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a b s t r a c t

The paper deals with the inverse scattering transforms for nonlocal complex reverse-
spacetime multicomponent integrable modified Korteweg–de Vries (mKdV) equations.
We establish associated Riemann–Hilbert problems and determine their solutions by
the Sokhotski–Plemelj formula. The inverse scattering problems consist of Gelfand–
Levitan–Marchenko type equations for the generalized matrix Jost solutions and the
recovery formula for the potential. When reflection coefficients are zero, the corre-
sponding Riemann–Hilbert problems yield soliton solutions to the nonlocal complex
reverse-spacetime mKdV equations.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Nonlocal integrable equations have been studied very recently, including nonlocal scalar nonlinear Schrödinger
(NLS) equations [3,4] and nonlocal scalar modified Korteweg–de Vries (mKdV) equations [5,17]. Their inverse scattering
transforms were established under zero or nonzero boundary conditions [2,4,17]. The N-soliton solutions were generated
from the Riemann–Hilbert problems [22,34], via Darboux transformations [16,23], and through the Hirota bilinear method
[14]. A few multicomponent generalizations [5,7,13,22,31] were also presented and analyzed.

We will apply the Riemann–Hilbert technique [30] to study the inverse scattering transforms and particularly generate
soliton solutions. Various integrable equations, such as the multiple wave interaction equations [30], the general coupled
nonlinear Schrödinger equations [32], the Harry Dym equation [33], and the generalized Sasa–Satsuma equation [10],
have been studied by analyzing associated Riemann–Hilbert problems. In this paper, we would like to propose a kind of
multicomponent nonlocal complex reverse-spacetime mKdV equations, and construct their inverse scattering transforms
and soliton solutions through establishing associated Riemann–Hilbert problems.

The rest of the letter is structured as follows. In Section 2, we make a kind of nonlocal group reductions to generate
nonlocal complex reverse-spacetime mKdV equations. In Section 3, we establish associated Riemann–Hilbert problems and
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etermine their solutions by the Sokhotski–Plemelj formula to present the inverse scattering transforms. In Section 4, we
onstruct soliton solutions from the reflectionless transforms, whose Riemann–Hilbert problems have the identity jump
atrix. In the last section, we give a conclusion and some concluding remarks.

. Nonlocal complex reverse-spacetime mKdV equations

Let n be an arbitrary natural number. Assume that λ stands for a spectral parameter, and u, a 2n-dimensional potential

u = u(x, t) = (p, qT )T , p = (p1, p2, . . . , pn), q = (q1, q2, . . . , qn)T . (2.1)

et us consider the multicomponent AKNS matrix spectral problems (see, e.g., [26]):

−iφx = Uφ = U(u, λ)φ, −iφt = Vφ = V (u, λ)φ, (2.2)

with the Lax pair

U = λΛ+ P, V = λ3Ω + Q . (2.3)

The involved four matrices are defined by Λ = diag(α1, α2In), Ω = diag(β1, β2In),

P =

[
0 p
q 0

]
, (2.4)

and

Q =
β

α
λ2

[
0 p
q 0

]
−
β

α2 λ

[
pq ipx

−iqx −qp

]
−
β

α3

[
i(pqx − pxq) pxx + 2pqp
qxx + 2qpq i(qpx − qxp)

]
, (2.5)

here α1, α2, β1, β2 are arbitrary real constants, and α = α1−α2 and β = β1−β2. It is clear that if pj = qj = 0, 2 ≤ j ≤ n,
he matrix spectral problem (2.2) reduces to the original AKNS one [1]. The compatibility condition of the spectral
roblems in (2.2), i.e., the zero curvature equation

Ut − Vx + i[U, V ] = 0, (2.6)

resents the multicomponent standard mKdV equations

pt = −
β

α3 (pxxx + 3pqpx + 3pxqp), qt = −
β

α3 (qxxx + 3qxpq + 3qpqx). (2.7)

We take a specific kind of nonlocal group reductions for the spectral matrix

U†(−x,−t,−λ∗) = −CU(x, t, λ)C−1, C =

[
1 0
0 Σ

]
, Σ†

= Σ, (2.8)

where † denotes the Hermitian transpose and ∗, the complex conjugate. This requires

P†(−x,−t) = −CP(x, t)C−1, (2.9)

where Σ is a constant invertible Hermitian matrix. This Eq. (2.9) is equivalent to

q(x, t) = −Σ−1p†(−x,−t). (2.10)

Under the reduction (2.10), one has

V †(−x,−t,−λ∗) = −CV (x, t, λ)C−1, Q †(−x,−t,−λ∗) = −CQ (x, t, λ)C−1.

These imply that we can apply the group reductions in (2.9) to the zero curvature equation (2.6) to get reduced equations.
It is now clear that the multicomponent standard mKdV equations (2.7) become the following multicomponent nonlocal
complex reverse-spacetime mKdV equations

pt (x, t) = −
β

α3 [pxxx(x, t) − 3p(x, t)Σ−1p†(−x,−t)px(x, t) − 3px(x, t)Σ−1p†(−x,−t)p(x, t)]. (2.11)

When n = 1, we can obtain a pair of scalar examples [5,17]:

pt (x, t) = pxxx(x, t) − 6σp(x, t)p∗(−x,−t)px(x, t), σ = ±1. (2.12)

3. Inverse scattering transforms

Let q be determined by (2.10). In what follows, we discuss the scattering and inverse scattering for the nonlocal complex
reverse-spacetime mKdV equations (2.11) by the Riemann–Hilbert approach [30] (see also [6,11] for the local case). The
results will be the basis for generating soliton solutions later.
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3.1. Distribution of eigenvalues

Suppose that all the potentials rapidly vanish when x → ±∞ or t → ±∞. Upon setting P̌ = iP and Q̌ = iQ , we
btain an equivalent pair of matrix spectral problems to (2.2):

ψx = iλ[Λ, ψ] + P̌ψ, (3.1)

ψt = iλ3[Ω, ψ] + Q̌ψ, (3.2)

hrough a generalized Liouville’s formula [24], we can have (detψ)x = 0, since tr(P̌) = tr(Q̌ ) = 0. The adjoint equations
f (2.2) and the adjoint equations of (3.1) and (3.2) read

iφ̃x = φ̃U, iφ̃t = φ̃V , (3.3)

nd

iψ̃x = λ[ψ̃,Λ] + ψ̃P, iψ̃t = λ3[ψ̃,Ω] + ψ̃Q , (3.4)

espectively.
Let ψ(λ) be a matrix eigenfunction of the spatial and temporal spectral problems (3.1) and (3.2), associated with an

igenvalue λ. Then, Cψ−1(x, t, λ) is a matrix adjoint eigenfunction associated with the same eigenvalue λ. Actually, under
he nonlocal group reductions in (2.9), we can have

i[ψ†(−x,−t,−λ∗)C]x = i[−(ψx)†(−x,−t,−λ)C]

= i{−i(−λ∗)[Λ, ψ(−x,−t,−λ∗)] − P̌(−x,−t)ψ(−x,−t,−λ∗)}†C
= i{i(−λ)[ψ†(−x,−t,−λ∗),Λ] − ψ†(−x,−t,−λ∗)P̌†(−x,−t)}C
= λ[ψ†(−x,−t,−λ∗)C,Λ] + ψ†(−x,−t,−λ∗)C[−C−1P†(−x,−t)C]

= λ[ψ†(−x,−t,−λ∗)C,Λ] + ψ†(−x,−t,−λ∗)CP(x, t),

and similarly, we have

i[ψ†(−x,−t,−λ∗)C]t = λ3[ψ†(−x,−t,−λ∗)C,Ω] + ψ†(−x,−t,−λ∗)CQ (x, t).

It then follows that

ψ̃(x, t, λ) = ψ†(−x,−t,−λ∗)C (3.5)

resents another matrix adjoint eigenfunction associated with the same original eigenvalue λ, i.e., ψ†(−x,−t,−λ∗)C
olves the adjoint spectral problems in (3.4).
Therefore, upon observing the asymptotic properties for ψ at infinity of x or t , the uniqueness of solutions tells that

ψ†(−x,−t,−λ∗) = Cψ−1(x, t, λ)C−1, (3.6)

f ψ → In+1, x or t → +∞ or − ∞. It then follows that if λ is an eigenvalue of (3.1) and (3.2) (or (3.4)), then −λ∗ will
e another eigenvalue of (3.1) and (3.2) (or (3.4)), and the property (3.6) holds.

.2. Riemann-Hilbert problems

We establish a class of associated Riemann–Hilbert problems with the variable x. In order to facilitate the expression
elow, we assume that

α = α1 − α2 < 0, β = β1 − β2 < 0. (3.7)

n the scattering problem, let us now introduce the two matrix eigenfunctions ψ±(x, λ) of (3.1) with the following
symptotic conditions

ψ±
→ In+1, when x → ±∞, (3.8)

espectively. It follows from (detψ)x = 0 or directly from the generalized Liouville’s formula [24] that detψ±
= 1 for all

x ∈ R. Because

φ±
= ψ±E, E = eiλΛx, (3.9)

re both matrix eigenfunctions of the x-part of (2.2), they must be linearly dependent, and consequently, we obtain

ψ−E = ψ+ES(λ), λ ∈ R, (3.10)

here S(λ) = (sjl)(n+1)×(n+1) is called the scattering matrix. Note that det S(λ) = 1, thanks to detψ±
= 1.

We point out that we can turn the x-part of (2.2) into the following Volterra integral equations for ψ± [30]:

ψ−(λ, x) = In+1 +

∫ x

−∞

eiλΛ(x−y)P̌(y)ψ−(λ, y)eiλΛ(y−x) dy, (3.11)

ψ+(λ, x) = In+1 −

∫
∞

eiλΛ(x−y)P̌(y)ψ+(λ, y)eiλΛ(y−x) dy, (3.12)

x
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here the asymptotic conditions (3.8) have been used. Now, the theory of Volterra integral equations shows that the
igenfunctions ψ± could exist and allow analytical continuations off the real line λ ∈ R as long as the integrals on the

right hand sides converge.
First, in order to determine the two generalized matrix Jost solutions, T+ and T−, which are analytic in C+ and C−

(the upper and lower half-planes) and continuous in C̄+ and C̄− (the closed upper and lower half-planes), respectively,
we denote

ψ±
= (ψ±

1 , ψ
±

2 , . . . , ψ
±

n+1), (3.13)

where ψ±

j denotes the jth column of φ± (1 ≤ j ≤ n + 1). Then we can take the generalized matrix Jost solution T+ as

T+
= T+(x, λ) = (ψ−

1 , ψ
+

2 , . . . , ψ
+

n+1) = ψ−H1 + ψ+H2, (3.14)

hich is analytic in λ ∈ C+ and continuous in λ ∈ C̄+. Here the two matrices H1 and H2 are

H1 = diag(1, 0, . . . , 0  
n

), H2 = diag(0, 1, . . . , 1  
n

). (3.15)

Second, to determine the other generalized matrix Jost solution T−, i.e., the analytic counterpart of T+ in the lower
alf-plane C−, we take advantage of the adjoint matrix spectral problems. Note that the inverse matrices φ̃±

= (φ±)−1

and ψ̃±
= (ψ±)−1 provide those matrix eigenfunctions to the two adjoint equations. Upon stating ψ̃± as

ψ̃±
= (ψ̃±,1, ψ̃±,2, · · · , ψ̃±,n+1)T , (3.16)

here ψ̃±,j denotes the jth row of ψ̃± (1 ≤ j ≤ n + 1), we can show by similar arguments that the generalized matrix
ost solution T− can be taken as the adjoint matrix solution of the x-part of (3.4), i.e.,

T−
= (ψ̃−,1, ψ̃+,2, · · · , ψ̃+,n+1)T = H1ψ̃

−
+ H2ψ̃

+
= H1(ψ−)−1

+ H2(ψ+)−1, (3.17)

hich is analytic for λ ∈ C− and continuous for λ ∈ C̄−.
Based on detψ±

= 1 and the definitions of T± and S(λ), we can know that

det T+(x, λ) = s11(λ), det T−(x, λ) = ŝ11(λ), (3.18)

here S−1(λ) = (S(λ))−1
= (ŝjl)(n+1)×(n+1). This leads to

lim
x→+∞

T+(x, λ) =

[
s11(λ) 0

0 In

]
, λ ∈ C̄+

; lim
x→−∞

T−(x, λ) =

[
ŝ11(λ) 0

0 In

]
, λ ∈ C̄−. (3.19)

ow we introduce two unimodular generalized matrix Jost functions⎧⎪⎪⎪⎨⎪⎪⎪⎩
G+(x, λ) = T+(x, λ)

[
s−1
11 (λ) 0
0 In

]
, λ ∈ C̄+,

(G−)−1(x, λ) =

[
ŝ−1
11 (λ) 0
0 In

]
T−(x, λ), λ ∈ C̄−,

(3.20)

nd then formulate the required matrix Riemann–Hilbert problems on the real line for the nonlocal complex reverse-
pacetime mKdV equations (2.11) as follows:

G+(x, λ) = G−(x, λ)G0(x, λ), λ ∈ R, (3.21)

ith the jump matrix

G0(x, λ) = E
[

ŝ−1
11 (λ) 0
0 In

]
S̃(λ)

[
s−1
11 (λ) 0
0 In

]
E−1. (3.22)

ere the matrix S̃(λ) = (s̃jl)(n+1)×(n+1) has the triangular decomposition:

S̃(λ) = (H1 + H2S(λ))(H1 + S−1(λ)H2), (3.23)

nd can be worked out:

s̃1,j+1 = ŝ1,j+1, s̃j+1,1 = sj+1,1, 1 ≤ j ≤ n, s̃jj = 1, 1 ≤ j ≤ n + 1, s̃jl = 0, otherwise. (3.24)

e see that the jump matrix G0 carries all basic scattering data from the scattering matrix S(λ). Also, the Volterra integral
quations (3.11) and (3.12) guarantee the canonical normalization conditions:

G±(x, λ) → In+1, when λ ∈ C̄±
→ ∞, (3.25)

or the presented Riemann–Hilbert problems.
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From the property of eigenfunctions in (3.6), we can have

(G+)†(−x,−t,−λ∗) = C(G−)−1(x, t, λ)C−1. (3.26)

Based on this, we know that the jump matrix G0 satisfies

G†
0(−x,−t,−λ∗) = CG0(x, t, λ)C−1. (3.27)

3.3. Evolution of the scattering data

To complete the direct scattering transforms, let us compute the derivative of (3.10) with time t and use the temporal
matrix spectral problem (3.2) that ψ± satisfy.

Then we can see that the scattering matrix S will satisfy an evolution law:

St = iλ3[Ω, S]. (3.28)

This generates the time evolution for the time-dependent scattering coefficients:{
s12 = s12(0, λ)eiβλ

3t , s13 = s13(0, λ)eiβλ
3t , · · · , s1,n+1 = s1,n+1(0, λ)eiβλ

3t ,

s21 = s21(0, λ)e−iβλ3t , s31 = s31(0, λ)e−iβλ3t , · · · , sn+1,1 = sn+1,1(0, λ)e−iβλ3t ,

and all other scattering coefficients are independent of the time variable t .

3.4. Gelfand–Levitan–Marchenko type equations

To determine the generalized matrix Jost solutions, let us rewrite the Riemann–Hilbert problems in (3.21) as{
G+

− G−
= G−v, v = G0 − In+1, on R,

G±
→ In+1 as λ ∈ C̄±

→ ∞.
(3.29)

Let G(λ) = G±(λ), if λ ∈ C±. Assume that G has simple poles off the real line R: {µj}
R
j=1, where R is an arbitrary natural

number. We now set

G̃±(λ) = G±(λ) −

R∑
j=1

Gj

λ− µj
, λ ∈ C̄±

; G̃(λ) = G̃±(λ), λ ∈ C±
; (3.30)

where Gj is the residue of G at λ = µj, i.e.,

Gj = res(G(λ), µj) = lim
λ→µj

(λ− µj)G(λ), 1 ≤ j ≤ R. (3.31)

Then, we can have{
G̃+

− G̃−
= G+

− G−
= G−v, on R,

G̃±
→ In+1 as λ ∈ C̄±

→ ∞.
(3.32)

Directly applying the Sokhotski–Plemelj formula [9], we obtain the solutions

G̃(λ) = In+1 +
1

2π i

∫
∞

−∞

G−v(ξ )
ξ − λ

dξ, λ ∈ C \ R. (3.33)

Further, computing the limit as λ → µl leads to

lhs = lim
λ→µl

G̃ = Fl −
R∑
j̸=l

Gj

µl − µj
, rhs = In+1 +

1
2π i

∫
∞

−∞

(G−v)(ξ )
ξ − µl

dξ,

where

Fl = lim
λ→µl

(λ− µl)G(λ) − Gl

λ− µl
, 1 ≤ l ≤ R, (3.34)

and accordingly, we obtain the Gelfand–Levitan–Marchenko type equations

In+1 − Fl +
R∑
j̸=l

Gj

µl − µj
+

1
2π i

∫
∞

−∞

(G−v)(ξ )
ξ − µl

dξ = 0, 1 ≤ l ≤ R. (3.35)

These equations determine solutions to the associated Riemann–Hilbert problems, namely the generalized matrix Jost
solutions.
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.5. Recovery of the potential

To recover the potential matrix P from the generalized matrix Jost solutions, we expand

G+(x, t, λ) = In+1 +
1
λ
G+

1 (x, t) + O(
1
λ2

), λ → ∞. (3.36)

Upon plugging this asymptotic expansion into the matrix spectral problems (3.1), the O(1) terms tell

P = lim
λ→∞

λ[G+(λ),Λ] = −[Λ,G+

1 ]. (3.37)

We have to check an involution property for G+

1 :

(G+

1 )
†(−x,−t) = CG+

1 (x, t)C
−1. (3.38)

This way, we obtain the solutions to the nonlocal complex reverse-spacetime mKdV equations (2.11):

pj = −α(G+

1 )1,j+1, 1 ≤ j ≤ n. (3.39)

where G+

1 = ((G+

1 )jl)(n+1)×(n+1).
This finishes the inverse scattering procedure from the scattering matrix S(λ), through the jump matrix G0(λ) and

the solution {G+(λ),G−(λ)} to the associated Riemann–Hilbert problems, to the potential matrix P . The final potential P
presents solutions to the nonlocal complex reverse-spacetime mKdV equations (2.11).

4. Soliton solutions

Let N ∈ N be arbitrary. Assume that s11 has N zeros {λk ∈ C, 1 ≤ k ≤ N}, and ŝ11 has other N zeros {λ̂k ∈ C, 1 ≤

k ≤ N}. We also assume that all these zeros, λk and λ̂k, 1 ≤ k ≤ N , are geometrically simple. Then, each of ker T+(λk),
1 ≤ k ≤ N , contains only a single basis column vector, denoted by vk, 1 ≤ k ≤ N; and each of ker T−(λ̂k), 1 ≤ k ≤ N , a
single basis row vector, denoted by v̂k, 1 ≤ k ≤ N:

T+(λk)vk = 0, v̂kT−(λ̂k) = 0, 1 ≤ k ≤ N. (4.1)

The Riemann–Hilbert problems with the identity jump matrix, the canonical normalization conditions in (3.25) and
the zero structures given in (4.1) can be solved explicitly [18,30], and consequently, we can recover the potential matrix
P , which presents soliton solutions.

The choice of the identity jump matrix G0 = In+1 in the Riemann–Hilbert problems in (3.21) can be made under the
conditions si1 = ŝ1i = 0, 2 ≤ i ≤ n + 1, i.e., zero reflection coefficients in the scattering problem. Solutions to this kind
of special Riemann–Hilbert problems can be formulated as follows:

G+(λ) = In+1 −

N∑
k,l=1

vk(M−1)klv̂l
λ− λ̂l

, (G−)−1(λ) = In+1 +

N∑
k,l=1

vk(M−1)klv̂l
λ− λk

, (4.2)

where M = (mkl)N×N is a square matrix whose entries are determined by

mkl =

⎧⎨⎩
v̂kvl

λl − λ̂k
, if λl ̸= λ̂k,

0, if λl = λ̂k,

1 ≤ k, l ≤ N, (4.3)

nd an orthogonal condition

v̂kvl = 0, if λl = λ̂k, 1 ≤ k, l ≤ N, (4.4)

s required.
To satisfy the involution property (3.38), we arbitrarily take N zeros of det T+(λ): {λk ∈ C}

N
k=1, but determine N zeros

f det T−(λ) as follows:

λ̂k =

{
−λ∗

k, if λk ̸∈ iR, 1 ≤ k ≤ N,
any value ∈ iR, if λk ∈ iR, 1 ≤ k ≤ N. (4.5)

hen, ker T+(λk) and ker T−(λk), 1 ≤ k ≤ N , can be determined by

vk(x, t) = vk(x, t, λk) = eiλkΛx+iλ3kΩtwk, 1 ≤ k ≤ N, (4.6)

nd

v̂k(x, t) = v̂k(x, t, λ̂k) = v
†
k (−x,−t,−λ∗

k)C = w
†
ke

−iλ̂kΛx−iλ̂3kΩtC, 1 ≤ k ≤ N, (4.7)

espectively, where wk, 1 ≤ k ≤ N , are arbitrary column vectors but need to satisfy

w
†
kCwl = 0, if λl = λ̂k, 1 ≤ k, l ≤ N, (4.8)

his is a consequence of the orthogonal condition (4.4), and the case of λ = λ̂ occurs only when λ ∈ iR and λ̂ = −λ∗.
k k k k k
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Finally, under the orthogonal condition (4.8), we need to show that the solutions to the specific Riemann–Hilbert
problems, determined by (4.2) and (4.3), satisfy (3.26), which implies that G+

1 satisfies the reduction condition (3.38).
Then, as a consequence, we can see that the nonlocal complex reverse-spacetime mKdV equations (2.11) possess the
following N-soliton solutions:

pj = α

N∑
k,l=1

vk,1(M−1)klv̂l,j+1, 1 ≤ j ≤ n, (4.9)

where M is defined by (4.3), and vk = (vk,1, vk,2, . . . , vk,n+1)T and v̂k = (v̂k,1, v̂k,2, . . . , v̂k,n+1) are determined by (4.6) and
(4.7), respectively.

5. Concluding remarks

This paper proposed a class of nonlocal complex reverse-spacetime multicomponent modified Korteweg–de Vries
(mKdV) equations from a kind of nonlocal group reductions, and constructed their inverse scattering transforms. The
basic tool is the Riemann–Hilbert approach to matrix spectral problems. We determined solutions to the Riemann–Hilbert
problems by applying the Sokhotski–Plemelj formula, and systematically presented soliton solutions to the nonlocal
complex reverse-spacetime mKdV equations, based on the reflectionless transforms (or equivalently the Riemann–Hilbert
problems with the identity jump matrix).

We point out that it would be very interesting to explore connections among soliton structures formulated via different
approaches such as the Hirota direct method [15], the Wronskian technique [8,25] and the Darboux transformation [29]. It
would also be important to generate different kinds of exact solutions in nonlinear dispersive waves, for example, lump
solutions [27,28,35], Rossby wave solutions [36], solitonless solutions [20,21] and algebro-geometric solutions [12,19],
through the Riemann–Hilbert technique.
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