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Abstract. For a general spectral operator, we establish types of algebraic structures of
the spaces of the corresponding isospectral Lax operators, which essentially form the
theoretical basis of the Lax operator method. Furthermore we introduce the concepts
of r-algebras and master algebras to describe time-polynomial-dependent symmetries of
nonlinear integrable equations. Finally we apply our theory of Lax operators lo the kP
hierarchy of integrable equations as an illustrative example, and thus obtain the master
symmetry algebra of the KP hierarchy.

1. Introduction

It is well known that many nonlinear integrable equations in 1+ 1 dimensions possess
some common aspects: Lax representations, infinitely many symmetries and conserved
quantities, existence of bi-Hamiltonian formulations, etc (see Newell 1985, Olver 1986,
and Magri 1980). A recursion operator with the hereditary property plays a central
role in investigating the above algebraic properties. Recently the above theory has
been extended to integrable equations in 2 + 1 dimensions (see Santini and Fokas
1988, Fokas and Santini 1988a). In particular, Santini and Fokas have found the
multidimensional analogue of the recursion operator cailed the extended recursion
operator for several integrable equations in 2+ 1 dimensions (see Santini 1989, Fokas
and Santini 1988b). However, for a given equation in 2 4+ 1 dimensions, it not very
easy to construct an extended recursion operator which can admit the bi-Hamiltonian
factorization. To avoid this difficulty, Cheng et al (1988) and Cheng (1988, 1991) have
proposed a direct method of Lax operators by discussing the algebraic properties for
special integrable equations, based upon the ideal of the master-symmetry method of
Fuchssteiner (1983), Fokas and Fuchssteiner (1981), Oevel and Fuchssteiner (1982),
Chen er al (1985, 1982, 1983), Chen and Lin (1987). We shall generalize the Lax
operator method to integrable equations associated with a rather general spectral
operator, by exposing a property of Gateaux derivative operators of matrix differential
operators. The theory of this paper is applicable to integrable equations both in 141
and in 2 + 1 dimensions.

This paper is organized as follows. In section 2, for any matrix differential spectral
operator, we give types of product operators of isospectral Lax operators which
correspond to the commutator of vector fields and display the Lie algebraic structure
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of a quotient algebra of the Lax operator algebra. Section 3 discusses the relations
between symmetries of integrable equations and subalgebras of the Lax operator
algebra. The introduced r-algebras and master algebras play an analogous role to
recursion operators. In section 4, as an application of our theory, we present a -
algebra and a master algebra for the KP hierarchy of integrable equations and thus
derive the explicit formulas for K -symmetries and every-degree master symmetrics
of the KP hierarchy of integrable equations.
In the following, we give the fundamental notation (see also Ma 1992).

11. The independent and dependent variables

Let the independent variables z € R?, t € R, and the dependent variables u! =
u'(z,t), 1 €7 < g, belong to Schwartz space over RP for any fixed ¢t € R. We
denote by S7(R”, R) all vectors u = (u!,...,u?)T of dependent variables of that
kind,

1.2. The spaces B™, V" and V]

For a = (a),...,a,),a; € Z and a; 2 0,1 < i § p, we write D* =
(dfdx?)er .. (d/dzP)*r, lo = Y7, «;. Let B denote all complex (or real) func-
tions P[u] = P(z,t,u) which are C>.differentiable with respect to x,t and
C*-Gateaux differentiable with respect to v = u(x) (as functions of z), and set
B" = {(P,...,P)T|P. € B, 1 <ig r}). Let V" denote all linear operators
® = P(x,t,u) : B — B™ which are C*-differentiable with respect to =,¢ and
C*-Gateaux differentiabie with respect to u = u(«}, and by V§(C V") all matrix
differential operators ® : B” — B” with the special form

= (@;;)xr ;= > PYluD* Pifule B. (L1)
el € ar{i,5)

Note that here the space B includes non-local functions, for example, the Hilbert
wransform of u, Hu = 1P [ wu(y,t}/(y - «)dy. Therefore it is an extension of
the space A, which consists of local functions only (see Ma 1991b).

1.3. The Gateaux derivative

For a vector function K € B", define its Gateaux derivative in the direction S € B?
as

K'[S] = 2 K(u+ 5], 12)
e
and for two vector fields K, S € B¢, define the product vector field as
[K, 8] = K'[S] - §'[K] (1.3)

which has been shown to be a commutator operation of B by Bowman (1987). For
an operator ¢ € V", define its Gateaux derivative operator @' : B? — V" as

P'[K]S = %@(u +eK)S | KeB? Seb. 1.4
Throughout this paper, we always choose the spectral operator L = L(z,u) :

B" — B 10 be a matrix differential operator with the form (1.1) and assume that its
Gateaux derivative operator L' : B¢ — V] is an injective linear homomorphism.
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2. Lax operators and their algebraic structures

We suppose that the equations u, = X, u, = Y (X,Y € B?) possess the Lax
representations L, = (A, L], L, = [B, L] (A, B € V"), respectively. In the Lax
theory, there is the basic question: does the equation u, = [X, Y] possess the Lax
representation, too? If the answer is ‘yes’, what form does the operator C € V" of
its Lax representation L, = [C, L] possess?

In this section, for the spectral operator L : B — B", we establish a kind of
algebraic structure of the space of the corresponding isospectral Lax operators and
further derive the Lie algebraic structure of a quotient algebra of the Lax operator
algebra. Therefore we give a complete answer to the above basic question.

Definition 21. Let A € V7. If there exists a vector field X € B9 such that [A, L] =
L'[X], then A is called an isospectral Lax operator, or a Lax operator for short, and
X called an cigenvector field of the Lax operator A. Moreover, we denote by M,
all Lax operators and by E(N_,), all eigenvector fields of Lax operators in a subset

Note that when [A,L] = L'[X], A € V", X € B9, the equation u, = X
possesses the Lax representation L, = [A, L] by L, = L’[w,]. Moreover a Lax
operator only has an eigenvector field as L’ is injective. Therefore we can further
give the following definition,

Definition 2.2. Let two Lax operators A, B € M, have eigenvector fields X,Y €
E(M,,), respectively. Then we define the product operator of two Lax operators
A, B as follows:

[A, B] = A'[Y] - B'[X] +[A, B]. @2.1)

We shall show that this product operator [ A, B] just corresponds to the commu-
tator [X,Y]. To this end, we first need the following basic result.

Theorem 21. let P = P(z,t,u)€B, K = K(x,t,u),S = S(x,t,u) € BY; then
we have the relation

(P'[K])[S] - (P[S))[K] = P[T]  T=|[K,S] 22
Proof. By the definition of the Gateaux derivative, we have

(P'[K])[S) = (ip(u + eI\’)L:O) [S] = a?a P(u+ 65+ eK(u + 65))|5.. 0

668 KT 0

e/
366 P(u+6s+61‘-)|65 0+ P(u+”K’[S])|ﬂ_O

At the same time, we similarly have

(P =ot5- P(u‘l‘#S’[h])lg-o-

8?
= B60e
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Thus we obtain

(P'K}Y[S] - (P'[SD'K] = % [P(u+ uK'[S]) - P(u+ uS'[KD)] |20
= P'[K'[S]] - P[S'[K]] = P'[T]
which completes the proof. O
From the above theorem, we can easily deduce the following corollary.
Corollary 2.1. Let ® € V], K, S € B?. Then we have
(@[KD[S] - ([S)[K]=2'(T] T =[K,S].

Theorem 2.2. Suppose that two Lax operators A, B € M_, have eigenvector fields
X,Y € E(M,,), respectively. Then we have the equality

[4,B), L= L'{Z]  Z=[X,Y] @3)

which shows that the product operator [[4, B] € V" is a Lax operator, 100, and that
its eigenvector field is the commutator (X, Y.

Proof. Since (V7,[-,-]) is an operator Lie algebra, we have

[[A, B, L] = [A,[B, L]] - [B,[A, L]] = [4, L'[Y]] - [B, L'[X]].
Therefore,
(14, B, L] = [A'[Y], L] + [A, L'[Y]} - [ B'[X], L] - [ B, L'[X]]

=[A, L)[Y] ~ [B, L)'[X]
= (L'IXDY] - (L'[YD[X] = L'[Z]  (by corollary 2.1).

The rest is obvious and thus the result is proved. a

Evidently we see by (2.1} that the multiplication operation [-,-] is bi-linear and
anti-commutative. Therefore noticing that the multiplication operation [, -] given by
(1.3) satisfies Jacobi identity (see Bowman 1987), we obtain at once the following
three results by the above theorem.

Corollary 22. {M_,,[-,-]) i an anti-commutative algebra and (E(M_,), [-,’]) is @
Lie algebra.

Corollary 2.3. Let A, B,C € M_,. Then we have
[II A, B],C] + cycle( A, B,C), L] =0. 2.4

Corollary 24. If N, is a subalgebra of M, then E(N,) is a Lie subalgebra of
E(M,_,) and possesses the same algebraic structure as A_,. Thus the space of the
flows of the equations u, = X, X € E(N_ ), possesses the same algebraic structure
as N, too.
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Set K(L} = {A € V"|[A,L] = 0}. Obviously K(L) is a Lie subalgebra of
{v7,[-,']) and is also a subalgebra of {M__,[-,-]). Thus K (L) generates an equiva-
lence relation ~ of V™:

A~B+=[A Ll =|B,L] A,BeVvm.
We denote by C'L( A) the equivalence class to which A € V" belongs.

Proposition 21. {K(L),[-,-]) is an ideal subalgebra of (M _,[-,-]).

Proof. let A € K(L), B € M_ . If follows from theorem 2.2 that
[A, B], [ B, A] € K(L), which implies that the result of the theorem is true. [

Based on the above proposition, we can generate a quotient algebra CL(M,,) =
M JK(L) = {CL{A)| A € M}, whose multiplication operation is as follows:
[CL(A),CL(B)] = CL({[A, B]) A BeM,. 2.5
To explain that the equality (2.5) makes sense, we may directly prove the following
result. If A, ~ A,, B, ~ B,,A;,B; e M, i = 1,2, then [[A,, B, ~ [A,, B,]-
In the following we would like to show this. Suppose that [A,, L] = L'{X]}, [B;, L] =
L'lY], i = 1,2. Then we have
{(Al - Az)’[y] - (Bl - Bz)’[X]’ L] == [Al - Aza L'[Y]] + [Bl - Bza L’[X]]
= - [Al ’ {Bla L]] + [A2![B2! L]] + [Bly[Ala L]] - [B2’ [Aza L]]
= ~{[A;, By}, L] + [[44, B,), L] .
1t follows that
|IA1a Bl ~ [A,, Bz]l
which is just the desired result.

Theorem 23. The quotient algebra (CL(M ), [, -]} = M /K(L),[-,-])is a Lie
algebra and isomorphic to the Lie algebra (E(M_,), [, ]). Morcover the following
mapping

p: CL(M ) — E(M,) CL(A)~ X ([A, L] = L'[X])
is a Lie algebraic isomorphism between Lie algebras {CL(M_),[-,-]) and
(E(My), [])-

Proof. Obviously, p is a linear isomorphism. If Lax operators A, B € M, have the
eigenvector fields X,Y € E(M,,), respectively, then we have

p(ICL(A),CL(B)]) = o(CL([A, B])) =X, Y] = [o(CL(A)), o(CL(B))] .

Thus by corollary 2.2, we obtain the result that (CL{M_),[-, ]} is a Lie algebra
and further we see that p is a Lie algebraic isomorphism. The proof is completed. O

Corollary 25. 1f an eigenvector field X € E(M ) corresponds to a Lax operator
A € M, then the equivalence class C' L(A) is just all Lax operators to which the
vector field X corresponds.

By now, we have systematically answered to the question posed at the beginning
of this section. Corollary 2.5 also gives an answer to the second basic question
in Marvulle and Wreszinski (1989): if an equation v, = X (X € B?) has a Lax
representation L, = [A,L](A € V"), how many different Lax operators A are
associated with the same equation u, = X?
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3. Subalgebras and symmetries

From now on, for a subset V' of some linear space (for instance, the space of Lax
operators M, or the space of vector fields B7), we always use span(V') to denote
the subspace spanned by V.

Theorem 3.1. let N, be a subalgebra of M_,. If Lax operators of A are not
equivalent to each other, then (N ,[, ]) forms a Lie algebra and is isomorphic to
the Lie algebra (CL(N ), [-,-]) (or {E(NL), [ ]))-

Proof. By the hypothesis and corollary 2.3, we see that (N_,[-,-]} forms a Lie
algebra. We make the mapping

pi N, — CL(N) A~ CL(A).

Evidently, p is linear and surjective. Moreover by the hypothesis, p is injective. Hence
p is a linear isomorphism. In addition,

p([A, B)) = CL([A, B]) = [CL(A), CL(B)} = [p(A), o( B)] .
Therefore p is a Lie algebraic isomorphism. Now the proof is complete. O

This theorem gives an approach for proving that some set of Lax operators A, (C
M_,) is a Lie algebra with the multiplication operation [[-,-]. If we can verify that
(1) N, is closed under the multiplication operation [-, -] defined by (2.1), (2) Lax
operators of A, are not equivalent to each other, that is to say that the operator
equation [A, L] = O with respect to A has the unique zero solution A = 0 in
N, or that Lax operators A € N, correspond one-to-one to eigenvector fields
X € E(N,,), then N, constitutes a Lie subalgebra of M, with the multiplication
operation [[-,-]. In general, for a hierarchy of isospectral integrable equations u, =
X, = ®"f,(® € VI,f, € BY), m 2 0, we can construct a hierarchy of the
corresponding Lax operators

m
Ay =) VL™ (V,eV;, 0€igm) m>0
=0

according to the method of Ma (1991a). The space Span{A,,|m > 0} spanned
by the hierarchy of Lax operators of that kind usually satisfies the above-mentioned
conditions (1), (2), and thus it often forms a Lie subalgebra of M. The cases
of Kdv, AKNS, dispersive long-wave and Boussinesq hierarchies have been discussed
in Cheng and Li (1990), Li and Cheng (1991), and Zhang and Cheng (1990). Ma
(1991c) has considered the cases of general hierarchies of integrable equations.

In the following, we discuss three kinds of special subalgebras of the Lax operator
algebra (M_,,[-,]) and the related problem of symmetries.

3.1. Abelian subalgebras

Abelian subalgebras just correspond to the algebras of K-symmetries of integrable
equations. Obviously we have the following general result.
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Theorem 32. If R, C M, is an Abelian subalgebra and if dE(R,)/0t =
{60Z2/8t}|Z € E(R,)} = 0, then every equation u, = K (K € E(R;)) possesses
K -symmetries S = E(R;) and S, is an Abelian subalgebra of E(M ).

Suppose that a hierarchy of Lax operators A,, € M_,, m > 0, commute with
each other and that A, m > 0, have the clgenvector fields X,, € E(M_), m> 0.
By coroliary 2.4, we know that a hierarchy of equations u, = X, , m > 0, possess
commutative flows. Further, if 8X,, /8t = 0, m > 0, then every equation u, =
X;, (i 2 0) possesses a hierarchy of commutative K -symmetries {X,, }oo_, by the
above theorem.

In general, .nonlinear integrable equations always possess a hierarchy of K-
symmetries. But there also exist some integrable equations, for example the Boussi-
nesq equation, which possess two hierarchies of K-symmetries. We do not know,
however, whether the other integrable equations (say, K4V and AKNS equations, etc)
possess two hierarchies of K -symmetries too, or even more.

3.2 r-subaigebras

In this subsection, we consider types of subalgebras which pgenerates r-symmetries
(see Ma 1990) of integrable equations.

Definition 3.1. Let M be an algebra, x its multiplication operation and R, R, two
subalgebras of M. If R, is Abelian and Ry*x R, R, * Ry C R, then R = Ry + R,
is called a r-subalgebra of M. If R is also a Lie algebra, then R called a Lie
T-subalgebra of M.

Hereditary algebras introduced by Fuchssteiner (1990) are a special case of -
algebras.

Theorem 3.3, Let R, R, C M_, and 8E(R;)/0t = {8Z/0t|Z € E(R;}} =
0, t=0,1. R = R; 4+ R, is a r-subalgebra of M_,, then (1) every equation
u, = K (I € E(R,)) possesses a set of K-symmetries Si. = E(R,;) and a set of

r-symmetries S, = {ry, = {{K,Y]+Y|Y € E(R))}; 2) §= S+ S5, is a Lie

thalanthen f l]‘ .IJ YV and hae tha tntrne wnlnéznan

T'ﬂuua‘s\vula LV) LJ FAd } alivd Hdy Lll‘/ Wllllllulalul lblal.luua
[X,,X,] =0 X,, X, € E(R,) G.1)
(X, my] =[X,Y] X,€ E(Ry) Y,€ E(R,) 3.2
[™vis Tva) = 7w va) Y., Y; € E(R,}. (3.3)

UL S AL~ NSO ek ok

Proof. (1) Noticing that F{R,) is Abelian and that 6 E(R)/6t = 0, we find that
Sy is a set of K-symmetries of u, = K. In addition, we easily see that any vector
field Y € E(R,) is a K -generator of first order with characteristic 0 (for definition,
see Ma 1991b) and thus we deduce that S_ is a set of r-symmetries of u, = K.

(2) We only need to prove (3.2) and (3.3). For any X € E(R,), Y,Y,,Y, €
E(R,), we have
[X,ry]) = [X K, Y]+ Y] ={X,[K, Y]]+ [X,¥Y] = [X,Y]
[7vi> Ty = [E Y]+ Y, 1K, Y]+ Y] = K, Y], Vol +i[Y, K V)14V, Y

= [ K,[Y], Yol + [Y1, Yol = 7y, vy -

Therefore (3.2) and (3.3) hold. The proof is completed. O

A
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From this theorem, we know that E(R,) is a set of common master symmetries
of first order of the equations u, = K, K € E(R,).

Generally for integrable equations, Ry, = Span{A,, € M_|m > 0}, R, =
Span{B, € M_|n 2 0}. Let A, ,B, (m,n > 0) have the cigenvector fields
XY, € E(M_ ) (m,n 2 0), respectively. This moment, E(R;) = Span{X,, €
E(My )m 2 0}, E(R,) = Span{Y, € E(M_)|n > 0}. Thus we deduce from
theorem 3.3 that every equation u, = X, (¢ > 0) possesses a hierarchy of K-
symmetries {X,,}%_, and a hicrarchy of ~-symmetries {r,ﬁ') =1X;, Y, ]+ Y, }>=,
(at the same time, {Y, }2%; is a hierarchy of master symmetries of first order), and
S5=8Spg+5, = E(R)+{t[X;,Y]+Y|Y € E(R,)} constitutes a Lie r-subalgebra
of E(M):

[Xm.ﬁxn]:O m,n;O (34)
[Xs 7] = (X0 Yol m,n 20 (3.5)
[r, 70 = t[ X, [V, Vol + [V, Y] mym2 0. (3.6)

These types of T-algebras are often hereditary algebras (see Fuchssteiner 1990).
Moreover these types of r-algebras of many known integrable equations have been
presented in Chen et af (1985, 1982, 1983, 1987); Cheng, Li and Bullough (1988);
Cheng (1988, 1989, 1990, 1991); Ma (1990) and Li (1990) etc.

3.3. Master subalgebras

Definition 3.2. Let M be an algebra, * its multiplication operation and R, C M,
i20. M RxR; C Ry, R, =0,4,j20,then R=372, R = {31, Ailn >
0, A; € R;, 0 ¢ < n}is called a master subalgebra of M. If R is also a Lie
algebra, then R called a Lie master subalgebra of M.

Here we have not required that R;, ¢ > 0, are subalgebras of M and that
R =372, R; is a direct sum, Therefore Lie master algebras are different from Z-
graded Lie algebras (see Kac 1985) although there exist some similarities between the
two. Obviously, master algebras are the extension of r-algebras. When R = 3.2, R;
is a master subalgebra, R, 4+ R, is certain to be a 7-subalgebra.

Theorem 34. let R,C M, i>0,and BE(R;)/8t = {8Z/8%|Z € E(R;)} =0,
i> 0. If R=Y:,R, is a master subalgebra of M_,, then (1) every equation
u, = K (K € E(R,)) possesses a set of K-symmetries Sp = E(R,) and a set of
time-polynomial-dependent symmetries

=) k i

o

S, = |J sk s§,’=>={a§,">=zﬁmy| YGE(R,,)} k21
k=1 i=0

where K denotes its adjoint operator; (2) § = Sk + Yies S is a Lie master
subalgebra of E(M_) and possesses the commutator relations

[X;,X,] =0 X1, X, € E(R,) 3.7

(X6 = ol3 7)) X,e E(R,)  Y,e E(Ry) k31 (3.8)
(ky (0

[o® o] = oD e E(R) Y €E(R)  kixl. (39
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Proof. (1) Obviously, S is a set of K-symmetries of v, = K. In addition, we
casily see that any vector field Y € E(R,) (k 2 1) is a K-generator of order &
with characteristic 0. Therefore a&,") is a time-polynomial-dependent symmetry of
u, = K.
(2} Noticing that
[P(Ro)v[E(Ro)a--w[E(RolsE(Rk)]"']]=0 k

e

k+1

we easily obtain (3.7), (3.8). In the following, we prove (3.9). For Y; € E(R;),Y, €
E(R;), k,{ 21, we have

W
o

k4l-1
k )g - i
o= N Y R = S 3 ke, o
—0;-0 r=0 i}j=7 J
k+i-1 k-1
_ " 2 B T (k+1-1)
= X w2 gl Rvl= B SR = ey
r= i4j=r r=0

which implies that (3.9) holds.
By (3.7)-(3.9), we see that S = Sy + 35, S¢) is a Lie master subalgebra of
E(M,). Now the proof is completed. O

From theorem 3.4, we can find that the equations u, = K, K € E(R,), have a
set of common master symmetries of order k: E(R.)(k 2 1).

Generally for integrable equations, R, = Span{A, € M_|m 2 0}, R, =
Span{B;, € My|n > 0}, ¢ > 1. Let A_,B;, (i 2 1, m,n > 0) have the
eigenvector fields X, ,Y;, € E(M_) (i 2 1, m,n 2 0), respectively. Then
E(Ry) = Span{X,, € E(My)|m 2 0}, E(R;) = Span{Y,, € E(M_)|n 2
0}, ¢ > 1. Thus every equation u, = X; (¢ > 0) possesses a hierarchy of K-
symmetries {X, }5%_, and infinitely many hierarchies of time-polynomial-dependent
symmetries {crgji) = E;—o J,X’ Y15, k2 1 (at the same time, {Y},}5%, (k>
1) is a hierarchy of master symmetries of order k), and

ko4
S = SK+ZS(")—E(R)+Z{ ‘”:Z%X,W}YEE(R,C)}
i=0

k=1

constitutes a Lie master subalgebra of E(M,.):

[X s Xl =0 m,n 30 (3.10)

(X031 = ol I21 m,n20 (3.11)
k ki~

(o) ,oP =0t ki1 mn3zo. 3.12)

Finally, we point out that r-algebras and master algebras of the Lax operator alge-
bra play an analogous role to recursion operators in discussing the algebraic properties
of integrable equations. Furthermore, the integrable equations in 14 1 dimensions
usually have r-algebras and those in 2 + 1 dimensions often have master algebras,
which is a remarkable difference between these kinds of integrable equations.
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4. Applications to integrable equations

In this section we want 10 present some applications of 7-subalgebras and master
subalgebras to integrable equations, We shall mainly construct a ~-subalgebra and
a master algebra and thus derive a hierarchy of K-symmetries and infinitely many
hierarchies of time-polynomial-dependent symmetries for the well known KP hierarchy
of integrable equations. Certainly, the theory of r-subalgebras and master subalgebras
may also applied to other hierarchies of integrable equations, for example, MKP and
Caudrey-Dodd-Gibbon-Katera—Sawada hierarchies, etc,
We choose the following (2 + 1)-dimensional spectral operator L:

L=ad,+8}+u aeC a0 u=u(z,y,t) € S(R*,R). (4.1)

Fyuidanthy tha 3 H A
Lviatiiliy, Jiv 3 u

injective. Let

m .
B=Z:b,,,3§8:r b, €B 0 kigm mz0
k =0

be a Lax operator. Noticing that 8, = I(L — 82 — u), we can rewrite B as
B=S1,A;L', where A;, 0 < i< n, are polynomials only in 8,. In this way, we
have

[B,L] = Zn:[Al-,L]L".
=0

Because [B, L] is a multiplication operator, we can further obtain [B, L] = [A,, L]
by comparing the degrees of 3,. Therefore we may only consider the following
differential polynomial operater in 8,

m
A=Zak8i‘ a,€B 0gkgm mZz0 4.2)
k=0

as a candidate for Lax operators. We can find by direct computation that the differ-
ential operator A with the form (4.2) is a Lax operator, Le. there exists a vector field
X € B such that [A, L} = L'[X] = X if and only if a,, 0 £ k € m, satisfies the
following equations

Xy g+ 28, 5, —0pu, =0 (4.3)

m . .
Qdy, + Qg+ 2054 . — 5 (.’\a.-a':*u—o 1gksgm—-2
rYy L2 A P T . y \IC/ & oL
\ t=k+41
and
m
X = Z akafu - adyag - 8la, . {4.4)

k=1
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Set the space W as

= {f‘l'glf: Z "—',‘j“’iyjs c;; € C,

1,720
20
g= kJ zZ sJH’x yjaza U, cijkl € C} (45)
in which 8;' = 3(f* - [*)da’. We introduce the inverse operator ;! of 3,

over the space W as follows
3;'h=3;‘(f+9)=f fd:c’+%(f -/ )gd-’r’ h=f+geW.
0 -co T
{4.6)

Furthermore suppose that C[y] denotes all polynomials in y, and C,[y] (n 2 0), all
polynomials in y with degrees less than n + 1. We write

ap = Gy + Gpy a1 = agluzo Qg = G ~ Gy 0k m, 4.7
We choose the following group of coefficients a,, 0 < k € m, satisfying (4.3)
(( By = Cm Amz = 0
O
R Ea:l: aya‘ml + Cm-1 Cp1,2 = 0
=(-%6-19, - Lo Ya,, +ec
¢ Q1,1 = g %2 %y T 5% [0k k-1 (4.8)
a 1 1 “
-1 =1 : —k
ak-—-l,2_(_"8:r ay-zam)ak2+§am Z (k’) :a:c u
t=k+1
\ 1€kgm—-1
where 0. & (241 0<kgm. Itiseasvtoshowthat g, = a,..+a,.c W 0< k <
BV L MY YRy e diant ] s k 17T REZ = 7Ty M R
m. For every group of ¢, € Clyl, 0 € k € m, according to (4.8) we can uniquely

determine a Lax operator A = 3., a, 8%, more precisely A = P(cg,...,c,,). Set
w0 ={A=Plcgs..rcp)|m20 ¢, € Cly] 0<kg
R, ={A=Plcy,....,c)m20 ¢, € Cily] 0K kg m} iz20.

By (4.8), we easily obtain the following two basic results.

Proposition 4.1. Let A = P(cy,...,Cm) = Lopeo @185 € N, Then we have (1)
A is t-function multi-linear with respect t0 c;,...,¢.; (2) Alyzo = Y peo 0, 95;
(3) if Al =0, then A = 0.

Proposition 4.2. Let A= P(cy, .. ) = YoregardF € R; (m,1 2 0). If we set
ay = (ag — e )luzo = 1 — & 0g<ksm (4.11)

thenwhenz_o a, =0, 0Ogkgm;andwheni> 1, a, =0and a,, 0 kg
— 1, are polynomials in z,y w1th degrees less than ¢ with respect to y.
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Now we begin to verify that N, = > .2, R; is a master algebra. To this end, we
first give two lemmas.

Lemma 41. When A € Ry, [A,L]|,2¢ = Xly=0 = 0; and when A € R, (i > 1),
{A,L]|y,z¢ = Xl,=0 is a polynomial in z,y with degrees less than i with respect
10 y.

Proof. Suppose that
e
A= Plegyon ey} = Zakaﬁ.

By (4.4), we have

[A? L]lu:ﬂ = X'u:ﬂ = (-aayaﬂ - a:iaﬂ)lu:O = _aaya()l - af:al)l
=~ ad (@, + ¢) — dla,

o
nronf m
P

LU, [}

Lemma 4.2. When A, B € Ry, (A, B]|,-¢ = 0; and when A€ R;, BER; (¢,j 2
0, i+ 7 > 1), the coefficients of the differential operator [A, B]|,—-, are polynomials
in x,y with degrees less than 7 + j with respect to y.

Proof. Assume that
A= Pleg, yep) =D a, 8% B=P(dy,---,d,)="> b3..

Then we have

m m=1 m
Al = E(&k + ck)a_f = Z ﬁ.kaﬁ + E ckai‘
k=0 k=0 k=0
no n-—l_ n
Blyoo =3 (b +d)al =3 58, +) 49,
=0 i=0 =0

where @, = (aj, — €, )|yz0r 0K k< m,y by = (b — d})]y=p, 0< 1< n. Hence, we
obtain

lA,BI!u=o=[A|u=0,Blu=ol=[T; fj Bm,ng:lb,a’+2d3’]
=[mia,,a§,n 13,3] [Zak W,Zda’] [zckax,}:b,a’]

k= i= k=0

From this, we obtain by proposition 4.2 the desired result. a
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Theorem 41. let N_, R;, i > 0, be determined, by (4.9), (4.10), respec-
tively. Then (N, = 32, R;,[, ) forms a master algebra and thus (E(N,) =
2o E(R;),[-,-]) forms a Lie master algebra,

Proof. We only need to prove that
[IRiij]]gRi-g-i-laR_; =0 1,72 0. (4'12)

Let Ae R, Be R; (i,j 20) and X € E(R;),Y € E(R;) be the eigenvector
fields of A, B, respectwely Then we have

[A4; Bllu=o = (A'[Y] - B'[X] +[A, B])|, -,
= A’[Ylu:{)]'u:ﬂ - Bl{X‘u:DHu:O + [A’ B”u:ﬂ - (413)

When i+ j =0, ie ¢ = 7 = 0, it follows from (4.13} and lemmas 4.1, 4.2 that
[A, B]l,=0 = 0. Thus by the result (3) of proposition 4.1, we obtain [A, B] =0,
ie. [A,B) e R_,. When i+ j > 1, it follows similarly from (4.13) and lemmas 4.1,
4.2 that the coefficients of the differential operator [A, B]|,-, are polynomials in

z,y with degrees less than z‘+ j with respect to v Thus by the result (2) of

nnnnnnnnnnn P R - 2P Ay Alant % anm amn fan o

plupumuun '-l 1 alig PlUpUbll.luu ‘t{., WEC Qotain uﬂ Du € ﬂ.‘_H 1- aummmg I.lp, weE
see that the relation (4.12) holds, which is the desired result. a
We choose
m
A, =P(0,...,0,1(6a)™ ) = gai’“)ag mz0 (4.14)
o =
Biy=P(0,...,0,3(6a)" 1y") = S"b{"™al i1 nxo. (4.15)
=0

Then the corresponding eigenvector fields read as
=[A,, L] = Z o™k u - adyaf™ - 82a{™ m3zo (4.16)
k=1

n
n =B, L) = 3608y — a8, b™ — 8260 i1 nzo0. (@417)

By the first result of proposition 4.1

R, = Span{A, |m > 0} R; = Span{B,,|n20 0<j<i} izl

E(Ry) = Span{X,,|m 2 0} E(R;)=Span{Y,|n20 0<j<i}
i1, (4.19)

According to (4.8), (4.16) we can work out

1
AU-»'I%—‘; ){0:0 Al=%8z Xl

Ay = 20u + 2082 X, = -2y,

|1 ]
L]
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Ay = -90°8;'u, + 9a’u, + 18a7ud, + 120283
X; = 18a’uu, + 3a’u,,, + 909 u
A= 360:56;211” - 360:4uy + 72a”u? + 7203
- (720%87 'u, — 1440%u, )8, + 1440°ud? + 720°8}

X, = —72a4uw8;1uy - 36063;2u”y - 1440‘4""# - 3604uuy .

The hierarchy of equations u, = X, , m > 0, is referred to as the KP hierarchy of
equations. By theorem 4.1, this KP hierarchy has a r-algebra (£, = Ry + R,,{., ]}
(or (E(Loo) = E(Ry)+ E(R,),[,-]}) and a master algebra (N’ =Yoo B, [
(or (E(N,,) = Y.i2p E(R;),[-,-)). When o = i/V/3, the KP hierarchy of equations
u, = X,,, m 2 0, is just the normal KP hierarchy of equations in the literature. In
particular, the equation u, = Xj; is just the normal KP cquation u, = 9;'u,, —
Ugpy — OUUL.
Based on Theorem 4.1, we obtain at once the following consequence.

Theorem 4.2. Every KP equation u, = X; (i > 0), given by (4.16), possesses a
hierarchy of common K-symmetries {X, }°_, and infinitely many hierarchies of
time-polynomial-dependent symmetries

00

k .
P o
{ﬂ? Z}-’;X:’ij} k> 1.
=0 '

n=0

With (4.8) and (4.17), we can similarly calculate the first four master symmetries
of first order and the corresponding Lax operators:

By = yA, Y= _%s
By, = yA, - 3c’z4, Yh=yX,
By, = yA, - 30’z A + 1af Y, = yX, ~ 3a’e X, —2c%u
B3 = yA; — 302z A, + 30°8, — 3a%9 u
Y5 = yX; - 3a’e X, + 9au, + 1200, 'u,
and the first three master symmetries of order k(> 2j and their corresponding Lax
operators:
k
ﬁyk 1
B, = ykAl —3ka’zyt 1A, Y, = v X, + Lk(k — Dalzy*?
By = y* Ay — 3ka?ey* 1A + Ltka®y Tl 4 Th(k - 1)adz?y*?
Yy, = v° X, — 3kalzy* X, -2ka2 k=l
—k(k - 1)’y - 2 - Li(k—1)(k - 2)o’2?y* 3

B = y* 44 Yie=~

where we accept O(y~!) = 0.

By considering the ys' degrees of coefficients of master symmetries, we can find
that the master symmetries of order k (> 1) proposed in many references, for exam-
ple Case and Monge (1989), Cheng (1990), Fuchssteiner (1983), Gu and Li (1990),
all belong to the kth space E(R,) of master symmetries, i.. they are all linear
combinations of the master symmetries Yy, 0 < € k, n 2 0, given by (4.17).
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