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Abstract

The discrete variational identity under general bilinear forms on semi-direct
sums of Lie algebras is established. The constant y involved in the variational
identity is determined through the corresponding solution to the stationary
discrete zero-curvature equation. An application of the resulting variational
identity to a class of semi-direct sums of Lie algebras in the Volterra lattice
case furnishes Hamiltonian structures for the associated integrable couplings
of the Volterra lattice hierarchy.

PACS numbers: 02.10.De, 02.30.1k

1. Introduction

An algebraic approach to integrable couplings [1, 2] was recently presented, based on the
concept of semi-direct sums of Lie algebras [3, 4]. There exist plenty of examples of
both continuous and discrete integrable couplings belonging to such a class of integrable
equations [1-10]. The corresponding results show various mathematical structures that
integrable equations possess and provide a powerful tool to analyze integrable equations,
particularly, multi-component integrable equations and integrable couplings [9, 11]. Observe
that a general Lie algebra can be decomposed into a semi-direct sum of a solvable Lie algebra
and a semisimple Lie algebra [12]. The semi-direct sum decomposition of Lie algebras allows
for more classifications of integrable equations supplementing existing theories [13, 14], e.g.,
classifications within the areas of symmetry reductions [15, 16] and Lax pairs [17].

Let G be a matrix loop algebra, E be the shift operator and D denote the forward difference
operator £ — 1,1i.e., D = E — 1. Traditionally, we write

(E™fY(n) = f™ () = f(n+m), m,n ez, (1.1

and define an inverse of the difference operator E — E ~1 as follows (see, e.g., [18]):

—1 o)
(E—=E)"'fyin) = % ( Z f+1+2m)— Zf(n -1 +2m)> , neZ, (1.2)

m=—00 m=1
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where f is an expression depending on the lattice variable n. The corresponding inverses of
the forward and backward difference operators are determined by

(E-D'=((E-EHY'a+E™, A—EH'=((E-EHYNE+D.

Other kinds of inverses for difference operators are possible (see, e.g., [19]). The inverses
are normally used in deriving hierarchies of soliton equations, in particular, non-isospectral
hierarchies.

Letu = u(n,t) = (ui(n,t),...,u,(n, 1)) be a vector potential, in which n € Z and
t € R are the lattice variable and the time variable, respectively. When an object P (e.g., a
function or an operator) depends on u, its Gateaux derivative with respect to u in a direction
v=(vi,...,0,)" is defined by

0 0
P'[v]l = P'(w)[v] = —P(u + ev) = —Pui+evy,....u;+evy)| . (1.3)
de o0& e=0

We denote by B the space of functions which are C*°-differentiable with respect to n and
t and C*°-Gateaux differentiable with respect to u, and define the Lie bracket [-, -] on
BY ={(P,...,P)T|P € B,1 <i < q} as follows:

[K,S1=K'[S]-S[K]=K @[S]— S W[K], K,SeB. (1.4)
The forward difference operator D = E — 1 yields an equivalence relation ~ on 5:

P~Q if dReB suchthat P — Q = DR.

Let ), ., P denote the equivalence class to which P belongs:

> P={P+DRIR € B}, P € B, (1.5)
nez
and F, the quotient space: F = F(B) = {ZneZ P|P € B}. An equivalence class of B by ~

is called a functional. The variational derivative ‘;—7; € B7 of a functional P € F with respect
to u is determined by

sP\" d
Yl ) 6=—Pu+ed)| | £eBl.
ou ae
nez e=0
It is easy to see that
3 . dP
Ui nez JEZ 8Mi

where P = P(u) € B.
The adjoint operator J: B¢ — B4 of a linear operator J: B4 — B9 is determined by

Y &= "n"JE  &neB

ne’ ne’
If J1 = —J, then J is called to be skew symmetric. A linear skew-symmetric operator
J: B4 — B is called to be Hamiltonian, if the corresponding Poisson bracket
sP\" 80
y = s = —_— J—, . f 17
{P, Q) ={P,Q, Z((SM) 5 P.Qe (1.7)

nez

satisfies the Jacobi identity:

{P,{Q, R}} +cycle(P, Q,R) =0, P, O, ReF.
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A system of evolution equations #;, = K, K € B, is called to be a Hamiltonian system, if
there are a Hamiltonian operator J: B9 — B9 and a functional H € F such that

SH
u=K=J—. (1.8)
Su
The functional H is called a Hamiltonian functional of the system, and we say that the system
possesses a Hamiltonian structure.

We now assume that a pair of matrix discrete spectral problems

Ep=Up =U(u,1)o, 1o
o =Vop=Vu, Eu, E'u,...; Mo, (1.9

where u = u(n, t) is the potential, ¢, denotes the derivative with respect to ¢z, U, V € G are
called a Lax pair and A is a spectral parameter, determines a discrete soliton equation

u, =K =K, t,u, Eu, E"'u,...), K e B4, (1.10)
through their isospectral (i.e., A, = 0) compatibility condition (i.e., discrete zero curvature
equation)

U =(EV)U-VU. (1.11)
This means that a triple (U, V, K) satisfies

U'[K]=(EV)U — VU,
where U’'[K] denotes the Gateaux derivative of U with respect to u in a direction K. The Lie
algebraic structure for such triples was discussed [18] and applied to non-isospectral flows
[20].

To generate integrable couplings of equation (1.10), take a semi-direct sum of G with
another matrix loop algebra G, as introduced in [4]:

G =G &G,. (1.12)
The notion of semi-direct sums implies that G and G, satisfy
[G.Gc] ¢ G,

where [G, G.] = {[A, B]|A € G, B € G.}. Obviously, G, is an ideal Lie sub-algebra of G.
The subscript ¢ indicates a contribution to the construction of integrable couplings. We also
require that the closure property between G and G, under the matrix multiplication

GG, GG C G,

where GG, = {AB|A € G|, B € G}, to guarantee that the discrete zero curvature
equation (1.11) over semi-direct sums of Lie algebras can engender coupling systems.
Then choose a pair of enlarged matrix discrete spectral problems

Ep=U¢p=U(®, 1o,
_¢ - _¢ - ¢ _ (1.13)
¢ =Vo=V@, Ea, E"\i,...; N,
where the enlarged Lax pair is given by
U=U+U,, V=V+V, U., V. eG.. (1.14)

Obviously, under the soliton equation (1.10), the corresponding enlarged discrete zero-
curvature equation

U, =(EV)U-VU (1.15)
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is equivalent to
U, =(EV)U — VU,
Uc,t = [(EV)UL - U(‘V] + [(EVC)U - UV(‘] + [(EVC)UC - Ucvc]~

The first equation above precisely gives equation (1.10), and thus the whole system provides
a coupling system for equation (1.10). This shows the procedure of generating discrete
integrable couplings through semi-direct sums of Lie algebras, proposed in [4].

As usual, a bilinear form (-, -) on a vector space is said to be non-degenerate when if
(A, B) = Oforall vectors A, then B = 0, andif (A, B) = Oforall vectors B, then A = 0. Since
semi-direct sums of Lie algebras are not semisimple, the Killing form is always degenerate
on semi-direct sums of Lie algebras [12], and thus it is not helpful in analyzing Hamiltonian
equations by the trace identity [21, 22]. Indeed, semi-direct sums of Lie algebras can carry
particular algebraic structures [23], and the corresponding groups can extend the Poincaré
group to unite geometrical with internal symmetries in a nontrivial way [24]. A natural
question here for us is whether we can replace the Killing forms with general bilinear forms
to establish Hamiltonian structures for discrete soliton equations associated with semi-direct
sums of Lie algebras.

In this paper, we would like to answer this question. As in the case of the continuous
variational identity [25], we are going to show that a discrete variational identity also
ubiquitously exists in discrete spectral problems and plays important roles in constructing
Hamiltonian structures and thereby conserved quantities for discrete soliton equations. The
crucial step of our success is that while presenting a discrete variational identity under a
general bilinear form (-, -) on a given algebra g we get rid of the invariance property

(1.16)

{(p(A), p(B)) = (A, B) (1.17)
under an isomorphism p of the algebra g, but keep the symmetric property

(A, B) = (B, A) (1.18)
and the invariance property under the multiplication

(A, BC) = (AB, C), (1.19)

where AB denotes the product of A and B in g. If g is also associative, then g forms a Lie
algebra under

[A,B]= AB — BA,
and the invariance property under the Lie bracket holds:

(A,[B,C]) = (A, B], C). (1.20)
Conversely, the invariance property under the Lie bracket, (1.20), does not imply the invariance
property under the multiplication, (1.19). We will show by examples that generally there are
many non-degenerate bilinear forms with the properties (1.18) and (1.19) on a given semi-
direct sum of Lie algebras.

The paper is organized as follows. First, in section 2, we would like to establish a discrete
variational identity under general non-degenerate, symmetric and invariant bilinear forms, in
order to construct Hamiltonian structures of soliton equations associated with semi-direct sums
of Lie algebras. Moreover, in section 3, the constant y appeared in the variational identity will
be determined precisely. Then, in section 4, an application is given to a kind of semi-direct
sums of Lie algebras in the Volterra lattice case, and consequently, Hamiltonian structures of
the associated integrable couplings of the Volterra lattice hierarchy are presented. This also
justifies that the approach of integrable couplings using semi-direct sums of Lie algebras [4]
can engender integrable Hamiltonian equations. A few concluding remarks are given in the
last section.
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2. A discrete variational identity under non-Killing forms

For a given spectral matrix U = U(u, A) € G, where G is a matrix loop algebra, let us fix
the proper ranks rank(A) and rank(u) so that U is homogeneous in rank, i.e., we can define
rank(U). The rank function satisfies

rank(AB) = rank(A) + rank(B),

whenever an expression AB makes sense, e.g., EU. Therefore, to keep the rank balance in
equations, we have to define

rank(E) = rank(U) = 0. 2.1
The requirement rank(E) = 0 is due to the stationary discrete zero curvature equation
(EV)(EU)=UV, 2.2)

and then the requirement rank(U) = 0 is due to the discrete spectral problem E¢ = U¢ in
(1.9).

Let us next assume that if two solutions V| and V; to (2.2) possess the same rank, then
they are linearly dependent on each other:

Vi=yV,, y = const. (2.3)

This is a strict condition on spectral problems, also required in deducing the trace identity
[21], the so-called quadratic-form identity [26] and the continuous variational identity [25],
which can be used to construct Hamiltonian structures of various continuous soliton equations
(see, e.g, [27-29)).

Associated with a non-degenerate bilinear form (-, -) on G with the symmetric property
(1.18) and the invariance property under the multiplication, (1.19), we introduce a functional

W = Z((V, U+ (A, (EV)(EU) = UV)), 2.4)
nez

while U, denotes the partial derivative with respect to A, and V, A € G are two specific
matrices. The variational derivative VAR € G of a functional R with respect to A € G is
defined by

3
Z(VAR, B)=-_R(A+eB)| BeG. (2.5)
nez e=0

Obviously, based on the non-degenerate property of the bilinear form (-, -), we can have
Vs Y (A, B) = A, Vs Y (A EB)=E'A.
nez nez

It then follows from the symmetric property (1.18) and the invariance property under the
multiplication, (1.19), that

VyW = U, + U(E™'A) — AU, VAW = (EV)(EU) - UV.  (2.6)

Note that the first variational derivative formula cannot be obtained, if we only have the
invariance property under the Lie bracket, (1.20).
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2.1. A discrete variational identity

We are going to prove that there is a variational identity in the discrete world, similar to the
continuous variational identity [25].

Theorem 2.1 (The discrete variational identity under general bilinear forms). Let G be a
matrix loop algebra, and U = U (u, ) € G be homogeneous in rank such that (2.2) has a
unique solution V.€ G of a fixed rank up to a constant multiplier. Then for any solution
V € G of (2.2), being homogeneous in rank, and any non-degenerate bilinear form (-, -) on
G with the symmetric property (1.18) and the invariance property under the multiplication,
(1.19), we have the following discrete variational identity:

5 ) oU
2SN Uy = o (v, 22, 2.7
Su XEZ:( D= < ou > 7

where % is the variational derivative with respect to the potential u and y is a constant.

Proof. Let us start with the functional »V introduced in (2.4). For the variational calculation
of W with respect to the potential u, we require the following constraint conditions:

VoW =U, + U(E"'A) — AU =0, (2.8)
VAW = (EV)(EU) = UV =0, (2.9)

to determine V and A. These conditions also imply that both V and A are related to U and
thus to the potential . Immediately from the second constraint condition (2.9), we have

) SW
— V,U,) = —.
du Z( 2 Su
ne
Now using both of the constraint conditions (2.8) and (2.9), and noting the property that

if VAR(A) = 0, then %R(A(u)) = 0 for a functional R, we know that only the dependence

of u in U (but not in V and A) needs to be considered in computing % Therefore, based

on the invariance property under the multiplication, (1.19) (note that the invariance property
under the Lie bracket, (1.20), is not good enough), we obtain

) sW U U
— D) (V.U =—= <V, —A>+<®, —> (2.10)
Su Su u u
nez
where
® = (E"'A)V — VA. (2.11)

This matrix © satisfies
E© - V)(EU)-U® -V,) =0,
namely, ® — V; solves (2.2). This is because we have
(E®)(EU) —U® = A(EV)(EU) — (EV)(EA)(EU) —U(E"'A)V +UVA
=AUV — (EV)(EA)(EU) —U(E"'A)V + (EV)(EU)A
=[AU —UE"'M)]V + (EV)[(EU)A — (EA)(EU)]
=U,V — (EV)(EU,)
from (2.8) and (2.9) and
(EVI)EU) =UV, = U,V — (EV)(EU,)
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from differentiating (2.9) with respect to A. By taking use of the uniqueness condition (2.3)
and rank (® — V;) = rank(V) = rank (1 V), there exists a constant y such that

O—-V,=(E'ANV-VA-V, = ZV, (2.12)

because %V is also a solution to (2.2).
Finally, (2.10) can further be expressed as

) U, oU y oU

— (V,Up) =V, — ) +( Vi, — )+ =V, —
du ou A du

0 iU 0 oUu

= —(V,— )+ [ 27T —AV |V, —

ar ou oA du

o Py U
oA du

This completes the proof. U

2.2. A formula for the constant y

Let us consider the other form of the stationary discrete zero curvature equation

(ETHU —UT =0. (2.13)
If V is a solution to (2.2), then I' = VU satisfies
DT =[U, V], (2.14)

where D = E — 1, as defined in the introduction. This is a counterpart of the stationary
continuous zero curvature equation V, = [U, V]. When U is invertible, then V is a solution
to (2.2) iff ' = VU is a solution to (2.13).

The matrix V presents the gradient which is needed for constructing the desired
Hamiltonian structure, and the matrix I" contributes to the constant y in the variational
identity as follows.

Theorem 2.2. Let V be a solution to (2.2) and I" = VU. Then for any bilinear form (-, -) on
G with the properties (1.18) and (1.20), we have
DI, 'y =(E —1)(I', T™) =0, m > 1. (2.15)

Proof. Noting that ET" = E(VU) = UV, it follows from the symmetric property (1.18) and
the invariance property under Lie bracket, (1.20), that

D", ™) = (UV)", UV)") = {((VvU)", (VU)")
(v)y" —vuo)", (uv)y"+(vu)"
(U, vv)" L, @v)y" +vu)")
=(U
= {
= (

Jvaovy™t wvym+ (Vo))
U, [viovy"'«wwuoy"v,uy
vwvy~Ywuy*'v,[u,U)]) =0,

where m > 1. This proves the theorem. ]

By (2.15), (I', T') is independent of the lattice variable n.
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Theorem 2.3. Let V be a solution to (2.2) and ' = VU. If (I', T') # 0, then the constant y
in the discrete variational identity (2.7) is given by

Ad

—Ealm(l“, ). (2.16)

y =
Proof. It follows from (2.8) and (2.12) that
I, =WU), =V, U+ VU,

- [(E*A)v —VA- %v] U+V[AU — U(E~'A)]
—[E~'A, VU] - %VU

—[E'A,T]= 2T
A
Therefore, differentiating (I', I') with respect to A yields
(F’ F))\ = <F)w F) + <Fa F)») = 2<F)u F)

- 2<[E’1A, r]— %r, r>

—1 2y
=2([E”'A,T],T) — T(F, I

1 2y
=2(E7'A,[I,T]) — T(R )

2y
=22, T).
A( )

This implies that (2.16) holds. O
Note that formula (2.16) for the constant y in (2.12) is still true, if we only have the

invariance property under the Lie bracket, (1.20).

3. Symmetric and invariant bilinear forms

Let us consider the following semi-direct sum of Lie algebras of 4 x 4 matrices:

- Ag O ay ap 0 A as dg
G = G GC = A = A = ’ 3’1

where a;, 1 < i < 8, are real constants. In order to construct symmetric and invariant bilinear
forms on G conveniently, we transform the semi-direct sum G into a vector form. Define the

mapping

ay dp ds dg
as a4 ay dg
0 0 ay ay
0 0 as  dg

o:G — RS, A (ai,...,a3)7, A= eG. (3.2)

This mapping o induces a Lie algebraic structure on RR3, isomorphic to the matrix loop algebra
G. The corresponding Lie bracket [-, -] on R® can be computed as follows:

la, b]" = a’ R(b), a=(a...,a)", b=(b,....,bg)" R’ (3.3)
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where
0 b, —b; 0 0 b —by 0 7
by by — by 0 —bs b7 bg— bs 0 —by
—by 0 by —bys by —bg 0 bs —bg  bg
R() = 0 —by b3 0 0 —bg by 0
0 0 0 0 0 b, —bs 0
0 0 0 0 by by — Db 0 —b3
0 0 0 0 —b 0 by —bs by
Y 0 0 0 0 —b b3 0 |

This Lie algebra (R, [-, -]) is isomorphic to the matrix Lie algebra G, and the mapping o,
defined by (3.2), is a Lie isomorphism between the two Lie algebras.
A bilinear form on R® can be defined by

(a,b) =al Fb, (3.4)
where F is a constant matrix (actually, ' = ((e;, €;))gxs, where ey, ..., eg are the standard
basis of R®). The symmetric property (a, b) = (b, a) requires that

FT = F. (3.5)

Under this symmetric condition, the invariance property under the Lie bracket
(a,[b,c]) = ([a, b], c)
equivalently requires that
F(R(b)T = —=R(b)F, b e RS (3.6)

This matrix equation leads to a linear system of equations on the elements of F. Solving the
resulting system yields

[m 0 0 mnom 0 0 4]
0 0 m-—mn 0 0 0 m—ns 0
0 m—-m 0 0 m—m 0

| 0 0 m N4 0 0 3 ’ 3.7)

3 0 0 na s 0 0 ns
0 0 m-—ns 0 O 0 0
0 n—m 0 0 0 0 0

| 774 0 0 n o 1s 0 0 URH

where 7;, 1 < i < 5, are arbitrary constants. Now, the corresponding bilinear form on the
semi-direct sum G of Lie algebras defined by (3.1) is given as follows:
(A, B)g = (07 (A), 0 (B))ps = (a1, ..., ag) F(br, ... bs)"
= (mai + mas + m3as + naas) by + [(m — n2) az + (93 — na) a7l b2
+ [ — n2) aa + (13 — na) ael by + (2ay + mas + naas + n3as) by
+ (n3a1 + naas + nsas + nsag) bs + (13 — n4) azbe
+ (3 — n4) axb7 + (qaay + n3aq + nsas + nsasg) bs, (3.8)
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where
ay ax as ag by by, bs bg
A= ay d4 ag dag ’ B — b3 b4 b7 bg c G
0 0 a m 0 0 b b
0 0 as  da 0 0 b3 b4

The bilinear form (3.8) is symmetric and invariant under the Lie bracket of the matrix Lie
algebra:

(A, B) = (B, A), (A,[B,C]) = ([A, B],C), A,B,C€G.

But this kind of bilinear forms is not of Killing type, since the matrix Lie algebra G is not
semisimple. A direct computation shows that the bilinear form (3.8) is also invariant under
the matrix multiplication:

(A, BC) = (AB, C), A,B,.C€@.

We started with the invariance property under the Lie bracket but not under the multiplication,
since it is easier to express the invariance property under the Lie bracket as an equation like
(3.6).

The bilinear forms defined by (3.8) contain plenty of non-degenerate cases. A particular
non-degenerate bilinear form with n; = 7, = n3 = 1 and 94 = ns = 0 will be used to
establish Hamiltonian structures for the integrable couplings of the Volterra lattice hierarchy
associated with the above semi-direct sum of Lie algebras.

4. Application to the Volterra lattice hierarchy

4.1. The Volterra lattice hierarchy

Let us recall the Volterra lattice hierarchy [18, 30]. A discrete spectral problem for the Volterra
lattice hierarchy is given by

Ep=U U—vwny=| "' " _ | 4.1
¢ =Usg, =vwn=| L ol e={0] @.1)

This is equivalent to
ME? — E)y = ugy.
Upon setting
r= [a b } =Zr,-ri=2[ai g }r", 4.2)
¢ —a i>0 i>0 LG T4
the discrete stationary zero curvature equation (2.13) gives rise to
a®+ 271 — g —ye =0,
ua® — b +ua =0,
W —a7tg® —a =g =0,
uc® —1=1p =0,
which equivalently leads to
b=u(@® +a), c=1"Ya+a""h),

4.3
aV —a+ 1 "uP@? +a") —u@+a=")] =0. “43)
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This system can uniquely determine all sets of functions a;, b; and ¢;, upon choosing
ap =1, ajly—o = 0, i>1. (4.4)
In particular, the first two sets are
aoz%, bo=u, c¢o=0;
{al =—u, b =—-uw®+u), ¢ =1

The compatibility conditions of the matrix discrete spectral problems

Ep=U¢o, ¢ = Vg, Vi = ), + A,
0 _bm

Ay = ol m >0, (45)
0 apq+a,,,

where (A*'T"), denotes the polynomial part of AT in A, determine (see, e.g., [18]) the
Volterra lattice hierarchy of soliton equations

U, = Kn = " Ko = u(al)), —al.}), Ko = u@™" —uM), m >0, (4.6)

m+1 m+1

where the hereditary recursion operator ® is given by
S =u(l+EN—uVE*+u)(E-1D""u"". 4.7)

Since we have

WV, U,) = te(VU,) = 2~'a®, (V.U = w(VU,) = -2,
u

where V = I'U ™!, an application of the trace identity with y = 0 in [21] (corresponding to a
particular case of (3.8): n; = 1l and n; = 0,2 < i < 5) presents the Hamiltonian structures
for the Volterra lattice hierarchy:

SHm m
U, = J n s J = M(E71 - E)Ma Hm = E [_u] 5 m = 0. (48)
Su o Lom+t 1

4.2. Hierarchy of integrable couplings and their Hamiltonian structure

As in [4], introduce two Lie algebras of 4 x 4 matrices:
A 0 0 B

G= AeRDI®gQ}, G = BeRM®gQ|, (49
0 A 0 0

where the loop algebra R[A] ® gl(2) is defined by span{A"A|n > 0, A € gl(2)}, and form

a semi-direct sum G = G & G, of these two Lie algebras G and G.. In this case, G, is

an Abelian ideal of G. For the Volterra spectral problem (4.1), we define the corresponding

enlarged spectral matrix as follows:

U=0(,1 = [g z{]} €Ge&G,  U,=U,v)= [8 g] . (4.10)
where v is a new dependent variable and the enlarged potential i reads
= (u,v)". (4.11)
To solve the corresponding enlarged stationary discrete zero curvature equation
(ETY)U - UT =0, (4.12)
we set

-_[r r, N
r_[o F] ra_ra(u,,\)_[ } (4.13)
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where I is a solution to (2.13), defined by (4.2). Then, the enlarged stationary discrete zero
curvature equation gives

(ET)U — U]+ [(ET)U, — U’ = 0,
together with (2.13). This equation equivalently leads to
eD 4 A f o —yg —ve =0,
va®® + ue — f +ue+va =0,
gV —a7le® —p2~le =0,
ve® +ug® — 171 f =0.

Since the second equation is always satisfied if the last two equations hold, this system is
consistent and determines

f=uEV+e)+v@? +a), g =1"1e+e),
eM — e+ 17 MuD (@ + M)y + v (@@ +aM)] —ve = 0.
Trying a solution

e=> e, f=Yfir, g=y g, (4.15)

i>0 i>0 i>0

(4.14)

and choosing
e =0, eili=0 =0, i>1, (4.16)

we see that all sets of functions e;, f; and g; are uniquely determined. In particular, the first
two sets are

=0, fo=v, g =0
ep=—v, fi=—-u@P+v)—v@+u), g =0.

Let us now define

ylmlylm] '
7 m a ~ m m+
ylml — o yml|€ G, VI = T )+ A, m >0, (4.17)
where V"l is defined as in (4.5) and (A"*'T",), denotes the polynomial part of A”*!T, in A,
and choose A, , as

0 _fm
Apa= ol m>o (4.18)
0 ent1+e,,

Then, the mth enlarged discrete zero curvature equation
U, = (EV"hU —gv™
leads to
U, = St = (eme + €,,)) = (@ +a,.,))

= u(e(l) ef?;ll)) +v(a(1) a(_l)), (4.19)

m+l m+l — “m+l
together with the mth Volterra lattice equation in (4.6). Here in the last equality, we used
(4.14). A hierarchy of coupling systems is thus generated for the Volterra lattice hierarchy
(4.6):

(1) (=D
_ u _ —m = M(am+1 - am+l )
iy, = =KW =P Ko = . m =0,
I

u(enn = ) + (@ = a)
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in which the first system i, = K reads
U, = u@=Y —u®), U = v —uM) + u(H — M),

and the hereditary recursion operator ® is defined by

_[o 0
(b:[q)c q)] @.21)

where @ is given by (4.7) and
O, =v(l+E NuVE*+w)(E-D"u"+u(l+ EH(—vVE>+ ) (E—- 1D u!
—u(1+ENY—=uVE*>+u)(E — D) 'ou2.

To construct Hamiltonian structures of these integrable couplings by using the discrete
variational identity (2.7), we consider a non-degenerate bilinear form on G = G & G defined
by (3.8) under the selection of

m=m=mn=1, na=mns=0. 4.22)

Then, a direct computation tells

vb+u’e —uf

(V,U,) = — =1t (4.23)
- - va e - - a

(V.Uuy) = —5 — -, (V,Uy) =——, (4.24)
u u u

where U is defined by (4.10) and V = ['U~! with T being defined by (4.13). Now an
application of the discrete variational identity (2.7) with y = 0 engenders

5 - Vdpm+1 Cm+l1 Am+1 r ~ Cm+l1
EHm=( - = ) ; HWZZ[_ ] m=>0.  (425)

u? u u m+1

nez

Consequently, we obtain the Hamiltonian structure for the hierarchy of integrable couplings
in (4.21):

)
iy, = J—Hyu, m >0, (4.26)
Su

where the Hamiltonian functionals H,,, m > 0, are given in (4.25) and the Hamiltonian
operator J is determined by
0 w(E™' — E)u :|

J = (4.27)
L(E—1 —Fu wE'—EWw+v(E™'—E)u

Now, noting that ®J = J &7, it follows that each Hamiltonian coupling system in the above
hierarchy (4.26) possesses infinitely many conserved functionals {#,}°°, and infinitely many
symmetries {K, 152 o» Which commute with each other:

{He, H;) = 0, [Ke, Ki1=0, k,1>0. (4.28)

5. Concluding remarks

The trace identity has been generalized to discrete spectral problems associated with
non-semisimple Lie algebras or, equivalently, Lie algebras possessing degenerate Killing
forms. The constant y in the discrete variational identity was determined precisely by the
corresponding solution to the stationary discrete zero curvature equation. The resulting discrete
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variational identity was applied to a class of semi-direct sums of Lie algebras in the Volterra
lattice case and furnished Hamiltonian structures for the associated integrable couplings of the
Volterra lattice hierarchy.

The proof of the variational identity involves, in an essential way, the invariance property
of bilinear forms. We remark that there is a difference between the continuous and discrete
cases. In the continuous case, we only require the invariance property of bilinear forms under
the Lie bracket of the underlying algebras, but in the discrete case, we require the invariance
property of bilinear forms under the multiplication. In theory, the invariance property under
the multiplication is stronger than the invariance property under the Lie bracket, because

(A,[B,C]) =([A, B], C)
is just a consequence of
(A, BC) = (AB, C).
One such example is the Lie algebra
_ ay a
G = aeR1<i<3y;,
0 as

for which the corresponding matrix F is

[ 0 m
F=[0 0 0],
72 0 m3

where n;, 1 < i < 3, are arbitrary constants. Though all associated bilinear forms on this
three-dimensional Lie algebra

ar a by b
(A, B) = (may + maz)by + (maz + nzaz)bs, A= ; B =

0 as 0 b3
are invariant under the Lie bracket of matrices, they are varied under the matrix multiplication.
Nevertheless, we see that both invariance properties are equivalent to each other in the case of
the semi-direct sum of matrix Lie algebras in section 3. We also remark that more choices of
non-degenerate bilinear forms in (3.8) could lead to more Hamiltonian integrable couplings
for the Volterra lattice hierarchy, and similar applications could be made for other lattice
hierarchies [31-36].

To conclude, the discrete variational identity ubiquitously exists in discrete spectral

problems associated with both semisimple Lie algebras and non-semisimple Lie algebras.
It brings us a powerful tool for exploring Hamiltonian structures of discrete soliton equations.
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