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Abstract. A 2n-dimensional Lax integrable system is proposed by a set of specific spectral problems.
It contains Takasaki equations, the self-dual Yang-Mills equations and its integrable hierarchy as
examples. An explicit formulation of Darboux transformations is established for this Lax integrable
system. The Vandermonde and generalized Cauchy determinant formulas lead to a description for
deriving explicit solutions and thus some rational and analytic solutions are obtained.
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1. Introduction

Darboux transformations provide us with a purely algebraic, powerful method to
construct solutions for systems of nonlinear equations [1]. The key is to expose a
kind of covariant properties that the corresponding spectral problems possess. There
have been many tricks to do this for getting explicit solutions to various soliton
equations including the KdV equation, KP equation, Davey-Stewartson equation,
Veselov—Novikov equation, etc. (see, for example, [2-6] and references therein).
Darboux transformations can also be applied to generating multi-soliton solutions
to soliton equations and the Darboux covariance makes it possible to construct a
series of exactly solvable systems of supersymmetric quantum mechanics [1].

In this Letter, we would like to establish a kind of Darboux transformation for
a Lax integrable system in 2n-dimensions, which we will introduce. The dimen-
sion reductions of this system contain some interesting and important equations
as examples. Among them are Takasaki equations [7], the self-dual Yang-Mills
(SDYM) equations, and the self-dual Yang-Mills hierarchy [8], etc. It is well-
known that the SDYM equations (even the SDYM hierarchy), may be reduced to
many integrable equations in 1 4+ 1 dimensions and in 1 + 2 dimensions, when
certain symmetry conditions are imposed (see, for instance, [8, 9]). Therefore our
Lax integrable system also includes a lot of integrable soliton equations in 1 + 1
dimensions and in 142 dimensions. Recently, considerable interest has been shown
in the aspect of symmetry reductions of the SDYM equations (see [10, 11], a quite
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detailed list of the relevant references is included in [10]). This also increases,
to a great extent, the validity of Ward’s conjecture [12]: many (and perhaps all?)
integrable equations may be derived from the SDYM gauge field equations or its
generations by reduction.

This Letter is organized as follows. In Section 2, we derive a Lax integrable
system starting from a set of specific spectral problems and display a few concrete
systems of nonlinear equations. The corresponding Darboux transformations are
established in Section 3 and an explicit description of a broad class of solutions is
proposed by means of the resulting Darboux transformations. Section 4 contains
some further discussions and two remarks, along with a more general system whose
spectral problems include negative powers of a spectral parameter.

2. Lax Integrable System
Let the differential operators L;, 1 < 7 € n, be defended by
0

0
L; = Li(A) = — — a;(A\)=—
1 1( ) apl 1( )6(131
8 Mo i) O
= —— aiph*t ] =—, 1<ign, 2.1
where the coefficients a;5, 0 < &k < M, 1 < i € n, are constants, and p =

(p1,p2,.--,0n), T = (21,22,...,Z,) € C" or R", are two vectors of independent
variables. We consider a set of spectral problems

g M
Li(\¥ = —A4;(NT = — (ZA,-,,V) T, 1<ign, (2.2)
=0

where ) is a spectral parameter, ¥ is a N x N matrix of eigenfunctions, and A,
1<i<n,0< 1< M, areall N x N matrices of potential functions depending
on p, z. This spectral problem contains the Takasaki case [7]: M = 0, a;(A\) = A,
1 < ¢ < n; the Gu and Zhou case [6]; a;(A) = 0,1 < ¢ < n, 4;(A) = AJ; + B,
1 £ i € n — 1, where J;, P; are the matrices given in [6]; and the Gu case [13]:
a;(A) =2 1<i<n—1,a,()) =0, 4;()) = Ajp, 1 <1 < n— 1. We assume
that n, N > 2 in order to obtain nonlinear integrable systems (we shall explain this
later). Noting that L;, 1 < 7 < n, are all linear operator, we can calculate that

Li(A)Li(A)¥
M
= Lj(X) (- > )JA“\I/>
=0

= fj,\lA,-lL,-(,\)xI/ =3IV An)T
=0
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= Z,\‘ i Z N AV - Z X <3A“ i) 3‘4’1) ¥
=0

Dj Oz;

M
=3 A" ST Al | T- Z,\m
+l=m

m=0 k+l=
ogk,l<M

M BA;
i SRl D o< E)
m=0 k+I=m Tj
0gk,lsM

Therefore, we see that the compatibility conditions
Ly(AMLi(N)¥ = L;(ANL;(NT, 1<i4,5<n, (2.3)

are expressed as

M
SO N Andj - Z ,\m

m=0 k+l=m

ogk,I<M
2M 6A
m+1 . il
+Y A > ko
m=0 k+l=m J
ogk,I<M
2M
=2 3 Agpda- Z '\m
m=0 k+l=m m=0
ogk,I<M
2M 8A
+ 3 amH Y g 2.4)
m=0 k+i=m Oz;
ogk,i<M

Equating coefficients of the terms A% A™, 1 <K m < M; X, M +1 < m < 2M
and A2M+1 in the above equation, lead to the following Lax integrable system in
2n-dimensions

dAin | 94jo

[A'LO, JO] p_ + Bp = 07 | < ia .7 < n, (25)
4 i
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k+i=m—1

l<msM, 1<ij<n, (2.6)

04, 0A 4
> [Amdal + ) 1 (ajk%;'_aik_a‘é—) =0,

k+l=m k+l=m—
0<k,I<M Ok l<M
M+1<m<2M, 1<14,j<n, 2.7
OAim 0Aim .o
a’]Ma_:;J - O;M 8;1 =0, 1<ji, JEmn, (2.8)

- where [-, ] denotes the Lie bracket of matrix Lie algebras. Evidently for the case
of N = 1, the commutators of the matrices Ay, Aj are all equal to zero and
thus the above system is simplified into a linear system, which isn’t what we need.
Besides, if n = 1, the above system holds automatically and thus doesn’t need
any consideration. The Lax integrable system consisting of (2.5), (2.6), (2.7) and
(2.8), includes some interesting and important systems of equations as examples.
For instance, we have a few systems of equations as follows.

EXAMPLE 1. M =0, a;(A) =1, 1 < i < n, correspond to the Takasaki case [7],
which gives rise to the equations

0Ay | 0Ajo .
0, Ajo] — — =0, 1< j<n, 2.
[Ai0, Ajo] 3; + . 0 i, <N (2.9)
0Ajp 0OAjo .
- — = < <£n. .
This system may be changed into
0 (0J 4 0 <6J _1) .
— | — -z =0, 1g <n, 2.11
3.’1:,' <3ij ) ax,- 3pi ’ b n ( )

or

8 ( 87\ 8 (., BJ) o
_—] - = — ) = < < 2.1
dz; (J 810,') Az (J 0, 1<hism, @.12)
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after making a transformation
oJ 197

Aio=———J— or Ap=J" ,
opi

1<ign
apz = ~

)

respectively. Equations (2.12) with n = 2 is a kind of version of the anti-self-
dual Yang-Mills equations due to Pohlmeyer [14]. Its inverse scattering has been
analyzed by Beals and Coifman [15] and it may be rewritten in the original Yang
equation ‘in R-gauge’ [16], upon choosing

171 w
J_E[v 'u,2+'uw]'

EXAMPLE 2. Let M = 1, n = 2, aj(A) = —A, az(A) = A. We obtain the
equations

6A 0A
[A10, A20] — i 6_20 =0, (2.13)
D1
8An aA2l O0Aypp | 0Ax
[A10, A21] + [A11, A20] — i 6p1 + By + o, =0, (2.14)
0An | 0Axn _
[A11, A21) + . + 9o, =0, (2.15)

which yield the SDYM equations discussed in [17], upon making Az — — Az;.
Here Ajg, A11, Az, A2 are all the Yang-Mills potentials. The corresponding
inverse scattering problem was introduced by Belavin and Zakharov [18], many
years ago. Recently, a scheme of symmetry reduction of the Lax pairs for the
SDYM equations with respect to an arbitrary subgroup of their conformal group,
" has been described by Legaré and Popov [10] and, accordingly, the compatibility
conditions of the reduced Lax pairs, lead to the SDYM equations reduced under
the same symmetry group.

EXAMPLE 3. The case of M = 1, a;(A\) = A, 1 < ¢ < n, yields the equations

[A107 .70] p —-— + ap = Oa 1 < ia .7 <n, (216)
j i
0A; 0A;
[AZO7 _71] + [Azla _70] p“ + apzl
0Aip  OAjo _ .
+ 6.’EJ 8.’111: - O’ 1< 5, ) <N, (217)
0An _ 045 _ 0, 1<i, j<n. (2.18)

[Azl, _71]+ :Bj - 6.’1:1,
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In comparison with the SDYM equations (2.13), (2.14), (2.15), these equations
may be referred to as the generalized SDYM equations.

EXAMPLE 4. Let M = 1, a;(\) = X%, 1 < i < n. We obtain the equations

(Ao, Ajo] — %‘2;0 + E?T’;’ =0, 1<4 j<n (2.19)
(o, Ayt + LA, Al ~ 2 + ag:i‘ —0, 1<ij<n, (220
[Ai1, Ajn] + a—ai—j'— - %45? =0, 1<14,j<mn, 2.21)
%‘2;1 38";’: =0, 1<i,j<n (2.22)

EXAMPLE 5. The case of M = 1, a;(A) = A+ A%, 1 < i < n, leads to the
equations

[Aio Ao - 20 ?_ai;j__o =0, 1<i,j<n, (2.23)
13
0A; 0A;
[Aio, Aj1] + [Ai1, Ajo] — [Ai1, Aji] — == + =2 =0,
3 D opi
1<, j<n, (2.24)
[dn, A + 50 651]’_" =0, 1<i,j<n, (2.25)
(3
%%-__1 - 36’:;'_‘ =0, 1<i4,j<n (2.26)
3 ) %

The systems in Examples 4 and 5 are new to our knowledge. Obviously each system
of Examples 3-5, is a generalization of the Takasaki system of (2.9), (2.10), since
all corresponding reductions of potentials 4;; = 0, 1 £ i < n, lead to the Takasaki
system.

EXAMPLEG6.LetM > 2,n=2,a¢ ()\) = -\ a2(\) = )\M,Al (A) = Ao+An A
We obtain all equations but the SDYM equations (Example 2), in the SDYM
mtegrable hierarchy [171

3A10 04y 04z

[A10, A20] — 9

=0, (2.27)
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A
0Au  0dy | OAw _

(A0, An] + [An, Ag] — 9 Op " oms 0, (2.28)
[A10, Azm] + [A11, Agm—1] + 6;4;:7; + aA;::_l =0,

2<&mgM~1, (2.29)
[At0, Azar] + [Aur, Ao 1] + ag;i“ + aA;;‘f =Ly aa‘i‘: =0, (230)
[A11, A2nm] + %‘2‘ + a—g;TM =0. (2.31)

Note that when M = 2, Equation (2.29) doesn’t appear. Recursion operators, sym-
metries and conservation laws associated with this hierarchy have been considered
by Ablowitz et al. [8]. In fact, it follows from (2.29), that we have a recursion
relation

0
(adA“ + —) Aym-1=RAym-1,

0
Ao == (w40 + 35,) 21

where R is exactly a recursion operator of the SDYM equations. The above four-
dimensional SDYM hierarchy can also be considered as a ‘universal’ integrable
hierarchy. Upon appropriate reduction and suitable choice of gauge group, it can
produce virtually all well-known hierarchies of soliton equationsin 14+ 1o0r1+2
dimensions [8].

3. Darboux Transformations

We recall the spectral problems (2.2)

9 9 .
e a,-(,\)—) T=—ANY, 1<ign.

Li(\)T = ( =

The Darboux transformation problem means we need to obtain a new set of
-~ -~ M ~
¥, L) = AN, 1<ign, (3.1)
=0
from an old set of

M
T, A0 =) AaN, 1<ign,
=0
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so that the spectral problems (2.2) hold covariantly. The purpose of this section
is just to give an answer to this problem. We shall prove that for certain « to be
determined,

U = (A + )0, T =diag(1,1,...,1) (3.2)
N

will give a practicable new matrix of eigenfunctions. Of course, this matrix « has
to satisfy some conditions.

For the time being, let us observe what kind of conditions they should be.
Because we have

LT = LW + )]
(Li(N)a) ¥ + (M + @) Li(\) T
= (Li(\)a)¥ — (AL + a) 4;(\) T

6_0‘ - {:a.k)\kﬂa_a U —
i ¢ 3.'17,'

o

—(M +a) (}:Au)\> 1<ign,

and
AN = - (ZAN) M+a)¥, 1€ign

a balance of the cogfﬁcients of the powers A% A\, 1 < m < M and \M+1 of
L;(\)¥ = —A;(\)¥, 1 <1< n,yields that for 1 <4 < n,

da -

6_ —adp = _Aioaa

Di
da - -
—Gim-17_— ~ Aim-1— 0Aim = —Ajm—1 — Aima, 1<m <M,
i
ad
_azMa_a —Aim = —A'LM
Ti

From these equalities, we get the condition for o

Ja _ adip — Apa, 1<igm, (3.3)
Op;
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and at the same time a recursion formula to determine Aim

~ Oo
Aim = Aim +aiM%, 1
2

1

N
N

n,

- Jda -
Aim—1=Ajm—1+ Gim—17— + aAim — Aima, 3.4
2

l<mgM, 1<ign

We observe (3.4) and (3.3) a little more. Notice thatfor1 < r < M, 1 <i < n,we
may make a further calculation

- do 5
Aip—1 = Aip1 + Gir-19~ +adir + Air(—0)

du
= Ajr1+ Gir—17_— + oAy +
z;

Oa e
+ (Air + ir 35— + aAi,r+1> (—a) + Ai,r+1(—a)2
1
M-r
oo
= (Ai,r+k—1 + @i rtk-17— t aAi,,+k) (—a)k +
k=0 a:L'i
+Aspg ()Mt (3.5)
Therefore (3.4) becomes
_ M—-r+1 aa
Aigor = ) (Ai,r+k:—1 + ai,r+k-1T) (—a)k +
k=0 Ti
M-r
+ 3 adipr(-a)f, 1<r<M, 1<ig<n, (3.6)
k=0
~ (07 s
Ay = Air+aimz—, 1<ig<n,
or;

and further, the condition (3.3) reads as

9o _ adi — Apa
Op;

M Mo gy
= adio+ Y A(—0) + D aio—(-a)*t +
k=0 k=0 a.'L'z
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M
+ Z aAik(—a)'“
k=1

M ¥
= Z Aik(_a)k+ + Z aikb?i(—a)kf"l +
k=0 k=0

M
+3 adiu(-a)*, 1<ign (3.7)
k=0
This is the final condition to restrict the matrix «, in the construction of new
matrices of eigenfunctions according to (3.2). The following result can provide us
with such a kind of useful matrices.

THEOREM 3.1. Let hy, 1 < 8 € N, be N-dimensional column eigenvectors

corresponding to the spectral parameters A1, Az, ..., An, respectively, that is to
say, that the N-dimensional column eigenvectors hg, 1 < s < N, satisfy

oh Oh ,

‘a?j=ai(As)5;§_Ai(As)h3a 1<s<N,1gign. (3.8)
Assume that the determinant of the matrix H = [hy, ha, ..., hy] is nonzero. Then
the matrix defined by

a=-HAH™',  A=dag(\,)2,..., n), (3.9)

satisfies the condition (3.7). Therefore, we have a Darboux transformation U=
(M + )T and a new solution Ay, 1 <i < n, 0 <1< M, defined by (3.6).
Proof. Noting that

OH! | OH

=-HI2ZH™', yi=piora, 1<ign,
o ByiH , yi=piorz;, 1 gign
we haveforany 1 i< n
da o0H oH
 — =——AH '+ HAH'——H,
Op; Opi Opi
da o0H O0H
— =———AH"! AH ' —=H™
oz; oz; +H oz;
On the other hand, from (3.8) we obtain
0H XL 8H ..
v l;)azka_miA — [Ai(M)ha, ..., As(AN) B
M M
= Zaika—HAk_*—l—ZAdHA, 1€ig<n
k=0 azz =0
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In this way, we can compute that

O _ B\ g-1 4 pag12

5})—1: apz ap 1 H

M
= —Ea,k A’°+2H‘1 Y AGHAMHT 4
=0

M
+ Z aix HAH™! ZH AHTE-1 — HAH™'Y " AyHA'H!
k=0 =0

M, 8H k2 L I+1
= =Y axm—H '(—a)"* + " Ay(—a)'*' +
im0 O 1=0 ‘

d oH
+ apHAH'— 7, H o 4+ o Z Aj(—a)t

k=0 =0

M
=Y ai (—%AH—‘ + HAH“QI—LI-H‘I) (—a)kt! +
1

k=0 am"
M M
+3 Aug(—a)™ + ) Au(-o)
=0 =0
M b
= Zak— k+1+ZA l+1+aZAu —a
iz 9 1=0

This shows that the matrix o defined by (3.9) indeed satisfies the condition (3.7).
The rest of the proof is evident. The proof is completed. a

We mention that we need a requirement that there are at least two different
parameters in the set {A1, A2,...,An}, while making Darboux transformation
determined by Theorem 3.1. Otherwise we only get an original solution, i.e. not
a new solution, since o becomes a unit matrix up to a constant factor. Equation
(3.8) for h; is linear and hence there is no problem in solving it. So Darboux
transformations (3.2) can always engender new explicit solutions, once one solution
is found. Furthermore, from the solution induced by Darboux transformation, we
may make Darboux transformation once more and obtain another new solution.
This process can be done continually and usually it may yield a series of multi-
soliton solutions [6, 13].
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4. Rational and Analytic Solutions

We make Darboux transformation starting from a special initial solution: zero
solution A;; = 0,1 <7 < n,0 < 5 < M. Let A\j, Az,...,An be arbitrary
parameters so that at least two of them are different. In this way, we obtain a new
solution

M—-r+1 aa

Aigor= ). ai,r+k—1£(_a)k, 1<r<M, 1<ign,
k=0 i @.1)
- 130s"
£n,

Aip = M g 1<
%

where the matrix « is defined (3.9).

Evidently, it is crucial to construct an invertible matrix H = [hy, ha, ..., hy].
We shall utilize two special determinants to generate the kind of matrices that we
need. The one is the Vandermonde determinant formula

1 1 1
ai an e an
=[] (ai — a;), 4.2)
. . . i>]
a{v_l aév—l . ail

and the other is a generalized Cauchy determinant formula developed by Constan-

tinescu [19]

A ... A,

(_I)N(N—l)/Z ' .
A’n11 ree Anlnz

2

2
_ Thiicien (@i = a3)™ Tigicicn, (bi — b;)™
- niny ’

“.3)
[Tici<n, 1<, (@i — b5)

where n1 N1 = na N, = N and the matrices Ay, 1 < k €< n1, 1 €1 < ny, are
defined by

i 1 1
(a1 —b)FT " (ag — by, )T
k+1-2
Am=( b1 ) : : . (4.4)
1 _ 1
L (an, — by)k+i=1 (an, — by, )EH-1 |
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When Ny = N, = N (this moment n; = ny = 1), the above generalized Cauchy
determinant formula is reduced to a Cauchy determinant formula.
Let i1,42,...,i5 be N integers and n1N; = nN; = N. For simplicity, we
accept
a(M) p+z = (a1(X)p1 + 21, .., a0 (N)Pn + Zn),
1<igN. (4.5)

We choose the first class of the matrices H as follows

i1 1 iN
1 2 » e e N
i1+1 fi2+1 in+l1
1 2 toe N
H=| " o o, .6)
i1+N—-1 fi2+N—1 in+N-1
L /1 2 e N i

with the functions f; = f;{(a(X;) - p+ z), 1 <1 < N. This is a little more general
Vandermonde matrix and hence we have

detHy = fifaz... i TI(fi = £9)- @.7)
>4

We obtain a1 = —H1A1H1‘1, where Ay = diag(A, A2,...,An), provided that
det H; # 0. We choose the second class of the matrices H as follows

AIl(f,g,ll') Alnz(figap')
Hy = : ; , “8)
Alm(f’gnu’) e Anmz(faga /1')
where Agi(f,9,1), 1 <k < ny, 1 <1 < ny, are given by
Akl(f’gnu')
fli(z—1)N2+1 N f}\,,;vz -
(u1 — g1)F+i-t (11 — gny) Rttt
E+1-2
fli(z-1)N2+1 N f}’\’é\’z
L (uwy — g1)FH! (my — g, )=

with the constants p;, 1 < i < Ny, and the functions

fi=fila(X) -p+2z),  gi=gila(N) p+z), 1<i<M.
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The determinant of this matrix H, can be computed by the generalized Cauchy
determinant formula and eventually we obtain

NV=1)/2 (Zi2080-0Np+1 (P2,
detHz = (—1) fl ...sz X

2 2
y Hlsi<j<N1 (s — #j)"‘ ngi<j<N2 (9: — gj)"2
ning '

(4.10)
Thcicmiism (s — 95)

In this way, we have ap = —Hy AL H ~1, where

A= diag()\l,;..,ANZ;...;)\I,..;,,\NZ),

n2

provided that det H, # 0.
In what follows, we restrict our consideration within the real field, but the case
of the complex field is completely similar.

(1) Rational function solutions

(1.1) Let f;,..., fn: R* — Rbe nonzero distinct rational functions. At this moment,
wehave fi(a(\)-p+2) #0, 1< < N, and fi(a(\) -p+2) # f;(a(¥y)-p+3),
i # j. Otherwise we have fi(z) = 0,1 < i < N, and fi(z) = f(z), 1 # 7, by
setting p = 0, which contradicts the original hypothesis. It follows from (4.7) that
in this case, det H is a nonzero rational function, with the independent variables
p, £ € R™ and hence we can take a special matrix o = a1 = -H1A1H1_1, whose
elements are all rational functions of p, z € R". Further, we can obtain nonzero
rational function solutions by (4.1).

(1.2) Let p4, 1 € i < Nj, be distinct real numbers, f;:R* =R, 1 € i < Ny,
be nonzero rational functions, and g;: R* - R, 1 < 1 < N3, be nonzero distinct
rational functions, so that IT1 i< vy, 1<5< N, (14 — g5) F 0. It follows from (4.10) that
in this case, det H, is a nonzero rational function with the independent variables
P, € R" and then we can choose a special matrix o = ap = ~HyA H, 1 whose
elements are all rational functions of p, z € R". In this way, we can obtain a class
of nonzero rational function solutions defined by (4.1).

(2) Analytic function solutions

(2.1) Let~i,...,7vn bereal numbers and h;, 1 <4 < N, be any analytic functions
to satisfy |h;(y)] < B, 1 < % €< N, y€R". There are a lot of functions of this
kind. For example, sin g(y), cos ¢(y), tanh g(y), sech g(y), where g: R* — R is any
analytic function. We choose

fi= fila(N) -p+z) = hi(a(X) -p+2z) +7%, 1<i<N.
At this moment, det H; has no zero points with respect to (p, z) € K*™ while

lvi|>B, 1<i<N, |nu-7v|>2B, 1<i<j<N. (4.11)
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Therefore under the condition (4.11), we may take a special matrix o = a1 =
—-H\MH !, whose elements are all analytic functions of p, z € R". This can
result in nonzero analytic function solutions by (4.1).

(2.2) Let p;, 1 < 4 < Ny, be distinct real numbers, fi:R* - R, 1 < i < Ny, be
nonnegative or nonpositive analytic functions, and ~;:R®* =R, 1 < i < N,, be
analytic functions to satisfy |h;(y)| < B, 1 < i < N3. We choose

gi = gi(a(Xi) - p+2) = hi(a(Xi) p+z) +7, 1<i<Ny,
where v;, 1 < 4 < IV, are all real numbers, so that

|7i_7jl>2Ba 1<7‘<J<N2a

vl > B+  max, luil, 1<ig N
In this way, detH, has no zero points with respect to (p,z) € R*™. Therefore,
we can take a special matrix @ = a; = —HyAyHj ! whose elements are all

analytic functions of p, £ € R". This may yield a class of nonzero analytic function
solutions, by means of (4.1).

5. Discussions and Remarks

From the mathematical point of view, it is very interesting to generate more general
integrable systems. Such an example may be introduced for the Lax integrable
system in Section 2. We display that more general system here

Ay 04,
Z [Aik7Ajl] + Z (ajk-a—m;— — aika_m-1> = 0,

k+l=m k+l=m
—M<k <M ~M<kI<M
IM<m<-M—-1, M+1<m<2M,
OA; O0A;
Z [Aika Ajl] - ;) an + aj?'n+
k-+H=m Pj Pi
—M<kI<M
04, 0A;
+ (ajka_zll—aikaj.l)=0, -M<m< M,
k+l=m Zj Ti
—MghI<M

where 1 € i,j € n. It is in agreement with the compatibility conditions of the
following spectral problems, with negative powers of the spectral parameter

(5-(£)2)]

M
= — ZA,;ZAI ¥, 1<i<n,
l=—M
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where M > 0. A more general Lax set of spectral problems

a MII k a
MII
= — ZA‘”}\[ T, 1<ig<n,
I=—M'

where M/, M" > 0, may arise as a reduction of this Lax set, with M =
max(M’, M") and vice versa. The Lax integrable system displayed above includes
the generalized self-dual Yang-Mills flows in [20]. It seems more reasonable that
it is considered as a ‘universal’ integrable system, whereas it is too general to
lose some concrete characteristics. It would be valuable to know whether its more
reductions have physical interpretations. We may also construct a class of gener-
alized chiral field equations similar to the one in [21]. Essentially, the deduction is
the same but we should note particular properties.

We remark that there has been a huge class of higher-dimensional nonlinear
integrable equations, which can be solved through the nonlocal Riemann-Hilbert
method proposed by Zakharov and Manakov [22]. These kinds of equations are con-
nected with the Lax representations defined by higher-order differential operators,
with respect to some independent variables. However, our initial Lax integrable
system (2.5-2.8), is derived by the spectral problems involving higher-order pow-
ers of the parameter A, other than higher-order differential operators. Therefore,
there isn’t a direct relation between two classes of resulting integrable equations,
although there exist the same reductions of them, for instance, KP equation. On the
other hand, our explicit solutions presented in Section 4, are quite broad because
many arbitrary functions are involved in the construction of solutions and thus it
is difficult to discuss their properties. But we should be able to study some impor-
tant properties of sub-classes of the obtained solutions, for example, localization
property, the existence of the instanton like solutions and the soliton interactions,
etc., as in the work by Zhou [23]. In particular, some careful consideration about
specific reductions deserves further investigation.
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