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1. Introduction

When studying differential equations, any one solution is called a particular solution, while a general formula for all
possible solutions is called a general solution. General solutions can often be worked out for linear differential equations,
but it is generally impossible to obtain general solutions for nonlinear differential equations, particularly nonlinear partial
differential equations (PDEs). Nevertheless, there is a class of nonlinear PDEs generated from Lax pairs, for which one can
find N-soliton solutions, a kind of general solutions in the case of nonlinear PDEs. Such PDEs are often called soliton
equations [1,21], and can possess lump solutions as well [19].

The Hirota bilinear method [10] was developed for constructing soliton solutions, including lump solutions. The key
elements of the method are Hirota bilinear derivatives [6]:

m

D;nf -8 = (0 — O )" (X)X )w=x= Z(_l)mii(r?)(aif)(a;niig), m>1, (1.1)

i=0
and more generally, bilinear partial derivatives:
(DYDLf - )%, t) = (3 — )™ (3 — 3 )"f(x, )X, )w=gv=c, m,n > 1. (1.2)
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When f = g, we obtain Hirota bilinear expressions:

m
/m . .

Dif-f = Z(—l)’“f'( ; )(3§f)(3§“”f), m=>1, (13)

i=0

and similarly, bilinear partial derivative expressions:
m n
. fm n . i

DDYf -f = ;.:,.Z(;(_UW l ,( l. ) <j)<a;aif)(a:1 oy If), mon > 1, (1.4)

By means of Hirota bilinear expressions, we can define Hirota bilinear equations. Noting that Hirota bilinear expressions
of odd orders are all zero, we take an even polynomial P(x, y, t) in the space variables x, y and the time variable t, and
assume that P(0, 0, 0) = 0, i.e., no constant term is involved. Then formulate an associated Hirota bilinear equation

P(DX7Dy7D[)f'f207 (15)

every term of which is a Hirota bilinear expression. If a nonlinear PDE can be transformed into a Hirota bilinear equation,
we say that it possesses a Hirota bilinear form.
One well-known example of integrable equations in (2+1)-dimensions is the KP equation [11]:

Ni(u) := (ur + 6uly + Upxx)x — Uyy =0, (1.6)
whose Hirota bilinear form is

Bi(f) := (D§ + DDy — D) - f

= 2fowed — Aoy + 3 +fuef —fife = Ff +£7)=0. (1.7)

Under the logarithmic derivative transformation u = 2(In f),,, they are linked together, and the link is Ny(u) = (B1(f)/f? )xx.
The KP equation is associated with the A-type infinite dimensional Lie algebra gl(co) [12] and has N-soliton solutions [22].
The potential KP equation

Uy + Blxllyy + Usgx — Uyy =0 (1.8)

is generated from the KP equation by replacing u with u, and integrating with respect to x once.
Another well-studied integrable equation in (2+1)-dimensions is the BKP equation associated with the B-type infinite
dimensional Lie algebra o(o0) [2]:
Nz(u) = (]SUi + 15uxu3x + qu)x + 5[u3x,y + 3(uxuy)x] + U — 5uyy =0, (19)
and its Hirota bilinear form is
By(f) := (DY + 5D;Dy + DyD; — 5D, )f - f
= 2[fexf — 6fsufi + 15fafuc — 10f5,
+5(f3x,yf - 3fxxyfx + 3fxyfxx _fyf3x)
+fuf = ffe = 5uf — £ =0. (1.10)

This is equivalent to the BKP equation, under the logarithmic derivative transformation u = 2(Inf)y, and the link is
Ny(u) = (By(f)/f?)x. Based on the above Hirota bilinear form, soliton solutions were analyzed for the BKP equation via
the r-function [2] and the Pfaffian technique [8].

In this paper, we would like to consider a linear combination of the potential KP equation and the BKP equation,
and call it a combined pKP-BKP equation. We will present soliton solutions for the combined pKP-BKP equation by
verifying the corresponding Hirota N-soliton condition. An algorithm will be used for comparing degrees of homogeneous
polynomials generated from the Hirota function in N wave vectors, while verifying the Hirota N-soliton condition. Our
result shows that the combined pKP-BKP equation is another example of nonlinear PDEs, which possess N-soliton
solutions, in (2+1)-dimensions.

2. Soliton solutions
Let N be an arbitrary natural number. An N-soliton solution to a Hirota bilinear equation (1.5) is given by [5]:

N
f= Z eXP(Z Mini‘i‘zaijﬂiﬂj)s (2.1)
i=1

n=0,1 i<j
where u = (i1, 42, ..., un), # = 0, 1 means that each y; takes 0 or 1, and
ni = kix + iy — wit +ni0, 1 <i <N, (2.2)
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P(k,‘ — kj)
P(k; + k)’

ni,o’s being arbitrary phase shifts, when the following dispersion relations hold:

e = Aj == 1<i<j=<N, (2.3)
P(kj) =0, k; = (k;, li, —w;), 1<i<N. (2.4)

The fundamental question in soliton theory is what condition can guarantee the existence of N-soliton solitons. To this
end, let us define

n
H(ki.....k)= Y P> ok) [] Ploiki—ojkj)oioj, 1<n <N, (2.5)
o==+1 i=1 1<i<j<n
where o = (01, 02, ..., 0,), and o = £1 means that each o; takes 1 or —1. We call these functions the Hirota functions.

In particular, we have H(Kk;) = P(k;) + P(—k;) = 2P(k;).
Using the basic properties

P(Dy, Dy, D )e" - e = P(k; — k;)e"i ™, (2.6)
and

P(Dy, Dy, D;)e"™f - e™g = e*™P(D,, Dy, D;)f - g, (2.7)
where n;, n; and n, are arbitrary linear functions of x,y and t, defined as in (2.2), we can work out the following
expression [16].
Theorem 2.1. Let f be defined by (2.1), and § mean that no & is involved. Then we have

P(Dy, Dy, D )f - f
(_1)%N(N71) H(kl, l(z, ey kN) e'71+7)2+'“+'lN
ngkjgNP(ki + kJ)

N—1 A )
" Z(—])%(N*”)(N*"*U Z Hll, oo Ky Ky kN)eﬂ1+...+?n1+~.+fnn+<-»+nN (2.8)
"= 1<ij<--<in<N Huﬁfﬁfﬁ'ﬂ P(k; + kj)

N—-1
+y Y et R (D D, Wy i,

n=1 1<ij<--<ip<N

with
n
fiyei = Z exp( Z ifli + Z aijiigg), ni = ni+ Zaiirs
fis...in=0,1 1<i<N 1<i<j<N =1
Hir-in ig(i.in) i dliqin)

where fii..iy = (U1, .., fiy =+ figs -+ -5 n) and [, = 0, 1 means that each ; in fi;,..;, takes 0 or 1.

Based on this theorem, we can see, using a recursive idea, that a Hirota bilinear equation (1.5) has an N-soliton solution
(2.1) if and only if the condition

H(ki,...,ky) =0, 1<n<N, (2.9)

is satisfied. This is called the Hirota condition for an N-soliton solution, or simply, the N-soliton condition [7,20]. There
are very few studies on this Hirota N-soliton condition, due to its high complexity [7].

The one-soliton condition is exactly the dispersion relation: P(k;) = 0, which means that f = 1+ et is a solution. In
addition to the dispersion relations, the two-soliton condition reads

2(P(kq + k2)P(kq — ka) — P(k; — k2)P(k; + k2)) = 0,
which is an identity. Therefore, there always exists a two-soliton solution:

f=1+eM e +Apentn, (2.10)
to a Hirota bilinear equation. When N = 3, we obtain the three-soliton condition [3,4]:

Z P(o1Kky + 02Kk, + 03K3)P(01ky — o2k;)
01,02,03=%1

XP(O'zkz — 0'31(3)P(O'11(] — 03k3) =0,
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which equivalently reads

Z P(o1Kq + 02Kk, + 03Kk3)P(01Ky — o2k3)

(01.02,03)€S
XP(O'zkz — U3l(3)P(U]k] — O'3k3) =0, (211)
where S = {(1,1, 1), (1, 1, =1),(1, —1, 1), (=1, 1, 1)}. The three-soliton solution is given by

f =14+eN +em” 4B +Alzef71+ﬂ2 —I—A136'“+'73
+Ay3e™ T3 4 AppAr3Ar3e" T, (2.12)

It is broadly recognized that the three-soliton condition implies the N-soliton condition, without objective evidence.
If we take a sufficient Hirota N-soliton condition [17]:

P(ki—kj)=0, 1 <i<j<N, (2.13)
we can get the resonant N-soliton solution:

f=14ce" +ce™ + .- 4 cye™, (2.14)
whege the coefficients ¢;’s are arbitrary constants. All wave vectors k;’s leading to resonant solutions form an affine space
" H%o [v]:;r]i.fy the Hirota N-soliton condition, we need to factor out as many common factors out of the Hirota function
H(Kq, ..., Ky) as possible. The following result will be helpful in this regard, which is a direct consequence of the definition

of the Hirota functions.

Theorem 2.2. The Hirota functions defined by (2.5) are all symmetric and even functions in the wave vectors.
Taking k, = +k;, we have
P(O’ik,’ — l(z)P(O','ki + l(]) = P(k, — 1(1 )P(k;‘ + k]) (215)

in each case of o; = %1, by cause of the even property of the polynomial P. An application of this property can yield the
following consequence [16].

Theorem 2.3. If k, = £k;, then we have
N
H(k], ey kN) = 2H(k3, ey kN)P(Zk]) l_IP(kI — k])P(k,‘ + k]). (216)
i=3
This theorem will be used to factor out the required common factors out of the Hirota function H(Kq, ..., ky), when
we prove the Hirota N-soliton condition.
3. Verification of the Hirota N-soliton condition

Let us recall that the wave vectors read
ki = (ki, i, —w;), 1<i=<N,

and we assume that the dispersion relations (2.4) determine all frequencies w; = w(k;,l;), 1 < i < N. Therefore,
P(oik; — ojk;) will be functions of k;, I; and k;, I; only,
First, let us make an assumption that under the substitution

=1k’ 1<i<N, (3.1)

for some integer weight w, P(o;k; — ojk;) and P(01Kq + - - - +onyKy) can be simplified into the following rational functions:

oiojkikiQi(ki, li, k;, lj, 0, 07)

Plock — ok = , 3.2
(el = i) Qulki. b k. ) 52
where Q; and Q, are polynomial functions, and
ki,li,.... kn,In, 01, ..., 0
Poyky + -+ oxky) = Qs(ky, I N, N, 01 N), (3.3)

Qalk1, Ly, ...k, In)

where Q3 and Q4 are polynomial functions. It is crucial for guaranteeing the existence of N-soliton solutions to identify a
factor of kik; in P(o;K; — ojk;).
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Second, by Theorem 2.3, the induction assumption implies that the Hirota function H(kq, ..., ky) will be zero, when
two of the wave vectors are equal, i.e,, k; = K; for a pair (i, j) with 1 < i # j < N. Based on the symmetric property in
Theorem 2.2, we see that under the substitution in (3.1), the Hirota polynomial function H(Kq, ..., ky) is still even with
respect to k;, ; 1 < i < N, when w is an even integer, and it is even only with respect to k;, 1 <i < N, when w is an
odd integer. However, in both cases, we can have the simplified form for the Hirota function H(ky, ..., ky):

H(ki, ... ky) = (kF — kg + (l — [})*hy, for 1 <i<j <N,

where g; and h;; are rational functions of k,, I, 1 <n <N.
Finally, it follows from (3.2) and (3.3) that the Hirota function H(Kq, ..., Ky) can be written as

_ H15i<j5N kizka [n15i<j5N(ki2 - ka)zg + n15i<j5N(li - lj)zh]

H(ky, ..., ky) (3.4)
1 " Qalky. 1. ki ) TT <oy Qalki. I ki, )

under the substitution (3.1), where g and h are homogeneous polynomials of k,, I,, 1 <n < N.If H(kq, ..., ky) # 0, we
can have a nonzero polynomial function g at least. Introduce a new homogeneous polynomial function

H(kq, ..., ky) = H(ki, ..., kn)Qa(k, b, - ., kn, D) 1_[ Qa(ki, Ii, k5, 1;). (3.5)

1<i<j<N

Then, from the relation

Ak, ....ke)= [] kKL J] R =KPg+ ] @—1)°h, (3.6)

1<i<j<N 1<i<j<N 1<i<j<N

we see that the degree of the homogeneous polynomial I:I(kl, ..., Kky) is at least 2N(N — 1) + 2N(N — 1) = 4N(N — 1),
if H(kq,...,ky) # 0. In other words, if the degree of the polynomial H(Kq, ..., Kky) is less than 4N(N — 1), then
H(Kq, ..., ky) = 0. Now, we can say, based on

H(ky, ..., Ky)
=Y ki bk v, onon) [ ooikikiQuki, b ki, 1, 01, o), (3.7)
o=%1 1<i<j<N
that the final step to completing the proof is to work out Q; and Qs to determine if the degree of I:I(k], ..., Kky) is less
than 4N(N — 1). Otherwise, we will have H(ky, ..., ky) = 0, which is what we need to prove.
Let us now check the situation in the combined pKP-BKP equation. The equation is associated with
P(x,y, t) = a1x® + axx* + a5y + asx® + asxt + agy?, (3.8)

where a5 # 0, and the combined bilinear pKP-BKP equation reads
B(f) == (a1D§ + a>D} + asD;Dy + asD; + asD,D; + agD3)f - f
= 2[a1(forf — 6fsufi + 15fafix — 10f35,)
+ax(faf — A + 33) + a3s(faxsf — fooks + oofx — fifsx)
+as(fof = F2) + as(fef —fife) + as(Ff — 7)1 = 0. (3.9)
This is equivalent to the combined pKP-BKP equation:
N(u) = a;(15u; + 15Ui3, + Usy )y + A2(6liylly + Usy)
+asusey + 3(uxtty)x] + Aalixx + A5ty + dsllyy = 0, (3.10)

under the logarithmic derivative transformation u = 2(Inf),. The link is N(u) = (B(f)/f?)x. To guarantee the nonlinearity
of this equation, we impose that a§ + a3 + a3 # 0.
A direct computation can show the following result.

Theorem 3.1. Let as # 0 and a% + a% + a§ # 0. The combined bilinear pKP-BKP equation (3.9) or the combined nonlinear

pKP-BKP equation (3.10) possesses the three-soliton solution (2.12) under P(k;) = 0, 1 <i < 3, if and only ifa% +5a1a6 = 0.
Due to as # 0, it is direct to work out that
Cwkd 4 axk? + ask3l; + ask; + agkil?

wj , 1<i<N, (3.11)
as

and
Q; = —5[a1(k! — o0k k; + 4ki2kj2 - 3o,~c7jk,~l<]3 + k]‘.‘)
+éa3[—30‘,’0‘j(11 + lj)kikj + (21, 4+ l])klz + (l, + le)ka]
+2ay(0iki — ojk; ) — Lag(li — )],
degQ3 <6, =1, @4 =1,

(3.12)
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under the substitution (3.1) with w = 1. Then, if H(ky, ..., Ky) # 0, we know that based on (3.7), the degree of the
polynomial H(Kq, ..., Ky) (= H(Kq, ..., Ky)) is less than 3N(N — 1)+ 6, which could not be greater than 4N(N — 1) when
N > 4. Therefore, it follows from Theorem 3.1 that we have H(Ky, ...,ky) = 0, N > 1. The proof is then finished. We,
therefore, arrive at the following conclusion.

Theorem 3.2. Let as # 0 and aj + a3 + a3 # 0. The combined bilinear pKP-BKP equation (3.9) or the combined nonlinear
pKP-BKP equation (3.10) possesses the N-soliton solution (2.1) under the dispersion relations (2.4) if and only ifa% +5a;a5 = 0.

Taking a; = a3 = a4 = 0,a;, = a5 = 1, and aqg = —1, we obtain the potential KP equation (1.8). Its N-soliton
solution has been presented [22]. Taking a; = as = 1, a3 =5, a4 = 0, a, = a4 = 0, and ag = —5, we obtain the BKP
equation (1.9) [2]. The N-soliton solution of the BKP equation has also been analyzed by using the r-function [2], the
Pfaffian technique [8] and the Gel'fand-Levitan-Marchenko integral equation [9]. The case that ag = 0 (and so a3 = 0) is
reduced to a generalized KdV equation [16].

4. Concluding remarks

We have introduced a combined pKP-BKP equation and verified its Hirota N-soliton condition. Therefore, soliton
solutions under general dispersion relations have been presented for the combined pKP-BKP equation.

It would be interesting to see if there are any other bilinear equations in (2+1)-dimensions, to which there exist
N-soliton solutions. Symbolic computations and theoretical proofs could be used together to look for new equations in
the (2+1)-dimensional case or even higher-dimensional cases.

The Hirota bilinear derivatives have been generalized to work with bilinear differential equations involving odd-order
derivatives. The generalized bilinear D, x-operators are defined by [13]:

m n
m n - Lo .o
DDy g =2 3 ( l. ) ( ) oo/ I oialg). mon =0, m+n=>1, (4.1)
i=0 j=0 J
where p is an arbitrary natural number as well, and the powers of «,, are determined by
af = (=1Y", i=r(i)mod p, i >0, (42)

with 0 < r(i) < p. The patterns of those powers ocliJ fori=1,2,3,...are

p:3: _7+7+7_7+s+5-'«;
p=5: —+,—+,+ -+ -+ +, ..
p=7: — 4+, —+, -+ + -+t =
For example, when p = 3 and p = 5, we have the generalized bilinear derivatives Ds x and Ds y, respectively. The cases

of p = 2k, k € N, present exactly the same Hirota case. The corresponding generalized bilinear expressions exhibit new
characteristics. For instance, we have

D3,f -f = 2fwf, D3.f -f =6fg, (4.3)

which is completely different from the results in the Hirota case. Naturally, there are other generalized bilinear derivatives
such as Dg x and D15 4, and it is interesting to see if there exist any relations with Ds 4. Actually, we can define two larger
classes of generalized bilinear derivatives:

m

m\ ; o
Dloromaf & = Z(i)“élaéz(f’f o), m = 1, (4.4)
i=0
and
" /m
D(Tu;pz),xf &= Z ( i >0‘$7!“;;2(3f171f)(3;g), m>1, (4.5)
i=0

by using two arbitrary natural numbers, p; and p-.
We point out that resonant N-solitons have been presented for generalized bilinear equations [14] or trilinear
equations [15]. A (2+1)-dimensional generalized bilinear equation

P(Dp,X! Dp,y, Dp,t)f f =0 (4-6)
possesses a resonant N-soliton solution [14]:

f: 1 +Cle771 +C2e'72 _I_...+CNe'7N (47)
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where ¢;'s are arbitrary constants and n; = kix + liy — wit + 10, 1 <i <N, if and only if
P(k; + apkj) + P(Kj + opki) =0, 1 <i<j <N, (4.8)

where k; = (k;, l;, —w;), 1 < i < N. One interesting question is whether there is any generalized bilinear equation that
has general N-soliton solutions, for instance,

P(D3x, D3)f - f =0 or P(D3x, D3y, D3;) = 0,

with p = 3, in (1+1)- or (2+1)-dimensions. We need to determine first what a generalized N-soliton condition should be,
i.e., an N-soliton condition for a generalized bilinear equation. Any result will amend the basic theory of bilinear equations
possessing soliton solutions beautifully.
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