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1. Introduction

In modern soliton theory [2,37], the inverse scattering transform is one of the most powerful techniques to 
solve nonlinear integrable equations and particularly generate soliton solutions. The transform is also called 
the Fourier transform method in a nonlinear world [1], and closely connected with the Riemann–Hilbert 
problems associated with matrix spectral problems [37]. In the theory of Riemann–Hilbert problems, one 
starts from bounded eigenfunctions analytically extendable to the upper or lower half-plane and continuous 
in the closed upper or lower half-plane. Once taking the identity jump matrix, reduced Riemann–Hilbert 
problems yield soliton solutions, whose special limits can generate lump solutions, periodic solutions and 
complexiton solutions. A few integrable equations, including the multiple wave interaction equations [37], 
the general coupled nonlinear Schrödinger equations [43], the Harry Dym equation [46], and the generalized 
Sasa–Satsuma equation [10], have been studied by the Riemann–Hilbert technique.
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The standard procedure for establishing Riemann–Hilbert problems on the real axis is as follows. One 
starts from a pair of matrix spectral problems of the following form:

−iφx = Uφ, −iφt = V φ, U = A(λ) + P (u, λ), V = B(λ) + Q(u, λ), (1.1)

where i is the unit imaginary number, λ is a spectral parameter, u is a potential, φ is an m × m matrix 
eigenfunction, A, B are constant commuting m ×m matrices, and P, Q are trace-less m ×m matrices. It is 
known that the compatibility condition of the two matrix spectral problems is the zero curvature equation

Ut − Vx + i[U, V ] = 0, (1.2)

where [·, ·] is the matrix commutator. This zero curvature equation presents so-called soliton equations. To 
formulate Riemann–Hilbert problems for integrable equations, we adopt the following pair of equivalent 
matrix spectral problems

ψx = i[A(λ), ψ] + P̌ (u, λ)ψ,ψt = i[B(λ), ψ] + Q̌(u, λ)ψ, (1.3)

where ψ is an m ×m matrix eigenfunction, P̌ = iP and Q̌ = iQ. The commutativity of A and B guarantees 
this equivalence, and there is a relation between the two matrix eigenfunctions φ and ψ:

φ = ψEg, Eg = eiA(λ)x+iB(λ)t.

For the matrix spectral problems (1.3), we can have two bounded analytical matrix eigenfunctions with 
the asymptotic conditions

ψ± → Im, when x, t → ±∞, (1.4)

where Im stands for the identity matrix of size m. Let C+ and C− denote the upper and lower half-planes:

C
+ = {z ∈ C| Im(z) > 0}, C

− = {z ∈ C| Im(z) < 0}, (1.5)

and C+
0 and C−

0 , the closed upper and lower half-planes:

C
+
0 = {z ∈ C| Im(z) ≥ 0}, C

−
0 = {z ∈ C| Im(z) ≤ 0}. (1.6)

Based on the above two matrix eigenfunctions ψ±, we try to determine two matrix functions P±(x, t, λ), 
which are analytical in C+ and C− and continuous in C+

0 and C−
0 , respectively, and then formulate a 

Riemann–Hilbert problem on the real axis:

G+(x, t, λ) = G−(x, t, λ)G(x, t, λ), λ ∈ R, (1.7)

with

G+(x, t, λ) = P+(x, t, λ), λ ∈ C
+
0 , (G−)−1(x, t, λ) = P−(x, t, λ), λ ∈ C

−
0 . (1.8)

Upon taking the jump matrix G to be the identity matrix, the corresponding Riemann–Hilbert problem can 
be often solved to generate soliton solutions, through observing asymptotic behaviors of the matrix functions 
P± at infinity of λ, which also provide the canonical normalization conditions of the Riemann–Hilbert 
problems.
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In this paper, we shall present an application example of the inverse scattering transform, based on the 
Riemann–Hilbert technique. The nonlinear equation that we shall discuss is the following combined modified 
Korteweg–de Vries (mKdV) equation

{
p1,t = −p1,xxx − 6|p1|2p1,x + 3|p2|2p1,x + 3p1p̄2p2,x,

p2,t = −p2,xxx + 6|p2|2p2,x − 3|p1|2p2,x − 3p̄1p2p1,x,
(1.9)

where f̄ denotes the complex conjugate of f and |f |2 = ff̄ . When p1 and p2 are real, the above combined 
mKdV equation is reduced to

{
p1,t = −p1,xxx − 6p2

1p1,x + 3p2
2p1,x + 3p1p2p2,x,

p2,t = −p2,xxx + 6p2
2p2,x − 3p2

1p2,x − 3p1p2p1,x.
(1.10)

The cases of p1 = 0 and p2 = 0 further give the positive and negative mKdV equations respectively, 
which possess different properties (see, e.g., [20]). The equation (1.10) adds to the class of combined mKdV 
equations in the real field, the other two of which are discussed in [11,45,48].

The rest of the paper is structured as follows. In Section 2, within the zero-curvature formulation, we 
derive a combined mKdV hierarchy, together with its recursion operator, based on a matrix spectral problem 
suited for the Riemann–Hilbert theory. In Sections 3 and 4, to present an inverse scattering transform for 
the combined mKdV equation (1.9), we analyze analytical properties of matrix eigenfunctions and build 
a kind of Riemann–Hilbert problems of the equivalent matrix spectral problem. In Section 5, we compute 
soliton solutions to the combined mKdV equation from special associated Riemann–Hilbert problems on the 
real axis, in which the jump matrix is taken as the identity matrix. The last section is devoted to conclusions 
and remarks.

2. A combined mKdV integrable hierarchy

2.1. Zero curvature formulation

We state the zero curvature formulation to generate integrable hierarchies as follows (see, e.g., [21,29,
42]). Let u be a vector potential and λ, a spectral parameter. Choose a square matrix spectral matrix 
U = U(u, λ) from a given matrix loop algebra, whose underlying Lie algebra could be either semisimple 
[21,42] or non-semisimple [29]. Assume that there is a formal Laurent series solution

W = W (u, λ) =
∞∑

m=0
Wmλ−m =

∞∑
m=0

Wm(u)λ−m (2.1)

to the corresponding stationary zero curvature equation

Wx = i[U,W ]. (2.2)

Using this solution W , we introduce a series of Lax matrices

V [r] = V [r](u, λ) = (λrW )+ + Δr, r ≥ 0, (2.3)

where the subscript + denotes the operation of taking a polynomial part in λ, and Δr, r ≥ 0, are appropriate 
modification terms. The selection of Δr is somewhat subtle and depends on whether an integrable hierarchy

ut = Kr(u) = Kr(x, t, u, ux, · · · ), r ≥ 0, (2.4)
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can be generated from a series of zero curvature equations

Ut − V [r]
x + i[U, V [r]] = 0, r ≥ 0. (2.5)

The two matrices U and V [r] are called a Lax pair [18] of the r-th integrable equation in the hierarchy 
(2.4). Obviously, the zero curvature equations in (2.5) are the compatibility conditions of the spatial and 
temporal matrix spectral problems

−iφx = Uφ = U(u, λ)φ, −iφt = V [r]φ = V [r](u, λ)φ, r ≥ 0, (2.6)

where φ is the matrix eigenfunction.
To show the commutability of the hierarchy (2.4), we normally start by verifying Lax operator algebras 

(see, e.g., [22–24] for details):

�V [m], V [n]� = V [m]′(u)[Kn] − V [n]′(u)[Km] = 0, m, n ≥ 0, (2.7)

which ensures the existence of infinitely many common commuting Lie symmetries {Km}∞m=0:

[Km,Kn] = K ′
m(u)[Kn] −K ′

m(u)[Kn] = 0, m, n ≥ 0. (2.8)

In the above computations, R′ stands for the Gateaux derivative of R with respect to u in a direction S:

R′(u)[S] = ∂

∂ε

∣∣∣
ε=0

R(u + εS, ux + εSx, · · · ).

When the underlying matrix loop algebra in the zero curvature formulation is simple, the associated zero 
curvature equations engender classical integrable hierarchies [7,13]; when semisimple, the associated zero 
curvature equations generate a collection of different integrable hierarchies; and when non-semisimple, we 
get hierarchies of integrable couplings [30], which require extra care in exploring their integrability.

2.2. A combined mKdV hierarchy

We consider the following matrix spectral problem

−iφx = Uφ = U(u, λ)φ, U = (Ujl)3×3 =

⎡
⎢⎣

2λ p1 p2

p̄1 λ 0
−p̄2 0 λ

⎤
⎥⎦ , u =

[
p1

p2

]
, (2.9)

where λ is a spectral parameter. Two special cases: (a) p2 = 0 and real p1, and (b) p1 = 0 and real p2, are 
reduced to the spectral problems associated with the positive and negative mKdV equations, respectively.

To derive an associated combined mKdV hierarchy, we first solve the stationary zero curvature equation 
(2.2) corresponding to (2.9), as suggested in the general zero curvature formulation. We seek a solution W
of the form

W =
[
a b

c d

]
, (2.10)

where a is a real scalar, b = (b1, b2) and c = (b̄1, −b̄2)T are two-dimensional vectors, and d is a 2 × 2
matrix satisfying d†(λ̄) = d(λ)

T
= Σd(λ̄)Σ−1, Σ = diag(1, −1). It is direct to show that the stationary zero 

curvature equation (2.2) is
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⎡
⎢⎣
ax = i(pc− bq),
bx = i(αλb + pd− ap),
dx = i(qb− cp),

(2.11)

where q = (q1, q2)T = (p̄1, −p̄2)T . We take W as a formal series:

W =
[
a b

c d

]
=

∞∑
m=0

Wmλ−m, Wm = Wm(u) =
[
a[m] b[m]

c[m] d[m]

]
, m ≥ 0, (2.12)

where b[m], c[m] and d[m] are expressed as

b[m] = (b[m]
1 , b

[m]
2 ), c[m] =

(
b
[m]
1 ,−b

[m]
2

)T
, d[m] = (d[m]

jl )2×2, m ≥ 0, (2.13)

where the d[m]’s satisfy (d[m])† = Σd[m]Σ−1, m ≥ 0. Then, the system (2.11) exactly presents the following 
recursion relations:

b[0] = 0, c[0] = 0, a[0]
x = 0, d[0]

x = 0, (2.14a)

b[m+1] = −ib[m]
x − pd[m] + a[m]p, m ≥ 0, (2.14b)

a[m]
x = i(pc[m] − b[m]q), d[m]

x = i(qb[m] − c[m]p), m ≥ 1. (2.14c)

Next we choose the initial values:

a[0] = 2, d[0] = I2, (2.15)

and take constants of integration in (2.14c) to be zero, that is, require

Wm|u=0 = 0, m ≥ 1. (2.16)

Then, with a[0] and d[0] given by (2.15), all matrices Wm, m ≥ 1, are uniquely determined. For example, a 
direct computation, in virtue of (2.14), generates that

b
[1]
j = pj , a[1] = 0, d

[1]
jl = 0; (2.17a)

b
[2]
j = −ipj,x, a

[2] = −pq, d
[2]
jl = plqj ; (2.17b)

b
[3]
j = −pj,xx − 2pqpj , (2.17c)

a[3] = −i(pqx − pxq), d
[3]
jl = −i(pl,xqj − plqj,x); (2.17d)

b
[4]
j = i(pj,xxx + 3pqpj,x + 3pxqpj), (2.17e)

a[4] = 3(pq)2 + pqxx − pxqx + pxxq, (2.17f)

d
[4]
jl = −3plpqqj − pl,xxqj + pl,xqj,x − plqj,xx; (2.17g)

where 1 ≤ j, l ≤ 2.
To generate the combined mKdV hierarchy, we introduce the following Lax matrices

V [r] = V [r](u, λ) = (V [r]
jl )3×3 = (λrW )+ =

r∑
Wmλr−m, r ≥ 0, (2.18)
m=0
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where the modification terms are taken as zero. The compatibility conditions of (2.6), i.e., the zero curvature 
equations (2.5), engender the so-called combined mKdV hierarchy:

ut = pTt = Kr = ib[r+1]T , r ≥ 0, (2.19)

which can be shown, by checking the corresponding Lax operator algebra, to satisfy

[Km,Kn] = 0, m, n ≥ 0. (2.20)

It is direct to work out the following recursion operator [38] for the combined mKdV hierarchy

Φ =
[

Φ11 Φ12

Φ21 Φ22

]
, (2.21)

with the entries being defined by
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Φ11 = i[−∂ − 2p1∂
−1p̄1 + p2∂

−1p̄2 + 2p1∂
−1p1(̄·)],

Φ12 = i[p1∂
−1p̄2 − p2∂

−1p1(̄·) − p1∂
−1p2(̄·)],

Φ21 = i[−p2∂
−1p̄1 + p1∂

−1p2(̄·) + p2∂
−1p1(̄·)],

Φ22 = i[−∂ − p1∂
−1p̄1 + 2p2∂

−1p̄2 − 2p2∂
−1p2(̄·)],

(2.22)

where (̄·) denotes the conjugate operator: (̄·)f = f̄ .
The first nonlinear integrable equation in the hierarchy (2.19) is a combined nonlinear Schrödinger equa-

tion:

pj,t = −i[pj,xx + 2(|p1|2 − |p2|2)pj ], 1 ≤ j ≤ 2, (2.23)

and the second equation is exactly the combined mKdV equation (1.9).
In what follows, we shall discuss the scattering and inverse scattering problems for the combined mKdV 

equation (1.9) using the Riemann–Hilbert technique [37] (see also [4,12]). The results will lay the groundwork 
for soliton solutions later on.

3. Direct scattering

The matrix spectral problems of the combined mKdV equation (1.9) are

−iφx = Uφ = U(u, λ)φ, −iφt = V [3]φ = V [3](u, λ)φ, (3.1)

where the Lax pair reads

U = λΛ + P, V [3] = λ3Λ + Q, Λ = diag(2, 1, 1), (3.2)

with

P =

⎡
⎢⎣

0 p1 p2

p̄1 0 0
−p̄2 0 0

⎤
⎥⎦ , Q =

[
a[1]λ2 + a[2]λ + a[3] b[1]λ2 + b[2]λ + b[3]

c[1]λ2 + c[2]λ + c[3] d[1]λ2 + d[2]λ + d[3]

]
, (3.3)

where c[m], 1 ≤ m ≤ 3, are defined through (2.13), and a[m], b[m], d[m], 1 ≤ m ≤ 3, are determined in (2.17).
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Assume that all the potentials sufficiently rapidly vanish when x → ±∞ or t → ±∞. From the matrix 
spectral problems in (3.1), we note that when x, t → ±∞, we have the asymptotic behavior: φ ∼ eiλΛx+iλ3Λt. 
Therefore, if we make the variable transformation

φ = ψEg, Eg = eiλΛx+iλ3Λt,

then we can have the canonical normalization ψ → I3, when x, t → ±∞. Once setting P̌ = iP and Q̌ = iQ, 
the equivalent pair of matrix spectral problems to (3.1) reads

ψx = iλ[Λ, ψ] + P̌ψ, (3.4)
ψt = iλ3[Λ, ψ] + Q̌ψ. (3.5)

Upon applying a generalized Liouville’s formula [31], we can have

detψ = 1, (3.6)

due to tr(P̌ ) = tr(Q̌) = 0.
Let us now formulate an associated Riemann–Hilbert problem with the variable x, under the integrable 

conditions:

∞∫
−∞

|x|m
2∑

j=1
(|pj | + |qj |) dx < ∞, m = 0, 1. (3.7)

In the direct scattering problem, we first introduce two matrix solutions ψ±(x, λ) of (3.4) with the asymptotic 
conditions

ψ± → I3, when x → ±∞, (3.8)

respectively. The above superscripts refer to which end of the x-axis the boundary conditions are required 
for. Based on (3.6), we see that detψ± = 1 for all x ∈ R. Since

φ± = ψ±E, E = eiλΛx, (3.9)

are two matrix solutions of (3.1), they are linearly dependent, and as a result of the fact, one has

ψ−E = ψ+ES(λ), λ ∈ R, (3.10)

where S(λ) = (sjl)3×3 is the scattering matrix. Note that detS(λ) = 1 because of detψ± = 1.
Through the method of variation in parameters, we can transform the x-part of (3.1) into the following 

Volterra integral equations for ψ± [37]:

ψ−(λ, x) = I3 +
x∫

−∞

eiλΛ(y−x)P̌ (y)ψ−(λ, y)eiλΛ(x−y) dy, (3.11)

ψ+(λ, x) = I3 −
∞∫
x

eiλΛ(y−x)P̌ (y)ψ+(λ, y)eiλΛ(x−y) dy, (3.12)

where the boundary condition (3.8) has been used. Therefore, under the conditions (3.7), the theory of 
Volterra integral equations tells that the eigenfunctions ψ± exist and allow analytical continuations off the 
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real axis λ ∈ R as long as the integrals on their right hand sides converge. Based on the diagonal form of Λ, 
we can easily see that the integral equation for the first column of ψ− contains only the exponential factor 
e−iαλ(y−x), which decays because of y < x in the integral, when λ is in the closed upper half-plane, and 
the integral equation for the last two columns of ψ+ contains only the exponential factor eiαλ(y−x), which 
also decays because of y > x in the integral, when λ is in the closed upper half-plane. Thus, these three 
columns are analytical in the upper half-plane and continuous in the closed upper half-plane. In a similar 
manner, we can show that the last two columns of ψ− and the first column of ψ+ are analytical in the lower 
half-plane and continuous in the closed lower half-plane.

First, if we express

ψ± = (ψ±
1 , ψ±

2 , ψ±
3 ), (3.13)

that is, ψ±
j stands for the jth column of φ± (1 ≤ j ≤ 3), then the matrix solution

P+ = P+(x, λ) = (ψ−
1 , ψ+

2 , ψ+
3 ) = ψ−H1 + ψ+H2 (3.14)

is analytic in λ ∈ C
+ and continuous in λ ∈ C

+
0 , and the matrix solution

(ψ+
1 , ψ−

2 , ψ−
3 ) = ψ+H1 + ψ−H2 (3.15)

is analytic in λ ∈ C
− and continuous in λ ∈ C

−
0 . In the above derivation, H1 and H2 are the following 

matrices

H1 = diag(1, 0, 0), H2 = diag(0, 1, 1). (3.16)

Moreover, from the Volterra integral equations (3.11) and (3.12), we find that

P+(x, λ) → I3, when λ ∈ C
+
0 → ∞, (3.17)

and

(ψ+
1 , ψ−

2 , ψ−
3 ) → I3, when λ ∈ C

−
0 → ∞. (3.18)

Secondly, we construct the analytic counterpart of P+ in the lower half-plane C− from the adjoint 
counterparts of the matrix spectral problems. The adjoint equation of the x-part of (3.1) and the adjoint 
equation of (3.4) are given by

iφ̃x = φ̃U, (3.19)

and

iψ̃x = λ[ψ̃,Λ] + ψ̃P. (3.20)

Note that the inverse matrices φ̃± = (φ±)−1 and ψ̃± = (ψ±)−1 solve these two adjoint equations, respec-
tively. Upon expressing ψ̃± as follows:

ψ̃± = (ψ̃±,1, ψ̃±,2, ψ̃±,3)T , (3.21)

that is, ψ̃±,j stands for the jth row of ψ̃± (1 ≤ j ≤ 3), we can verify by similar arguments that the adjoint 
matrix solution of (3.20),
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P− = (ψ̃−,1, ψ̃+,2, ψ̃+,3)T = H1ψ̃
− + H2ψ̃

+ = H1(ψ−)−1 + H2(ψ+)−1, (3.22)

is analytic in λ ∈ C
− and continuous in λ ∈ C

−
0 , and the other matrix solution of (3.20),

(ψ̃+,1, ψ̃−,2, ψ̃−,3)T = H1ψ̃
+ + H2ψ̃

− = H1(ψ+)−1 + H2(ψ−)−1, (3.23)

is analytic in λ ∈ C
+ and continuous in λ ∈ C

+
0 . Using a similar argument, we can see that

P−(x, λ) → I3, when λ ∈ C
−
0 → ∞, (3.24)

and

(ψ̃+,1, ψ̃−,2, ψ̃−,3)T → I3, when λ ∈ C
+
0 → ∞. (3.25)

Till now, we have constructed the two matrix functions, P+ and P−, which are analytic in C+ and C−

and continuous in C+
0 and C−

0 , respectively. Defining

G+(x, λ) = P+(x, λ), λ ∈ C
+
0 , (G−)−1(x, λ) = P−(x, λ), λ ∈ C

−
0 , (3.26)

we can directly show that on the real axis, the two matrix functions G+ and G− are related by

G+(x, λ) = G−(x, λ)G(x, λ), λ ∈ R, (3.27)

where by (3.10), we have

G(x, λ) = E(H1 + H2S(λ))(H1 + S−1(λ)H2)E−1

= E

⎡
⎢⎣ 1 ŝ12 ŝ13
s21 1 0
s31 0 1

⎤
⎥⎦E−1 (3.28)

with S−1(λ) = (S(λ))−1 = (ŝjl)3×3. The equations (3.27) and (3.28) are exactly the associated matrix 
Riemann–Hilbert problems we would like to build for the combined mKdV equation (1.9). The asymptotic 
properties

P±(x, λ) → I3, when λ ∈ C
±
0 → ∞, (3.29)

provide the canonical normalization conditions

G±(x, λ) → I3, when λ ∈ C
±
0 → ∞, (3.30)

for the presented Riemann–Hilbert problems.
To complete the direct scattering transform, let us take the derivative of (3.10) with time t and use the 

vanishing conditions of the potentials at infinity of t. This way, we can verify that the scattering matrix S
satisfies

St = iλ3[Λ, S], (3.31)

which tells the time evolution of the time-dependent scattering coefficients:

s12 = s12(0, λ)eiλ
3t, s13 = s13(0, λ)eiλ

3t, s21 = s21(0, λ)e−iλ3t, s31 = s31(0, λ)e−iλ3t, (3.32)
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and all other scattering coefficients are independent of the time variable t:

s11,t = s22,t = s23,t = s32,t = s33,t = 0. (3.33)

4. Inverse scattering

It is known that the Riemann–Hilbert problems with zeros can be solved by transforming into the ones 
without zeros [37]. The uniqueness of solutions to each associated Riemann–Hilbert problem, defined by 
(3.27) and (3.28), does not hold unless the zeros of detP± in the upper and lower half-planes are specified 
and the structures of kerP± at these zeros are determined [37,40,41].

Based on detψ± = 1, it follows from the definitions of P± and the scattering relation between ψ+ and 
ψ− that

detP+(x, λ) = s11(λ), detP−(x, λ) = ŝ11(λ), (4.1)

where, due to detS = 1, we have

ŝ11 = (S−1)11 = s22s33 − s23s32.

We now specify the scattering data. Let N be an arbitrary natural number and assume that detP+ has 
N zeros {λk, 1 ≤ k ≤ N} in the upper half-plane, and detP− has N zeros {λ̂k, 1 ≤ k ≤ N} in the lower 
half-plane. The numbers of zeros of detP+ and detP− must be the same, and otherwise, the associated 
Riemann–Hilbert problems are not solvable. Let us further assume that

kerP+(λk) = Mk, imP−(λ̂k) = Nk 1 ≤ k ≤ N, (4.2)

where two subspaces Mk and Nk of C3 are given and satisfy

Mk ⊕Nk = C
3, 1 ≤ k ≤ N. (4.3)

We transform the Riemann–Hilbert problems in (3.27) with zeros into the corresponding Riemann–Hilbert 
problems without zeros. To this end, we introduce

P− = P−
I P̃−, P+ = P̃+P+

I , (4.4)

where P−
I and P+

I are determined by a reduced Riemann–Hilbert problem

P−
I P+

I = I3, (4.5)

with the same zeros given as for (3.27) and the same kernel structures:

kerP+
I (λk) = kerP+(λk), imP−

I (λ̂k) = imP−(λ̂k), 1 ≤ k ≤ N. (4.6)

Then, P̃+ and P̃− satisfy a Riemann–Hilbert problem without zeros

P̃−P̃+ = G̃, G̃ = (P−
I )−1G(P+

I )−1 = P+
I G(P+

I )−1. (4.7)

This kind of regular Riemann–Hilbert problems with canonical normalization can be systematically solved 
(see, e.g., [37]). The solution to the special Riemann–Hilbert problem in (4.5) with the indicated zeros and 
kernel structures can be determined as follows [37]:
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P−
I =

(
I3 + λ1 − λ̂1

λ− λ1
P1

)
· · ·

(
I3 + λN − λ̂N

λ− λN
PN

)
,

P+
I =

(
I3 −

λN − λ̂N

λ− λ̂N

PN

)
· · ·

(
I3 −

λ1 − λ̂1

λ− λ̂1
P1

)
,

(4.8)

where Pk, 1 ≤ k ≤ N , are the projections (i.e., P 2
k = Pk) which satisfy

Mk = kerP+
I (λk) = Uk imPk, Nk = imP−

I (λ̂k) = Uk kerPk, 1 ≤ k ≤ N. (4.9)

Note that a projection is uniquely determined when its kernel and image are given. In the above computa-
tions, Uk, 1 ≤ k ≤ N , are determined by

P−
I (λ̂k) = Uk(I3 − Pk)Vk, P+

I (λk) = V −1
k (I3 − Pk)U−1

k , 1 ≤ k ≤ N. (4.10)

Actually, those yield

Uk =
(
I3 + λ1 − λ̂1

λ̂k − λ1
P1

)
· · ·

(
I3 + λk−1 − λ̂k−1

λ̂k − λk−1
Pk−1

)
,

Vk =
(
I3 + λk+1 − λ̂k+1

λ̂k − λk+1
Pk+1

)
· · ·

(
I3 + λN − λ̂N

λ̂k − λN

PN

)
,

(4.11)

which are non-degenerate matrices, since (I3 − cP )−1 = I3 − c
c−1P for P 2 = P when c 	= 1.

Since s11 and ŝ11 are independent of t, we have λk,t = λ̂k,t = 0, 1 ≤ k ≤ N . The time evolution for Mk

and Nk are determined as follows. First by using (3.5), we can show that

dv

dt
− iλ3

kΛv ∈ kerP+(λk), for v ∈ kerP+(λk), 1 ≤ k ≤ N, (4.12)

which determines the law for the time evolution of the subspace Mk. Similarly, by using the adjoint equation 
of (3.5),

iψ̃t = λ3[ψ̃,Λ] + ψ̃Q, (4.13)

we can have

dv

dt
+ iλ̂3

kvΛ ∈ kerP−(λ̂k), for v ∈ kerP−(λ̂k), 1 ≤ k ≤ N, (4.14)

which determines the law for the time evolution of the complement Nk of the subspace Mk.
Let us finally recover the potential matrix P . Note that P+ solves the matrix spectral problem (3.4). 

Therefore, as long as we expand P+ at large λ as

P+(x, λ) = I3 + 1
λ
P+

1 (x) + O( 1
λ2 ), λ → ∞, (4.15)

plugging this series expansion into (3.4) and comparing O(1) terms tell

P̌ = −i[Λ, P+
1 ]. (4.16)

To realize the symmetric property of P , let us assume that

λ̂k = λ̄k, P †(λ̄) = Pk(λ) = CPk(λ̄)C−1, C = diag(1, 1,−1), (4.17)
k
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which guarantees

(P+
1 )† = −CP+

1 C−1. (4.18)

It then follows that (4.16) equivalently presents the potential matrix:

P = −[Λ, P+
1 ] =

⎡
⎢⎣

0 −(P+
1 )12 −(P+

1 )13
(P+

1 )21 0 0
(P+

1 )31 0 0

⎤
⎥⎦ , (4.19)

where P+
1 = ((P+

1 )jl)3×3 and the symmetric property

P † = CPC−1 (4.20)

is satisfied. Therefore, the two potentials p1 and p2 can be computed as follows:

p1 = −(P+
1 )12, p2 = −(P+

1 )13. (4.21)

This completes the inverse scattering problem: Given the scattering coefficients s21, s31, ̂s12, ̂s13, zeros λk ∈
C

+
0 and λ̂k = λ̄k ∈ C

−
0 , and subspaces Mk and Nk satisfying Mk ⊕ Nk = C

3, 1 ≤ k ≤ N , we can get the 
potentials from (4.21), where P+ = G+ solves the Riemann–Hilbert problem (3.27) with kerG+(λk) = Mk

and im (G−)−1(λ̂k) = Nk, 1 ≤ k ≤ N .

5. Soliton solutions

To generate soliton solutions, we assume that all these zeros, λk and λ̂k = λ̄k, 1 ≤ k ≤ N , are simple. 
Therefore, each of kerP+(λk), 1 ≤ k ≤ N , contains only a single basis column vector, denoted by vk, 
1 ≤ k ≤ N ; and each of kerP−(λ̂k), 1 ≤ k ≤ N , a single basis row vector, denoted by v̂k, 1 ≤ k ≤ N :

P+(λk)vk = 0, v̂kP
−(λ̂k) = 0, 1 ≤ k ≤ N. (5.1)

The Riemann–Hilbert problems, by (3.27) and (3.28), with the canonical normalization conditions in 
(3.30) and the zero structures in (5.1) can be solved as explained in the last section, and thus one can 
readily work out the potential u through (4.21).

To present soliton solutions, we take G = I3 in each Riemann–Hilbert problem determined in (3.27). 
This can be achieved if we take

s21 = ŝ12 = s31 = ŝ13 = 0, (5.2)

which means that no reflection exists in the scattering problem. The solution to this special Riemann–Hilbert 
problem can be generated by (see, e.g., [17,37]):

P+(λ) = I3 −
N∑

k,l=1

vk(M−1)klv̂l
λ− λ̂l

, P−(λ) = I3 +
N∑

k,l=1

vk(M−1)klv̂l
λ− λl

, (5.3)

where M = (mkl)N×N is a square matrix whose entries are determined by

mkl = v̂kvl
ˆ , 1 ≤ k, l ≤ N. (5.4)
λl − λk



808 W.X. Ma / J. Math. Anal. Appl. 471 (2019) 796–811
Since the zeros λk and λ̂k are constants, i.e., space and time independent, we can easily work out the 
spatial and temporal evolutions for the vectors, vk(x, t) and v̂k(x, t), 1 ≤ k ≤ N , in the kernels. For example, 
let us evaluate the x-derivative of both sides of the first set of equations in (5.1). By using (3.4) first and 
then again the first set of equations in (5.1), we can arrive at

P+(x, λk)
(dvk
dx

− iλkΛvk
)

= 0, 1 ≤ k ≤ N. (5.5)

This implies that for each 1 ≤ k ≤ N , dvk
dx − iλkΛvk is in the kernel of P+(x, λk) as required, and so a 

constant multiple of vk. For the sake of convenience, we suppose that

dvk
dx

= iλkΛvk, 1 ≤ k ≤ N. (5.6)

On the other hand, we can similarly assume that the time dependence of vk is defined by

dvk
dt

= iλ3
kΛvk, 1 ≤ k ≤ N. (5.7)

Therefore, we can explicitly give

vk(x, t) = eiλkΛx+iλ3
kΛtwk, 1 ≤ k ≤ N, (5.8)

where wk, 1 ≤ k ≤ N , are arbitrary constant column vectors. To guarantee the symmetric property (4.20)
in the spectral matrix, we need to take

v̂k(x, t) = ŵke−iλ̄kΛx−iλ̄3
kΛt, ŵk = w†

k C, 1 ≤ k ≤ N, (5.9)

where C is defined as in (4.17).
Finally, from the solutions in (5.3), we have

P+
1 = −

N∑
k,l=1

vk(M−1)klv̂l, (5.10)

which satisfies (P+
1 )† = −CP+

1 C−1, and thus further through the presentations in (4.21), obtain an 
N -soliton solution to the combined mKdV equation (1.9):

p1 =
N∑

k,l=1

vk,1(M−1)klv̂l,2, p2 =
N∑

k,l=1

vk,1(M−1)klv̂l,3, (5.11)

where vk = (vk,1, vk,2, vk,3)T and v̂k = (v̂k,1, ̂vk,2, ̂vk,3), 1 ≤ k ≤ N , are defined by (5.8) and (5.9), respec-
tively.

Particularly, taking

⎧⎪⎨
⎪⎩

λ1 = 5i, λ2 = 3i, λ3 = i, λ̂1 = −5i, λ̂2 = −3i, λ̂3 = −i,

w1 = (3 + 2i, 1, i)T , w2 = (0, 2 − i, 2 + 2i)T , w3 = (2,−2, 1 + i)T ,
ŵ1 = (3 − 2i, 1, i), ŵ2 = (0, 2 + i,−2 + 2i), ŵ3 = (2,−2,−1 + i),

(5.12)

we obtain one two-soliton solution to the combined mKdV equation (1.9):
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Fig. 1. Profiles of |p1|: 3d plot (left), contour plot (middle) and x-curves (right).

Fig. 2. Profiles of |p2|: 3d plot (left), contour plot (middle) and x-curves (right).

p1 = f1

g
, p2 = f2

g
, (5.13)

where

f1 = (−4992 + 27456i) e−23x+503t − (5760 − 2400i) e−19x+379t

− (12000 − 14880i) e−17x+377t + (360 + 300i) e−13x+253t,

f2 = (−22464 − 12480i) e−23x+503t − (960 + 4800i) e−19x+379t

− (13500 + 8220i) e−17x+377t − (210 − 390i) e−13x+253t,

g = 17784 e−22x+502t + 1664 e−24x+504t + 440 e−18x+378t

+ 65 e−12x+252t + 90 e−14x+254t.

Three-dimensional plots, contour plots and x-curves of this set of solutions are made in Fig. 1 and Fig. 2.

6. Concluding remarks

We have considered a combined modified Korteweg–de Vries (mKdV) equation and its inverse scattering 
transform in terms of the Riemann–Hilbert problems. From special Riemann–Hilbert problems with the 
identity jump matrix, we have successfully worked out soliton solutions to the considered combined mKdV 
equation. As a specific example, we have presented a specific two soliton solution explicitly and made 3d 
plots, contour plots and x-curve plots to shed light on the characteristics of the presented soliton solution.

We remark that it would be interesting to present other kinds of exact solutions to integrable equations, 
including position and complexiton solutions [25,35], lump solutions [34,39,50], and algebro-geometric so-
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lutions [3,14,27,28], by applying the inverse scattering transform. It is expected that our studies would be 
helpful in recognizing those exact solutions from the perspective of the inverse scattering transform based on 
Riemann–Hilbert problems. About coupled mKdV systems, there are many recent studies such as integrable 
couplings [44,47], super hierarchies [6] and fractional analogous equations [5]. Therefore, another important 
topic for further study is to present the inverse scattering transform through Riemann–Hilbert problems for 
solving those generalized integrable counterparts.

The inverse scattering transform is very powerful in generating soliton solutions (see also, e.g., [16,49]). 
It has been recently generalized to solve initial-boundary value problems of integrable equations on the 
half-line and the finite interval [8,19]. Many other approaches to soliton solutions are available in the field 
of integrable equations, among which are the Hirota direct method [15], the generalized bilinear technique 
[26], the Wronskian technique [9,32] and the Darboux transformation [33,36]. It would be interesting to 
explore relations between those different approaches.
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