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We conduct two nonlocal group reductions of the AKNS matrix spectral problems to 
generate a class of nonlocal reverse-spacetime integrable mKdV equations. One reduction 
replaces the spectral parameter with its negative complex conjugate while the other 
does not change the spectral parameter. Beginning with the specific distribution of 
eigenvalues, we construct soliton solutions by solving the corresponding generalized 
Riemann-Hilbert problems with the identity jump matrix, where eigenvalues could equal 
adjoint eigenvalues.
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1. Introduction

Matrix spectral problems lay the basis for the theory of integrable equations. Their group reductions can result in both 
local and nonlocal reduced integrable equations [2,13,22]. Starting from the Ablowitz-Kaup-Newell-Segur (AKNS) matrix 
spectral problems, we can generate three kinds of nonlocal nonlinear Schrödinger (NLS) equations and two kinds of non-
local modified Korteweg-de Vries (mKdV) equations by conducting one group reduction [2,14], and other kinds of novel 
nonlocal reduced integrable equations by conducting two group reductions [19,20]. The inverse scattering transform has 
been successfully applied to analysis of soliton solutions to nonlocal integrable equations (see, e.g., [1,10]).

Integrable equations can also be solved by other efficient methods, which include Darboux transformation, the Hirota 
bilinear method and Riemann-Hilbert problems, and indeed, their soliton solutions can be systematically presented (see, e.g., 
[5,9,23,24,27]). In particular, the Riemann-Hilbert technique is used to solve nonlocal integrable NLS and mKdV equations. 
We refer the interested readers to the recent references [3,25,26] on local equations and [14–16,28] on nonlocal equations, 
which present applications of Riemann-Hilbert problems. In this paper, we would like to present a kind of novel reduced 
nonlocal reverse-spacetime integrable mKdV equations by conducting two nonlocal group reductions and compute their 
soliton solutions through generalized Riemann-Hilbert problems with the identity jump matrix.
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The rest of this paper is organized as follows. In Section 2, we conduct two nonlocal group reductions for the AKNS 
matrix spectral problems to present type (−λ∗, λ) reduced nonlocal reverse-spacetime integrable mKdV equations, where ∗
stands for the complex conjugate. Two pairs of scalar examples are

p1,t = − β

α3
[p1,xxx − 6σ p1 p∗

1(−x,−t)p1,x − 3σ p1(−x,−t)(|p1|2)x],
and

p1,t = − β

α3
[p1,xxx + 6δp1 p1(−x,−t)p1,x + 3δp∗

1(−x,−t)(|p1|2)x],
where σ = ±1, δ = ±1, and α and β are arbitrary real constants. In Section 3, based on the explored distribution of eigen-
values, we solve the corresponding generalized Riemann-Hilbert problems with the identity jump matrix, where eigenvalues 
could equal adjoint eigenvalues, and compute soliton solutions to the resulting reduced nonlocal integrable mKdV equations. 
In the final section, we present a conclusion and some concluding remarks.

2. Reduced nonlocal integrable mKdV equations

2.1. The matrix AKNS integrable hierarchies revisited

Let us first recall the AKNS hierarchies of matrix integrable equations for subsequent analysis.
As usual, let λ denote the spectral parameter, and assume that p and q are two matrix potentials:

p = p(x, t) = (p jk)m×n, q = q(x, t) = (qkj)n×m, (2.1)

where m, n ≥ 1 are two arbitrarily given integers. We consider the matrix AKNS spectral problems as follows:{ −iφx = Uφ = U (u, λ)φ = (λ� + P )φ,

−iφt = V [r]φ = V [r](u, λ)φ = (λr	 + Q [r])φ, r ≥ 0.
(2.2)

Here the (m + n)-th order square matrices, � and 	, are defined by

� = diag(α1 Im,α2 In), 	 = diag(β1 Im, β2 In), (2.3)

where Is denotes the identity matrix of size s, and α1, α2 and β1, β2 are two pairs of arbitrarily given distinct real constants. 
The other two (m + n)-th order square matrices, P and Q [r] , are defined by

P = P (u) =
[

0 p

q 0

]
, (2.4)

which is called the potential matrix, and

Q [r] =
r−1∑
s=0

λs

[
a[r−s] b[r−s]

c[r−s] d[r−s]

]
, (2.5)

where a[s], b[s], c[s] and d[s] are determined recursively by

b[0] = 0, c[0] = 0, a[0] = β1 Im, d[0] = β2 In, (2.6a)

b[s+1] = 1

α
(−ib[s]

x − pd[s] + a[s]p), s ≥ 0, (2.6b)

c[s+1] = 1

α
(ic[s]

x + qa[s] − d[s]q), s ≥ 0, (2.6c)

a[s]
x = i(pc[s] − b[s]q), d[s]

x = i(qb[s] − c[s]p), s ≥ 1, (2.6d)

with zero constants of integration being taken. In particular, we can obtain

Q [1] = β

α
P , Q [2] = β

α
λP − β

α2
Im,n(P 2 + i P x),

and

Q [3] = β

α
λ2 P − β

α2
λIm,n(P 2 + i P x) − β

α3
(i[P , P x] + P xx + 2P 3),

where α = α1 − α2, β = β1 − β2 and Im,n = diag(Im, −In). The recursive relations in (2.6) also mean that
2
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W =
∑
s≥0

λ−s

[
a[s] b[s]

c[s] d[s]

]
(2.7)

provide a Laurent series solution to the stationary zero curvature equation

W x = i[U , W ]. (2.8)

The compatibility conditions of the two matrix spectral problems in (2.2), i.e., the zero curvature equations:

Ut − V [r]
x + i[U , V [r]] = 0, r ≥ 0, (2.9)

generate one matrix AKNS integrable hierarchy (see, e.g., [17] for more details):

pt = iαb[r+1], qt = −iαc[r+1], r ≥ 0, (2.10)

which can be proved to possess a bi-Hamiltonian structure and infinitely many symmetries and conservation laws. The 
second nonlinear integrable system in the hierarchy gives us the AKNS matrix mKdV equations:

pt = − β

α3
(pxxx + 3pqpx + 3pxqp), qt = − β

α3
(qxxx + 3qx pq + 3qpqx), (2.11)

where p and q are the two matrix potentials defined by (2.1).

2.2. Reduced nonlocal integrable mKdV equations

We would like to conduct two nonlocal group reductions for the matrix AKNS spectral problems in (2.2) simultaneously 
(see also [11] for the basic idea on how to make group reductions), to present a kind of novel reduced nonlocal reverse-
spacetime integrable mKdV equations.

Assume that 
1 and 
2 are a pair of constant invertible Hermitian matrices of sizes m and n, respectively, and �1 and 
�2 are another pair of constant invertible symmetric matrices of sizes m and n, respectively. Let us consider two nonlocal 
group reductions for the spectral matrix U :

U †(−x,−t,−λ∗) = (U (−x,−t,−λ∗))† = −
U (x, t, λ)
−1, (2.12)

and

U T (−x,−t, λ) = (U (−x,−t, λ))T = �U (x, t, λ)�−1, (2.13)

where 
 and � are the two constant invertible matrices defined by


 =
[


1 0
0 
2

]
, � =

[
�1 0
0 �2

]
. (2.14)

Equivalently, these two nonlocal group reductions require

P †(−x,−t) = −
P (x, t)
−1, (2.15)

and

P T (−x,−t) = �P (x, t)�−1, (2.16)

respectively. More precisely, they require the following reductions for the matrix potentials p and q:

q(x, t) = −
−1
2 p†(−x,−t)
1, (2.17)

and

q(x, t) = �−1
2 pT (−x,−t)�1, (2.18)

respectively. It therefore follows that the matrix potential p must satisfy a constraint:

−
−1
2 p†(−x,−t)
1 = �−1

2 pT (−x,−t)�1, (2.19)

to guarantee that both group reductions in (2.12) and (2.13) are satisfied.
Furthermore, under the group reductions in (2.12) and (2.13), we can have that{

W †(−x,−t,−λ∗) = (W (−x,−t,−λ∗))† = 
W (x, t, λ)
−1,

W T (−x,−t, λ) = (W (−x,−t, λ))T = �W (x, t, λ)�−1,
(2.20)
3
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which ensures that{
V [2s+1]†(−x,−t,−λ∗) = (V [2s+1](−x,−t,−λ∗))† = −
V [2s+1](x, t, λ)
−1,

V 2s+1]T (−x,−t, λ) = (V [2s+1](−x,−t, λ))T = �V [2s+1](x, t, λ)�−1,
(2.21)

and {
Q [2s+1]†(−x,−t,−λ∗) = (Q [2s+1](−x,−t,−λ∗))† = −
Q [2s+1](x, t, λ)
−1,

Q [2s+1]T (−x,−t, λ) = (Q [2s+1](−x,−t, λ))T = �Q [2s+1](x, t, λ)�−1,
(2.22)

where s ≥ 0.
Consequently, under the potential reductions (2.17) and (2.18), the integrable matrix AKNS equations in (2.10) are re-

duced to a hierarchy of nonlocal reverse-spacetime integrable matrix mKdV equations:

pt = iαb[2s+2]|q=−
−1
2 p†(−x,−t)
1=�−1

2 pT (−x,−t)�1
, s ≥ 0, (2.23)

where p is an m × n matrix potential satisfying (2.19), 
1 and 
2 are a pair of arbitrary invertible Hermitian matrices 
of sizes m and n, respectively, and �1 and �2 are a pair of arbitrary invertible symmetric matrices of sizes m and n, 
respectively. As consequences of the two group reductions, each reduced equation in the hierarchy (2.23) possesses a Lax 
pair of the reduced spatial and temporal matrix spectral problems in (2.2) with r = 2s + 1, s ≥ 0, and infinitely many 
symmetries and conservation laws reduced from those for the integrable matrix AKNS equations in (2.10) with r = 2s +1, s ≥
0.

If we fix s = 1, i.e., r = 3, then the reduced matrix integrable mKdV equations in (2.23) with s = 1 produce a kind of 
reduced nonlocal reverse-spacetime integrable matrix mKdV equations:

pt = − β

α3
(pxxx − 3p
−1

2 p†(−x,−t)
1 px − 3px

−1
2 p†(−x,−t)
1 p)

= − β

α3
(pxxx + 3p�−1

2 pT (−x,−t)�1 px + 3px�
−1
2 pT (−x,−t)�1 p), (2.24)

where p is an m × n matrix potential satisfying (2.19).
Let us now illustrate these novel reduced nonlocal reverse-spacetime integrable matrix mKdV equations, with a few 

examples with different values for m, n and appropriate choices for 
, �.
First, we consider the case of m = 1 and n = 2. Let us choose


1 = 1, 
−1
2 =

[
σ 0

0 σ

]
, �1 = 1, �−1

2 =
[

0 δ

δ 0

]
,

where σ and δ are real constants which satisfy σ 2 = δ2 = 1. Then, the potential constraint (2.19) equivalently requires

p2 = −σδp∗
1,

where p = (p1, p2), and at this moment, the corresponding potential matrix P becomes

P =

⎡
⎢⎢⎣

0 p1 −σδp∗
1

−σ p∗
1(−x,−t) 0 0

δp1(−x,−t) 0 0

⎤
⎥⎥⎦ . (2.25)

Furthermore, based on (2.11), the corresponding novel reduced nonlocal reverse-spacetime integrable mKdV equations read

p1,t = − β

α3
[p1,xxx − 6σ p1 p∗

1(−x,−t)p1,x − 3σ p1(−x,−t)(|p1|2)x], (2.26)

where σ = ±1 and p∗
1 denotes the complex conjugate of p1. A similar argument with


1 = 1, 
−1
2 =

[
0 σ

σ 0

]
, �1 = 1, �−1

2 =
[

δ 0

0 δ

]
,

where σ and δ are real constants which satisfy σ 2 = δ2 = 1, leads to a second pair of novel scalar nonlocal reverse-
spacetime integrable mKdV equations:

p1,t = − β

3
[p1,xxx + 6δp1 p1(−x,−t)p1,x + 3δp∗

1(−x,−t)(|p1|2)x], (2.27)

α

4
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where δ = ±1 and p∗
1 denotes the complex conjugate of p1 as well. These two pairs of equations are totally different from 

the ones studied in [2,6–8], in which only one nonlocal nonlinear term appears.
Second, we consider the case of m = 1 and n = 4. Let us choose


1 = 1, 
−1
2 =

⎡
⎢⎢⎢⎢⎢⎣

σ1 0 0 0

0 σ1 0 0

0 0 σ2 0

0 0 0 σ2

⎤
⎥⎥⎥⎥⎥⎦ , �1 = 1, �−1

2 =

⎡
⎢⎢⎢⎢⎢⎣

0 δ1 0 0

δ1 0 0 0

0 0 0 δ2

0 0 δ2 0

⎤
⎥⎥⎥⎥⎥⎦ ,

where σ j and δ j are real constants which satisfy σ 2
j = δ2

j = 1, j = 1, 2. Then, the potential constraint (2.19) leads equiva-
lently to

p2 = σ1δ1 p∗
1(−x,−t), p4 = σ2δ2 p∗

3(−x,−t),

where p = (p1, p2, p3, p4), and thus, the corresponding potential matrix P reads

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 p1 −σ1δ1 p∗
1 p3 −σ2δ2 p∗

3

−σ1 p∗
1(−x,−t) 0 0 0 0

δ1 p1(−x,−t) 0 0 0 0

−σ2 p∗
3(−x,−t) 0 0 0 0

δ2 p3(−x,−t) 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.28)

This formulation allows us to obtain a class of two-component nonlocal reverse-spacetime integrable mKdV equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1,t = − β

α3
[p1,xxx − 6σ1 p1 p∗

1(−x,−t)p1,x − 3σ1 p1(−x,−t)(|p1|2)x

−3σ2 p∗
3(−x,−t)(p1 p3)x − 3σ2 p3(−x,−t)(p1 p∗

3)x],

p3,t = − β

α3
[p3,xxx − 3σ1 p∗

1(−x,−t)(p1 p3)x − 3σ1 p1(−x,−t)(p∗
1 p3)x

−6σ2 p3 p∗
3(−x,−t)p3,x − 3σ2 p3(−x,−t)(|p3|2)x],

(2.29)

where σ j are real constants satisfying σ 2
j = 1, j = 1, 2.

Third, we consider the case of m = 2 and n = 2. Let us choose


1 =
[

0 σ1

σ1 0

]
, 
−1

2 =
[

σ2 0

0 σ2

]
, �1 =

[
0 δ1

δ1 0

]
, �−1

2 =
[

0 δ2

δ2 0

]
,

where σ j and δ j are real constants which satisfy σ 2
j = δ2

j = 1. Then, the potential constraint (2.19) leads precisely to

p12 = −σ1δ1σ2δ2 p∗
11, p22 = −σ1δ1σ2δ2 p∗

21,

and thus, the corresponding matrix potentials become

p =
[

p11 −σ1δ1σ2δ2 p∗
11

p21 −σ1δ1σ2δ2 p∗
21

]
, q =

[ −σ1σ2 p∗
21(−x,−t) −σ1σ2 p∗

11(−x,−t)

δ1δ2 p21(−x,−t) δ1δ2 p11(−x,−t)

]
. (2.30)

This enables us to obtain another class of two-component nonlocal reverse-spacetime integrable mKdV equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p11,t = − β

α3
[p11,xxx − 6σ p11 p∗

21(−x,−t)p11,x − 3σ p21(−x,−t)(|p11|2)x

−3σ p∗
21(−x,−t)(p11 p21)x − 3σ p11(−x,−t)(p∗

11 p21)x],

p21,t = − β

α3
[p21,xxx − 3σ p∗

21(−x,−t)(p11 p21)x − 3σ p21(−x,−t)(p11 p∗
21)x

−6σ p∗
11(−x,−t)p21 p21,x − 3σ p11(−x,−t)(|p21|2)x],

(2.31)

where σ = σ1σ2 = ±1. Obviously, the nonlinearity pattern in these two equations is different from the one in (2.29).
5
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3. Soliton solutions

3.1. Distribution of eigenvalues

Under the group reduction in (2.12) (or (2.13)), we can observe that λ is an eigenvalue of the matrix spectral problems 
in (2.2) if and only if λ̂ = −λ∗ (or λ̂ = λ) is an adjoint eigenvalue, namely, the adjoint matrix spectral problems hold:

iφ̃x = φ̃U = φ̃U (u, λ̂), iφ̃t = φ̃V [2s+1] = φ̃V [2s+1](u, λ̂), (3.1)

where s ≥ 0. As a consequence, we can assume to have eigenvalues λ : μ, −μ∗ , and adjoint eigenvalues λ̂ : −μ∗, μ, 
where μ ∈C.

Moreover, under the group reductions in (2.12) and (2.13), we can see that

φ†(−x,−t,−λ∗)
 and φT (−x,−t, λ)�, (3.2)

will be two adjoint eigenfunctions associated with the same original eigenvalue λ, provided that φ(λ) is an eigenfunction 
of the matrix spectral problems in (2.2) associated with an eigenvalue λ.

3.2. Solution formulation by generalized Riemann-Hilbert problems

We would like to propose a general formulation of soliton solutions to the resulting reduced nonlocal reverse-spacetime 
integrable mKdV equations by solving the corresponding generalized Riemann-Hilbert problems with the identity jump 
matrix. Let N1, N2 ≥ 0 be two integers such that N = 2N1 + N2 ≥ 1.

First, let us take N eigenvalues λk and N adjoint eigenvalues λ̂k as follows:

λk, 1 ≤ k ≤ N : μ1, · · · , μN1 ,−μ∗
1, · · · , −μ∗

N1
, ν1, · · · , νN2 , (3.3)

and

λ̂k, 1 ≤ k ≤ N : −μ∗
1, · · · , −μ∗

N1
,μ1, · · · , μN1 , −ν1, · · · , −νN2 , (3.4)

where μk ∈ C, 1 ≤ k ≤ N1, and νk ∈ R, 1 ≤ k ≤ N2, and assume that their corresponding eigenfunctions and adjoint 
eigenfunctions are defined by

vk, 1 ≤ k ≤ N, and v̂k, 1 ≤ k ≤ N, (3.5)

respectively. Obviously, in this nonlocal case, the following condition:

{λk |1 ≤ k ≤ N} ∩ {λ̂k |1 ≤ k ≤ N} = ∅, (3.6)

doesn’t hold.
Next, we introduce two matrices:

G+(λ) = Im+n −
N∑

k,l=1

vk(M−1)kl v̂l

λ − λ̂l

, (G−)−1(λ) = Im+n +
N∑

k,l=1

vk(M−1)kl v̂l

λ − λk
, (3.7)

where M is a square matrix M = (mkl)N×N , whose entries are defined by

mkl =

⎧⎪⎨
⎪⎩

v̂k vl

λl − λ̂k

, if λl �= λ̂k,

0, if λl = λ̂k,

where 1 ≤ k, l ≤ N. (3.8)

It has been shown in [15] that these two matrices G+(λ) and G−(λ) solve the corresponding generalized Riemann-Hilbert 
problem with the identity jump matrix, i.e., they satisfy

(G−)−1(λ)G+(λ) = Im+n, λ ∈R, (3.9)

provided that an orthogonal condition:

v̂k vl = 0 if λl = λ̂k, where 1 ≤ k, l ≤ N, (3.10)

holds.
Now, let us make an asymptotic expansion

G+(λ) = Im+n + 1
G+

1 + O(
1
2
), (3.11)
λ λ

6
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as λ → ∞, to obtain

G+
1 = −

N∑
k,l=1

vk(M−1)kl v̂l, (3.12)

and substituting this into the matrix spatial spectral problems in (2.2) yields

P = −[�, G+
1 ] = lim

λ→∞[G+(λ),�]. (3.13)

Clearly, this generates N-soliton solutions to the matrix AKNS integrable equations (2.10):

p = α

N∑
k,l=1

v1
k (M−1)kl v̂

2
l , q = −α

N∑
k,l=1

v2
k (M−1)kl v̂

1
l , (3.14)

where for each 1 ≤ k ≤ N , we have split vk and v̂k into vk = ((v1
k )T , (v2

k )T )T and v̂k = (v̂1
k , ̂v2

k ), where v1
k and v̂1

k are column 
and row vectors of dimension m, respectively, and v2

k and v̂2
k are column and row vectors of dimension n, respectively.

When zero potentials are taken, i.e., p = 0 and q = 0 are chosen, the corresponding matrix spectral problems in (2.2)
engender

vk = vk(x, t, λk) = eiλk�x+iλr
k	t wk, 1 ≤ k ≤ N, (3.15)

where wk , 1 ≤ k ≤ N , are constant column vectors. According to the preceding analysis in subsection 3.1, we can take the 
corresponding adjoint eigenfunctions as follows:

v̂k = v̂k(x, t, λ̂k) = v†
k(x, t, λk)
 = ŵke−iλ̂k�x−iλ̂r

k	t, 1 ≤ k ≤ N, (3.16)

where

ŵk = w†
k
, 1 ≤ k ≤ N. (3.17)

Then, the orthogonal condition (3.10) becomes

w†
k
wl = 0 if λl = λ̂k, where 1 ≤ k, l ≤ N. (3.18)

Finally, to present N-soliton solutions for the reduced nonlocal matrix integrable mKdV equations (2.23), we need to 
check whether G+

1 defined by (3.12) satisfies the two involution properties:

(G+
1 )†(−x,−t) = 
G+

1 
−1, (G+
1 )T (−x,−t) = −�G+

1 �−1. (3.19)

If so, the resulting potential matrix P given by (3.13) will satisfy the two nonlocal group reduction conditions in (2.15) and 
(2.16). Further, as a consequence of these conditions, we obtain the following N-soliton solutions:

p = α

N∑
k,l=1

v1
k (M−1)kl v̂

2
l , (3.20)

for the reduced nonlocal reverse-spacetime matrix integrable mKdV equations (2.23). These solutions are reduced from the 
N-soliton solutions in (3.14) for the matrix AKNS equations (2.10).

3.3. Realizing the involution properties

We would now like to check how to realize the involution properties in (3.19).
First, following the preceding analysis in subsection 3.1, the adjoint eigenfunctions v̂k, 1 ≤ k ≤ 2N1, can be determined 

as follows:

v̂k = v̂k(x, t, λ̂k) = v†
k(−x,−t, λk)
 = v T

N1+k(−x,−t,−λ∗
k )�, 1 ≤ k ≤ N1, (3.21)

and

v̂ N1+k = v̂ N1+k(x, t, λ̂N1+k) = v†
N1+k(−x,−t, λN1+k)
 = v T

k (−x,−t, λk)�, 1 ≤ k ≤ N1. (3.22)

These selections in (3.21) and (3.22) generate the conditions on wk, 1 ≤ k ≤ N:{
w T

k (
∗�∗−1 − �
−1) = 0, 1 ≤ k ≤ N1,

w = 
−1�∗w∗ , N + 1 ≤ k ≤ 2N ,
(3.23)
k k−N1 1 1
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where A∗ denotes the complex conjugate of a matrix A. Note that all these conditions aim to satisfy the reduction conditions 
in (2.15) and (2.16).

Next, note that when the solutions to the generalized Riemann-Hilbert problems with the identity jump matrix, defined 
by (3.7) and (3.8), possess the involution properties

(G+)†(−λ∗) = 
(G−)−1(λ)
−1, (G+)T (λ) = �(G−)−1(λ)�−1, (3.24)

the corresponding relevant matrix G+
1 will satisfy the involution properties in (3.19), which are consequences of the group 

reductions in (2.12) and (2.13). Consequently, when the conditions in (3.23) and the orthogonal condition in (3.18) are 
satisfied for wk , 1 ≤ k ≤ N , the formula (3.20), together with (3.7), (3.8), (3.15) and (3.16), presents N-soliton solutions to 
the reduced nonlocal reverse-spacetime matrix integrable mKdV equations (2.23).

Lastly, for the case of m = n/2 = N = 1, let us compute an example of periodic solutions to the reduced nonlocal inte-
grable mKdV equations. We choose λ1 = ν, λ̂1 = −ν, ν ∈R, and set

w1 = (w1,1, w1,2, w1,3)
T , (3.25)

where w1,1, w1,2, w1,3 ∈ R are arbitrary but satisfy w2
1,3 = w2

1,2. These choices yield a class of periodic solutions to the 
nonlocal reverse-spacetime integrable mKdV equation (2.26):

p1 = 2σν(α1 − α2)w1,1 w1,2

w2
1,1ei(α1−α2)νx+i(β1−β2)ν3t + 2σ w2

1,2e−i(α1−α2)νx−i(β1−β2)ν3t
, (3.26)

where ν is an arbitrary real constant, and w1,1 and w1,2 are arbitrary real constants but required to satisfy the condition 
w2

1,1 = 2w2
1,2, generated from the involution properties in (3.19).

4. Concluding remarks

Type (−λ∗, λ) reduced nonlocal reverse-spacetime integrable mKdV equations were generated and their soliton solutions 
were computed through the corresponding generalized Riemann-Hilbert problems with the identity jump matrix, where 
eigenvalues could equal adjoint eigenvalues. The analysis is based on the two nonlocal group reductions of the AKNS ma-
trix spectral problems. The resulting nonlocal integrable mKdV equations are a type of novel nonlocal reverse-spacetime 
integrable equations, which possess one nonlocal factor in the nonlinear terms.

We remark that it would be interesting to explore soliton solutions by other approaches, including the Hirota direct 
method, the Wronskian technique and the Darboux transformation. Another interesting problem is to search for other kinds 
of reduced nonlocal integrable equations associated with other classes of matrix spectral problems (see, e.g., [18]). It is also 
of significant importance to study dynamical properties of diverse exact solutions in the nonlocal case, including lump so-
lutions [21], solitonless solutions [12] and algebro-geometric solutions [4], from a perspective of Riemann-Hilbert problems. 
By contrast, comparatively little has been known about nonlocal integrable equations.
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