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1. Introduction

In modern soliton theory [2,37], the inverse scattering transform is one of the most powerful techniques to
solve nonlinear integrable equations and particularly generate soliton solutions. The transform is also called
the Fourier transform method in a nonlinear world [1], and closely connected with the Riemann-Hilbert
problems associated with matrix spectral problems [37]. In the theory of Riemann-Hilbert problems, one
starts from bounded eigenfunctions analytically extendable to the upper or lower half-plane and continuous
in the closed upper or lower half-plane. Once taking the identity jump matrix, reduced Riemann—Hilbert
problems yield soliton solutions, whose special limits can generate lump solutions, periodic solutions and
complexiton solutions. A few integrable equations, including the multiple wave interaction equations [37],
the general coupled nonlinear Schrédinger equations [43], the Harry Dym equation [46], and the generalized
Sasa—Satsuma equation [10], have been studied by the Riemann—Hilbert technique.
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The standard procedure for establishing Riemann—Hilbert problems on the real axis is as follows. One
starts from a pair of matrix spectral problems of the following form:

—ipy =Ug, —iy =V¢, U= A()‘) + P(ua)‘)a V= B()‘) + Q(uv)‘)a (11)

where ¢ is the unit imaginary number, A is a spectral parameter, u is a potential, ¢ is an m X m matrix
eigenfunction, A, B are constant commuting m X m matrices, and P, Q) are trace-less m x m matrices. It is
known that the compatibility condition of the two matrix spectral problems is the zero curvature equation

where [, ] is the matrix commutator. This zero curvature equation presents so-called soliton equations. To
formulate Riemann—Hilbert problems for integrable equations, we adopt the following pair of equivalent
matrix spectral problems

Yo = i[AN), ¥] + P(u, N, o = i[BON), 9] + Q(u, \), (1.3)

where 9 is an m x m matrix eigenfunction, P =iPand Q = iQ. The commutativity of A and B guarantees
this equivalence, and there is a relation between the two matrix eigenfunctions ¢ and :

¢ _ wE_(p Eg _ eiA()\)x+iB()\)t.

For the matrix spectral problems (1.3), we can have two bounded analytical matrix eigenfunctions with
the asymptotic conditions

YT — I, when z,t — +o0, (1.4)
where I,,, stands for the identity matrix of size m. Let CT and C~ denote the upper and lower half-planes:
Ct ={z€C|Im(z) >0}, C” = {2z € C|Im(z) <0}, (1.5)
and (Car and C;, the closed upper and lower half-planes:
Cl ={z € C|Im(z) >0}, Cy = {2 € C|Im(z) < 0}. (1.6)
Based on the above two matrix eigenfunctions 1)*, we try to determine two matrix functions P¥(x,t, \),
which are analytical in C* and C~ and continuous in (Car and C, respectively, and then formulate a
Riemann—Hilbert problem on the real axis:
G (x,t,\) = G (2,t, \)G(x,t,\), A €R, (1.7)
with
Gt (x,t,\) = PT(2,t,\), A€ CF, (G7) Hz,t,\) = P~ (x,t,\), A€ Cy. (1.8)
Upon taking the jump matrix G to be the identity matrix, the corresponding Riemann—Hilbert problem can
be often solved to generate soliton solutions, through observing asymptotic behaviors of the matrix functions

P* at infinity of A, which also provide the canonical normalization conditions of the Riemann-Hilbert
problems.
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In this paper, we shall present an application example of the inverse scattering transform, based on the
Riemann—Hilbert technique. The nonlinear equation that we shall discuss is the following combined modified
Korteweg—de Vries (mKdV) equation

|2p1,m + 3|P2‘2P1,z + 3p1ﬁ2p2,aﬂ

) g (1.9)
P2,z — 3|P1]°D2,2 — 3P1P2P1 25

b1t = —Plaza — 6‘191

P2t = —P2,zaa T 6‘p2|2
where f denotes the complex conjugate of f and |f|?> = ff. When p; and py are real, the above combined
mKdV equation is reduced to

{pl,t = —Plazzx — 6]3%}71,1: + 3P§p1z + 3p1p2p2,x7 (1 10)

P2t = —P2.zzx + 6P3D2.w — 3D, — 3p1P2D1 0

The cases of py = 0 and ps = 0 further give the positive and negative mKdV equations respectively,
which possess different properties (see, e.g., [20]). The equation (1.10) adds to the class of combined mKdV
equations in the real field, the other two of which are discussed in [11,45,48].

The rest of the paper is structured as follows. In Section 2, within the zero-curvature formulation, we
derive a combined mKdV hierarchy, together with its recursion operator, based on a matrix spectral problem
suited for the Riemann—Hilbert theory. In Sections 3 and 4, to present an inverse scattering transform for
the combined mKdV equation (1.9), we analyze analytical properties of matrix eigenfunctions and build
a kind of Riemann—Hilbert problems of the equivalent matrix spectral problem. In Section 5, we compute
soliton solutions to the combined mKdV equation from special associated Riemann—Hilbert problems on the
real axis, in which the jump matrix is taken as the identity matrix. The last section is devoted to conclusions
and remarks.

2. A combined mKdV integrable hierarchy
2.1. Zero curvature formulation

We state the zero curvature formulation to generate integrable hierarchies as follows (see, e.g., [21,29,
42]). Let u be a vector potential and A, a spectral parameter. Choose a square matrix spectral matrix

U = U(u,\) from a given matrix loop algebra, whose underlying Lie algebra could be either semisimple
[21,42] or non-semisimple [29]. Assume that there is a formal Laurent series solution

W=Wud)=> WA= Wy(ur™™" (2.1)
m=0 m=0

to the corresponding stationary zero curvature equation
W, =i[U, W]. (2.2)
Using this solution W, we introduce a series of Lax matrices
VIT= v, ) = (NW)4 + Ay, r >0, (2.3)

where the subscript + denotes the operation of taking a polynomial part in A, and A,., r > 0, are appropriate
modification terms. The selection of A, is somewhat subtle and depends on whether an integrable hierarchy

ut:KT(U)ZKT(xat7uaux7"')7 TZOa (24)
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can be generated from a series of zero curvature equations
U, — v i, vl =0, » > 0. (2.5)

The two matrices U and VIl are called a Lax pair [18] of the r-th integrable equation in the hierarchy
(2.4). Obviously, the zero curvature equations in (2.5) are the compatibility conditions of the spatial and
temporal matrix spectral problems

—iy = U¢p = Ulu,\)g, —igy = Vg = VI (u,\)p, r >0, (2.6)

where ¢ is the matrix eigenfunction.
To show the commutability of the hierarchy (2.4), we normally start by verifying Lax operator algebras
(see, e.g., [22-24] for details):

’

v, v = vl @)K, ] = VI (w)[K,,] = 0, m,n >0, (2.7)
which ensures the existence of infinitely many common commuting Lie symmetries { K, }>°_:
Koy K] = K ()] = K () [K,] = 0, m,m > 0. (2.8)

In the above computations, R’ stands for the Gateaux derivative of R with respect to u in a direction S:

R/ (w)[s] R(u+ 8ty + S, -,

- Oe le=0

When the underlying matrix loop algebra in the zero curvature formulation is simple, the associated zero
curvature equations engender classical integrable hierarchies [7,13]; when semisimple, the associated zero
curvature equations generate a collection of different integrable hierarchies; and when non-semisimple, we
get hierarchies of integrable couplings [30], which require extra care in exploring their integrability.

2.2. A combined mKdV hierarchy

We consider the following matrix spectral problem

2N p1 p2
. _ p1
7’&9251 = U(j) = U(u,)\)d), U= (Ujl)3><3 = P1 A 0 , U= l ] s (29)
_ P2
—p2 0 A

where A is a spectral parameter. Two special cases: (a) po = 0 and real p;, and (b) p; = 0 and real po, are
reduced to the spectral problems associated with the positive and negative mKdV equations, respectively.

To derive an associated combined mKdV hierarchy, we first solve the stationary zero curvature equation
(2.2) corresponding to (2.9), as suggested in the general zero curvature formulation. We seek a solution W
of the form

-
W= : (2.10)

where @ is a real scalar, b = (by,bs) and ¢ = (b1, —by)” are two-dimensional vectors, and d is a 2 x 2
_ R _

matrix satisfying df(\) = d(\)” = Zd(M\)X~!, ¥ = diag(1, —1). It is direct to show that the stationary zero

curvature equation (2.2) is
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a; = i(pc —bq),
by = i(aAb+ pd — ap), (2.11)
d, =i(gb— cp),

where q¢ = (q1,q2)T = (p1, —p2)T. We take W as a formal series:

a b e alml  plml
W = = Z Wm)\—m7 Wm = Wm(u) = , m Z O, (2.12)
c d m—0 clml  glml
where bl™ | c™ and dl™) are expressed as
plml — (b[lm]7b[2m])’ clml — (@7 _@)ﬁ dml — (dgln])%d’ m >0, (2.13)

where the dI™’s satisfy (d"))T = Sdl"™/$=1, m > 0. Then, the system (2.11) exactly presents the following
recursion relations:

bl =0, % =0, ol =0, d =0, (2.14a)
) = —gplml — palml 4 gty m >0, (2.14b)
al" = i(pet™ — ™), dl = i(gb!™ — ™p), m > 1. (2.14c)

Next we choose the initial values:
al =2 g% =p,, (2.15)
and take constants of integration in (2.14c) to be zero, that is, require
Winlu=0 =0, m > 1. (2.16)

Then, with al® and d given by (2.15), all matrices W,,,, m > 1, are uniquely determined. For example, a
direct computation, in virtue of (2.14), generates that

b;l] = p;, ot — 0, dg'll] —0; (2.17a)

b?] = —ipj,z,a[Q] = —pgq, d;zl] = Myg;; (2.17b)

b = —pj e — 2pap;, (2.17¢)

a® = —i(pge — psq), ) = ~i(prad; — P10s.0); (2.17d)
O = i(pj.awe + 3DaDs0 + 3Paap;), (2.17¢)

a¥ = 3(pq)* + Pae — Patle + Paxds (2.17f)

) = —3pipaq; — Praest; + Pratie — Pijaas (2.17g)

where 1 < 5,1 < 2.
To generate the combined mKdV hierarchy, we introduce the following Lax matrices

s
VI = VI, 2) = (V) )aws = W)y = S WX, - >0, (2.18)
m=0
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where the modification terms are taken as zero. The compatibility conditions of (2.6), i.e., the zero curvature
equations (2.5), engender the so-called combined mKdV hierarchy:

uy=p! =K, = bl T >, (2.19)
which can be shown, by checking the corresponding Lax operator algebra, to satisfy
[Km, K, =0, m,n>0. (2.20)

It is direct to work out the following recursion operator [38] for the combined mKdV hierarchy

D17 Py (2.21)
Dy; Do
with the entries being defined by
= i[-0 — 2p10 ' P1 + P20~ 2 + 210 o1 ()],
@12 = i[p10~ P2 — pa0~'p1 () — P10~ pa()), (2.22)

= i[~p20~p1 + P10 p2() + P20 1 ()],

@22 =i[—0 —p1a_ p1+ 21023_ D2 — 2p23_1p2(7)],

i[—
-

where () denotes the conjugate operator: (-)f = f.
The first nonlinear integrable equation in the hierarchy (2.19) is a combined nonlinear Schrodinger equa-
tion:

Pit = —i[pjwa + 2(lp1° — |p2*)ps], 1 <5 <2, (2.23)

and the second equation is exactly the combined mKdV equation (1.9).

In what follows, we shall discuss the scattering and inverse scattering problems for the combined mKdV
equation (1.9) using the Riemann—Hilbert technique [37] (see also [4,12]). The results will lay the groundwork
for soliton solutions later on.

3. Direct scattering

The matrix spectral problems of the combined mKdV equation (1.9) are

iy = U = Ulu, \)p, —igy = VBl =VEl(u,\)g, (3.1)
where the Lax pair reads
U=M+P, VB = A +Q, A =diag(2,1,1), (3.2)
with
. ;1 o o [ B s
5 00 N2 4 cPIN 4 cB] qlINZ 4 g2\ 4 gl®]

where ¢l 1 < m < 3, are defined through (2.13), and al™, bl™ dl™ 1 < m < 3, are determined in (2.17).
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Assume that all the potentials sufficiently rapidly vanish when  — 400 or ¢ — 4+o00. From the matrix

spectral problems in (3.1), we note that when z,t — 400, we have the asymptotic behavior: ¢ ~ e +HA AL

Therefore, if we make the variable transformation
¢ =E,, B, = ei/\Aac+iA3At’

then we can have the canonical normalization ¢ — I3, when x,t — 4oc0. Once setting P =P and Q =1Q,
the equivalent pair of matrix spectral problems to (3.1) reads

Y = iNTAY] + Q.
Upon applying a generalized Liouville’s formula [31], we can have

det ) = 1, (3.6)

v v

due to tr(P) = tr(@)) = 0.
Let us now formulate an associated Riemann—Hilbert problem with the variable z, under the integrable

conditions:
0 2
[ el Sl + ) do < o, m=o,1. (3.7)
oo j=1

In the direct scattering problem, we first introduce two matrix solutions ¢* (z, \) of (3.4) with the asymptotic
conditions

Y* — I3, when z — o0, (3.8)

respectively. The above superscripts refer to which end of the z-axis the boundary conditions are required
for. Based on (3.6), we see that det¢® = 1 for all € R. Since

Qbi = wiEa E= ei)\A:v’ (39)
are two matrix solutions of (3.1), they are linearly dependent, and as a result of the fact, one has
v E=4tES()\), A €R, (3.10)

where S(\) = (sj1)3x3 is the scattering matrix. Note that det S(A\) = 1 because of det * = 1.
Through the method of variation in parameters, we can transform the x-part of (3.1) into the following
Volterra integral equations for ¢* [37]:

x

W) = I + / M=) Py (A, )M gy, (3.11)
WrOva) =I5 — / M=) Pyt (A, )M gy, (3.12)

x

where the boundary condition (3.8) has been used. Therefore, under the conditions (3.7), the theory of
Volterra integral equations tells that the eigenfunctions ¢* exist and allow analytical continuations off the
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real axis A € R as long as the integrals on their right hand sides converge. Based on the diagonal form of A,

we can easily see that the integral equation for the first column of ¥~ contains only the exponential factor

—iaA(

e ¥=2) which decays because of y < z in the integral, when X is in the closed upper half-plane, and

the integral equation for the last two columns of ¥ contains only the exponential factor e?**¥=%) which
also decays because of y > x in the integral, when X is in the closed upper half-plane. Thus, these three
columns are analytical in the upper half-plane and continuous in the closed upper half-plane. In a similar
manner, we can show that the last two columns of 1~ and the first column of 4" are analytical in the lower
half-plane and continuous in the closed lower half-plane.

First, if we express

vE = (W95 v5), (3.13)
that is, z/;jF stands for the jth column of ¢* (1 < j < 3), then the matrix solution
P* = P¥(x, ) = (7,93, 05) =9~ Hi+ ¢ " Hy (3.14)
is analytic in A € C* and continuous in X € (CaL , and the matrix solution
(VF 95 ,¢35) = Hi + 9~ Hy (3.15)

is analytic in A € C~ and continuous in A € C;. In the above derivation, H; and Hj are the following
matrices

H, = diag(1,0,0), Hs = diag(0,1,1). (3.16)
Moreover, from the Volterra integral equations (3.11) and (3.12), we find that
Pt (x,\) — I3, when \ € C§ — o0, (3.17)
and
(i by by ) — I3, when A € Cy — o0. (3.18)

Secondly, we construct the analytic counterpart of PT in the lower half-plane C~ from the adjoint
counterparts of the matrix spectral problems. The adjoint equation of the z-part of (3.1) and the adjoint
equation of (3.4) are given by

ide = QU, (3.19)
and
ithy = Alth, A] + 9 P. (3.20)

Note that the inverse matrices ¢= = (¢*)~! and ¢+ = (*)~! solve these two adjoint equations, respec-
tively. Upon expressing 1)+ as follows:

VT = (9502 )T (3.21)

that is, 957 stands for the jth row of ¢+ (1 < j < 3), we can verify by similar arguments that the adjoint
matrix solution of (3.20),
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P = (5L 02, 5T = By 4 Byl = Hy () + Ha(t) (3.22)
is analytic in A € C~ and continuous in A € C;, and the other matrix solution of (3.20),
@HL 7207 = Hidt + Ho™ = Hi(9F) ™! + Ha(y7) ™, (3.23)
is analytic in A € CT and continuous in A € (Car . Using a similar argument, we can see that
P~ (z,\) = I3, when X € C; — o0, (3.24)
and
(W12 73T — I3, when A € Cf — oo. (3.25)

Till now, we have constructed the two matrix functions, P™ and P~, which are analytic in CT and C~
and continuous in C§ and Cy, respectively. Defining

Gt (x,\) = P (x,\), Ae CJ, (GT) Hx,\) = P (z,\), A€ Cy, (3.26)
we can directly show that on the real axis, the two matrix functions G+ and G~ are related by
Gt (z,\) = G (z,\)G(z,\), N €R, (3.27)
where by (3.10), we have

G(x,\) = E(Hy + HaS(\)(Hy + S™' (N Ho)E™1

=FE|sy 1 0 |E! (3.28)

with S7H(A) = (S(A))™! = (3j1)3x3. The equations (3.27) and (3.28) are exactly the associated matrix
Riemann—Hilbert problems we would like to build for the combined mKdV equation (1.9). The asymptotic
properties

PE(z,\) = I3, when A € Cf — oo, (3.29)
provide the canonical normalization conditions
G*(z,)\) — I3, when X € CE — oo, (3.30)

for the presented Riemann—Hilbert problems.

To complete the direct scattering transform, let us take the derivative of (3.10) with time ¢ and use the
vanishing conditions of the potentials at infinity of ¢. This way, we can verify that the scattering matrix S
satisfies

Sy =iX3[A, 9], (3.31)
which tells the time evolution of the time-dependent scattering coefficients:

S12 = 812(0, /\)6M3t, S13 = 813(0, )\)ei)\st, S91 = 821(0, )\)67“\3)&, 831 = S31 (O, /\)eii)\‘gt, (332)
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and all other scattering coefficients are independent of the time variable ¢:
S11,¢ = S22,¢ = S23,t = S32,4 = 833t = 0. (3.33)
4. Inverse scattering

It is known that the Riemann—Hilbert problems with zeros can be solved by transforming into the ones
without zeros [37]. The uniqueness of solutions to each associated Riemann—Hilbert problem, defined by
(3.27) and (3.28), does not hold unless the zeros of det P* in the upper and lower half-planes are specified
and the structures of ker P* at these zeros are determined [37,40,41].

Based on det¢* = 1, it follows from the definitions of P* and the scattering relation between ¢+ and
1~ that

det P+(l‘, )\) = 311()\), det P~ (x, )\) = §11()\), (41)
where, due to det .S = 1, we have
311 = (S71) 11 = s92533 — 523532

We now specify the scattering data. Let N be an arbitrary natural number and assume that det P has
N zeros {\g, 1 <k < N} in the upper half-plane, and det P~ has N zeros {\r, 1 <k < N} in the lower
half-plane. The numbers of zeros of det PT and det P~ must be the same, and otherwise, the associated
Riemann—Hilbert problems are not solvable. Let us further assume that

ker PY(\) = My, im P~ (A\y) = Ny 1<k <N, (4.2)
where two subspaces M, and Ny of C? are given and satisfy
M, ®N,=C3 1<k<N. (4.3)

We transform the Riemann-Hilbert problems in (3.27) with zeros into the corresponding Riemann-Hilbert
problems without zeros. To this end, we introduce

P~ =P P, PT=P"P/, (4.4)
where P, and PI+ are determined by a reduced Riemann-Hilbert problem
Py Pl =15, (4.5)
with the same zeros given as for (3.27) and the same kernel structures:
ker P} (A) = ker P*()\y), im P, (A\g) =im P~ (\), 1 <k < N. (4.6)
Then, P and P~ satisfy a Riemann-Hilbert problem without zeros
P Pt =G, G=(P,) 'GP = PGP (4.7)

This kind of regular Riemann—Hilbert problems with canonical normalization can be systematically solved
(see, e.g., [37]). The solution to the special Riemann—Hilbert problem in (4.5) with the indicated zeros and
kernel structures can be determined as follows [37]:
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A — A AN — A
Pr= (14 3220 ) o (I + S Py,
X— M\ X — v
AN — A A — A (48)
P = (13 - uPN) (13 B 1P1),
A= Aw A=\
where Py, 1 <k < N, are the projections (i.e., P? = Py) which satisfy
My, = ker P (\) = Upim Py, Ny, =im P, (A) = Upker P, 1<k < N. (4.9)

Note that a projection is uniquely determined when its kernel and image are given. In the above computa-
tions, U, 1 < k < N, are determined by

Py (M) = Up(Is — Po)Vi, Pr(O0w) =V, Y (I — B)UY, 1<k <N, (4.10)

Actually, those yield

Uk = (Is + ;1 - lel) (I + M&_l),

- A Ak — Ao—
k 1A k= Ak—1 ) (4.11)
Akt1 — A AN — A
Vi = <13+ Mpkﬂ) <13+MPN),
k= Akt1 Ak — AN
which are non-degenerate matrices, since (I3 — cP)™' = I3 — -5 P for P> = P when ¢ # 1.

Since sq1; and 817 are independent of ¢, we have Ay = /A\k,t =0, 1 <k < N. The time evolution for My
and Ny are determined as follows. First by using (3.5), we can show that

d
dit’ —iX3Av € ker PT(\), for v € ker PT()\), 1 <k <N, (4.12)

which determines the law for the time evolution of the subspace M},. Similarly, by using the adjoint equation
of (3.5),

we can have

‘;—z +iAJvA € ker P~(\g), for v € ker P~(\g), 1 <k < N, (4.14)

which determines the law for the time evolution of the complement Nj of the subspace M.
Let us finally recover the potential matrix P. Note that PT solves the matrix spectral problem (3.4).
Therefore, as long as we expand P at large \ as

1 1
Pt(z,\) =13 + XP;“(JC) + O(ﬁ>’ A — 00, (4.15)

plugging this series expansion into (3.4) and comparing O(1) terms tell
P = —i[A, P}]. (4.16)
To realize the symmetric property of P, let us assume that

A =M, PI(A) = P(\) = CP,(\)C™Y, C = diag(1,1,-1), (4.17)
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which guarantees
(PNt = —CcPrO". (4.18)

It then follows that (4.16) equivalently presents the potential matrix:

0 —(Pf )12 —(P)s
P=—[APf]=| (P )2 0 0 : (4.19)
(P1+)31 0 0

where P;" = ((P;");i)sx3 and the symmetric property
Pt =cpc! (4.20)
is satisfied. Therefore, the two potentials p; and ps can be computed as follows:

p1=—(Pi 2, p2 = —(P{ ). (4.21)

This completes the inverse scattering problem: Given the scattering coefficients s21, s31, 812, $13, zeros A\, €
(Ca' and 5% =\ € C, , and subspaces M, and N, satisfying M}, & Nj, = C3, 1 <k < N, we can get the
potentials from (4.21), where P™ = G solves the Riemann-Hilbert problem (3.27) with ker Gt (\y) = M,
and im (G7) "' (Ar) = Ni, 1 <k < N.

5. Soliton solutions

To generate soliton solutions, we assume that all these zeros, A\, and S\k = A, 1 <k < N, are simple.
Therefore, each of ker PT(\;), 1 < k < N, contains only a single basis column vector, denoted by vy,
1 <k < N; and each of ker P‘(j\k), 1 < k < N, a single basis row vector, denoted by 0, 1 < k < N:

PYA)vr =0, 0,P~ (M) =0, 1<k <N. (5.1)

The Riemann—Hilbert problems, by (3.27) and (3.28), with the canonical normalization conditions in
(3.30) and the zero structures in (5.1) can be solved as explained in the last section, and thus one can
readily work out the potential u through (4.21).

To present soliton solutions, we take G = I3 in each Riemann-Hilbert problem determined in (3.27).
This can be achieved if we take

821 = 812 = 831 = 813 = 0, (5.2)

which means that no reflection exists in the scattering problem. The solution to this special Riemann—Hilbert
problem can be generated by (see, e.g., [17,37]):

N N
(M~ Dt - o (M~ )ty
P\ =13 — ——— P (AN =1 _ 5.3
N=L-) 5 W s+ > v (5.3)
k=1 l k=1
where M = (myg;)nxn 1S a square matrix whose entries are determined by
g = —* 1 < k1< N. (5.4)

A= \p



808 W.X. Ma / J. Math. Anal. Appl. 471 (2019) 796-811

Since the zeros A\, and \j are constants, i.e., space and time independent, we can easily work out the
spatial and temporal evolutions for the vectors, vg(z,t) and O (z,t), 1 < k < N, in the kernels. For example,
let us evaluate the a-derivative of both sides of the first set of equations in (5.1). By using (3.4) first and
then again the first set of equations in (5.1), we can arrive at

d
Pz, M) (% - i)\kAvk) =0, 1<k<N. (5.5)

This implies that for each 1 < k < N, d“k — iAgAvy, is in the kernel of Pt (x,\;) as required, and so a

constant multiple of vg. For the sake of convenience, we suppose that

d
Wk — izpAvg, 1<k < N. (5.6)
dr

On the other hand, we can similarly assume that the time dependence of v is defined by

d
% = iXAvy, 1<k < N. (5.7)
Therefore, we can explicitly give
vg(z,t) = ePARATHINIAL) ] < | < N, (5.8)

where wg, 1 < k < N, are arbitrary constant column vectors. To guarantee the symmetric property (4.20)
in the spectral matrix, we need to take

b, t) = e PRATTIRA 4 — ol € 1<k <N, (5.9)

where C is defined as in (4.17).
Finally, from the solutions in (5.3), we have

N
P == " o (M )iy, (5.10)
k=1
which satisfies (P;")T = —CP;"C~!, and thus further through the presentations in (4.21), obtain an

N-soliton solution to the combined mKdV equation (1.9):

N

pr= Y vpa(M bz, pa= Z V1 (M) gy 3, (5.11)
k=1 k=1

where vy = (vg.1,Vk.2,v63)T and 9 = (.1, Ok2,03), 1 < k < N, are defined by (5.8) and (5.9), respec-
tively.
Particularly, taking

M =50, Ao =30, A3 =i, \y = —5i, Ao = —3i, A3 =—
=(3+2i,1,)T, wy=(0,2—14,2+2)T, ws =(2,-2,1+i)T, (5.12)
Wy = (3 —2i,1,4), Wy = (0,2 +1i, 2+ 2i), w3 = (2,-2,—1+1i),

we obtain one two-soliton solution to the combined mKdV equation (1.9):
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P = ﬁ, p2 = é, (5.13)
g 9

where

f1 = (—4992 + 274561) e~ 23593 _ (5760 — 24004) e~ 19# 3T
— (12000 — 148807) ¢~ 17377t 1 (360 4 3004) ¢~ 137253t

fo = (—22464 — 124807) e~ 237 +503¢ _ (960 + 48007) e~ 197379
— (13500 + 82204) e ' T* 37T — (210 — 3904) e~ 137203,

g = 17784 ¢~ 220502 | 166 o= 24045048 4 () o~ 1824378
1 G5 e 120252t | () o~ ldwt254

Three-dimensional plots, contour plots and x-curves of this set of solutions are made in Fig. 1 and Fig. 2.

6. Concluding remarks

We have considered a combined modified Korteweg—de Vries (mKdV) equation and its inverse scattering
transform in terms of the Riemann—Hilbert problems. From special Riemann—Hilbert problems with the
identity jump matrix, we have successfully worked out soliton solutions to the considered combined mKdV
equation. As a specific example, we have presented a specific two soliton solution explicitly and made 3d
plots, contour plots and z-curve plots to shed light on the characteristics of the presented soliton solution.

We remark that it would be interesting to present other kinds of exact solutions to integrable equations,
including position and complexiton solutions [25,35], lump solutions [34,39,50], and algebro-geometric so-
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lutions [3,14,27,28], by applying the inverse scattering transform. It is expected that our studies would be
helpful in recognizing those exact solutions from the perspective of the inverse scattering transform based on
Riemann—Hilbert problems. About coupled mKdV systems, there are many recent studies such as integrable
couplings [44,47], super hierarchies [6] and fractional analogous equations [5]. Therefore, another important
topic for further study is to present the inverse scattering transform through Riemann—Hilbert problems for
solving those generalized integrable counterparts.

The inverse scattering transform is very powerful in generating soliton solutions (see also, e.g., [16,49]).
It has been recently generalized to solve initial-boundary value problems of integrable equations on the
half-line and the finite interval [8,19]. Many other approaches to soliton solutions are available in the field
of integrable equations, among which are the Hirota direct method [15], the generalized bilinear technique
[26], the Wronskian technique [9,32] and the Darboux transformation [33,36]. It would be interesting to
explore relations between those different approaches.
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