parameters in the set {XI ,  X2, . . . , AN), while making Darboux transformation 
determined by Theorem 3.1. Otherwise we only get an original solution, i.e. not 
a new solution, since a becomes a unit matrix up to a constant factor. Equation 
(3.8) for h, is linear and hence there is no problem in solving it. So Darboux 
transformations (3.2) can always engender new explicit solutions, once one solution 
is found. Furthermore, from the solution induced by Darboux transformation, we 
may make Darboux transformation once more and obtain another new solution. 
This process can be done continually and usually it may yield a series of multi- 
soliton solutions [6,13]. 
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4. Rational and Analytic Solutions 

We make Darboux transformation starting from a special initial solution: zero 
solution Ail = 0, 1 6 i 6 n,  0 6 j 6 M. Let X I ,  X 2 , .  . . , A N  be arbitrary 
parameters so that at least two of them are different. In this way, we obtain a new 
solution 

where the matrix a is defined (3.9). 
Evidently, it is crucial to construct an invertible matrix H = [h l ,  h2, . . . , h N ] .  

We shall utilize two special determinants to generate the kind of matrices that we 
need. The one is the Vandermonde determinant formula 

and the other is a generalized Cauchy determinant formula developed by Constan- 
tinescu [19] 

where nl Nl = n2N2 = N and the matrices Akl,  1 6 k 6 nl ,  1 6 1 6 n2, are 
defined by 
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When Nl = N2 = N (this moment nl = n2 = I), the above generalized Cauchy 
determinant formula is reduced to a Cauchy determinant formula. 

Let il , i2,  . . . , iN be N integers and nl Nl = n2 N2 = N .  For simplicity, we 
accept 

a(&) . P + X  = (a l (Ai)~ l  + ~ l , . - - , a n ( X i ) p n + ~ n ) ,  

l < i < N .  (4.5) 

We choose the first class of the matrices H as follows 

1 f,il f? ... f? 1 

with the functions fa = fi (a(Xi) . p + x), 1 < i < N. This is a little more general 
Vandermonde matrix and hence we have 

detHl = f i l  f;'. . . f$ n ( f i  - fj) .  
i>j 

We obtain a1 = - H ~ A ~ H ; ~ ,  where Al = diag(A1, A2,. . . , AN), provided that 
det H1 # 0. We choose the second class of the matrices H as follows 

with the constants Pi, 1 < i < N1, and the functions 

f i  = fi(a(Ai) . p + z ) ,  gi = gi(a(&) . p + ~ ) ,  1 < i < N2. 



The determinant of this matrix H2 can be computed by the generalized Cauchy 
determinant formula and eventually we obtain 

~ ( ~ - 1 ) / 2 ~ ~ ~ i i ~ ( ~ - l ) ~ z + l  q 3 1 ~ ~  det H2 = (- 1) 1 - .fivZ x 

In this way, we have 0 2  = - H; l, where 

provided that det H2 # 0. 
In what follows, we restrict our consideration within the real field, but the case 

of the complex field is completely similar. 

(1) Rationalfunction solutions 
(1.1) Let f 1, . . . , fN: Rn + Rbe nonzero distinct rational functions. At this moment, 
wehave f i ( a (Xi ) .p+~)  $0,1 < i 6 N,and fi(a(Ai).p+x) f f j ( a ( A j ) - p + ~ ) ,  
i # j. Otherwise we have fi(x) 0, 1 < i 6 N, and fi(x) fj(x), i # j ,  by 
setting p = 0, which contradicts the original hypothesis. It follows from (4.7) that 
in this case, det H1 is a nonzero rational function, with the independent variables 
p, x E Bn and hence we can take a special matrix a = a1 = -HI A1 H I  I, whose 
elements are all rational functions of p, x E Rn. Further, we can obtain nonzero 
rational function solutions by (4.1). 
(1.2) Let pi, 1 < i < Nl, be distinct real numbers, fi: Rn + $ 1 < i < N2, 
be nonzero rational functions, and gi: Rn + $ 1 i < N2, be nonzero distinct 
rational f u n ~ t i ~ n ~ ,  SO that ~ l < i < N l , l < j 4 N z  (pi -gj) f 0. It ~ O ~ ~ O W S  from (4.10) that 
in this case, det H2 is a nonzero rational function with the independent variables 
p, x E EXn and then we can choose a special matrix a = a 2  = - H ~ A ~ H ; ~ ,  whose 
elements are all rational functions of p, x E Rn . In this way, we can obtain a class 
of nonzero rational function solutions defined by (4.1). 

(2) Analyticfinction solutions 
(2.1) Let yl, . . . , yp~ be real numbers and hi, 1 6 i 6 N, be any analytic functions 
to satisfy (hi(y)J < B, 1 < i < N, y E Rn. There are a lot of functions of this 
kind. For example, sin q(y), cos q(y), tanh q(y), sech q(y), where q: Rn + R is any 
analytic function. We choose 

At this moment, det H1 has no zero points with respect to (p, x) E EX2n while 
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Therefore under the condition (4.11), we may take a special matrix a = a1 = 
-H~A~H;', whose elements are all analytic functions of p, x E F. This can 
result in nonzero analytic function solutions by (4.1). 
(2.2) Let pi, 1 < i < Nl, be distinct real numbers, fi: Rn +El, 1 < i < N2, be 
nonnegative or nonpositive analytic functions, and hi: Rn + $ 1 < i 6 N2, be 
analytic functions to satisfy I hi (y) 1 < B, 1 < i < N2. We choose 

g i = g i ( a ( X i ) . p + x ) = h i ( a ( X i ) * p + ~ ) + y i ,  1 < i < N 2 ,  

where yi, 1 < i < N2, are all real numbers, so that 

2 1 < i < j < N 2 ,  

Iyil > B +  max \pi[,  1 < i < N 2 .  
1<2<N1 

In this way, detH2 has no zero points with respect to (p, x) E R ~ ~ .  Therefore, 
we can take a special matrix a = a 2  = -H~A~H;', whose elements are all 
analytic functions of p, x E Rn . This may yield a class of nonzero analytic function 
solutions, by means of (4.1). 

5. Discussions and Remarks 

From the mathematical point of view, it is very interesting to generate more general 
integrable systems. Such an example may be introduced for the Lax integrable 
system in Section 2.  We display that more general system here 

where 1 < i, j < n. It is in agreement with the compatibility conditions of the 
following spectral problems, with negative powers of the spectral parameter 
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where M 2 0. A more general Lax set of spectral problems 

l=-M' 

where MI, MI1 2 0, may 

, l , < i < n ,  

arise as a reduction of this Lax set, with M = 
max(M1, MI1) and vice versa. The Lax integrable system displayed above includes 
the generalized self-dual Yang-Mills flows in [20]. It seems more reasonable that 
it is considered as a 'universal' integrable system, whereas it is too general to 
lose some concrete characteristics. It would be valuable to know whether its more 
reductions have physical interpretations. We may also construct a class of gener- 
alized chiral field equations similar to the one in [21]. Essentially, the deduction is 
the same but we should note particular properties. 

We remark that there has been a huge class of higher-dimensional nonlinear 
integrable equations, which can be solved through the nonlocal Riemann-Hilbert 
method proposed by Zakharov and Manakov [22]. These kinds of equations are con- 
nected with the Lax representations defined by higher-order differential operators, 
with respect to some independent variables. However, our initial Lax integrable 
system (2.5-2.8), is derived by the spectral problems involving higher-order pow- 
ers of the parameter A, other than higher-order differential operators. Therefore, 
there isn't a direct relation between two classes of resulting integrable equations, 
although there exist the same reductions of them, for instance, KP equation. On the 
other hand, our explicit solutions presented in Section 4, are quite broad because 
many arbitrary functions are involved in the construction of solutions and thus it 
is difficult to discuss their properties. But we should be able to study some impor- 
tant properties of sub-classes of the obtained solutions, for example, localization 
property, the existence of the instanton like solutions and the soliton interactions, 
etc., as in the work by Zhou [23]. In particular, some careful consideration about 
specific reductions deserves further investigation. 
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