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1. Introduction

A wide variety of significant physical phenomena is modeled by ordinary or partial differential equations [27].
Generally, the corresponding Cauchy problems are not solvable explicitly, and thus asymptotic expansions or limiting
behaviors of solutions are apparently important. Regular perturbation, even with multiple scales, keeps integrable
properties invariant (see, e.g., [49,50]). More difficult and interesting situations often arise when a regular perturbation
expansion does not work, for which singular perturbation methods are required [27]. Sometimes, simple expansions exist
but expansions of different kinds are valid in different regions of space and/or time. In such cases, boundary layers analysis
of matched asymptotic expansions should be developed. We will focus on leading long-time asymptotics for nonlinear
integrable systems in the physically interesting region x = O(t), where t and x are the time and space variables.

In soliton theory, significant work on long-time asymptotics of integrable systems was conducted by Manakov [60]
and Ablowitz and Newell [2]. For the leading long-time asymptotics of the nonlinear Schrédinger equation (NLS) in the
physically interesting region x = O(t), Zakharov and Manakov [77] provided precise expressions, depending explicitly on
initial data. The method of Zakharov and Manakov takes an ansatz for the asymptotic form of the solution and utilizes some
techniques which are removed from the classical framework of Riemann-Hilbert (RH) problems. Ablowitz and Segur [3]
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presented a complete description for the leading asymptotics for the Cauchy problem of the Korteweg-de Vries (KdV)
equation. Segur and Ablowitz [68] started from a similarity solution form to work out the leading two terms in each of
the asymptotic expansions for the amplitude and phase for the nonlinear Schrédinger equation, using conservation laws.
Its [25] began to use the stationary phase idea to conjugate the RH problem associated with the NLS equation, up to small
errors which decay as t — o0, by an appropriate parametrix to a model RH problem solvable by the technique from the
theory of isomonodromic deformations. Deift and Zhou [12] determined the long-time asymptotics of the modified KdV
equation, by deforming an associated oscillatory RH problem systematically and vigorously, in the spirit of the stationary
phase method. Their technique, further developed in [10,13] and also in [11], opens a nonlinear steepest descent method to
evaluate long-time asymptotics of integrable systems through estimating solutions to oscillatory RH problems generating
from matrix spectral problems. McLaughlin and Miller [62] generalized the steepest descent method to the case when
the jump matrix fails to be analytic and their method is now called a nonlinear 9 steepest descent method. A crucial
ingredient of the Deift-Zhou approach is the asymptotic analysis of singular integrals on contours by deformations.

There have been many applications of the nonlinear steepest descent method to long-time asymptotics of integrable
systems, including the KdV equation [4,20], the NLS equation [9,26], the sine-Gordon equation [6], the derivative nonlinear
Schrédinger equation [28], the Camassa-Holm equation [64], the Kundu-Eckhaus equation [72] and the Fokas-Lenells
equation [76]. One important factor in the nonlinear steepest descent method is the order of involved spectral matrices
in the formulation of RH problems or equivalently the inverse scattering transformation. However, only 2 x 2 spectral
matrices and their RH problems have been systematically analyzed (see, e.g., [71]), which engender algebro-geometric
solutions to integrable systems expressed by hyperelliptic functions [19]. There have been very few 3 x 3 spectral
matrices, whose long-time asymptotics or oscillatory RH problems are considered (see, e.g., [ 18,65]) and whose associated
inverse scattering transforms are successfully formulated (see, e.g., [45,74]). Associated trigonal curves show much more
diverse asymptotic behaviors and algebro-geometric solutions than hyperelliptic curves [39,40]. To best of our knowledge,
there has been no application example of the nonlinear steepest descent method to the 4th-order or higher-order matrix
spectral problems.

In this paper, we would like to consider a specific example of 4 x 4 matrix spectral problems

-k p1 p2 D3
o _ | op; k 0 O
I¢X - U¢’ U - Up; 0 k 0 k) (1.1)

op; 0 0 k

where i = v/—1, o = +1, k is the spectral parameter, p = (p1, p2, p3) is a vector potential, and the superscript * denotes
the complex conjugate. This spectral problem generates a three-component coupled NLS system:

ipjc + Do + 20 (ID1 1 + Ip2/* + IpsP)py =0, 1<j <3, (1.2)
where |pj|2 = pjpjf‘, 1 < j < 3. The two values 0 = +1 correspond to the focusing and defocusing cases, respectively.
There exist rogue-wave solutions in the focusing case [78], but there do not in the defocusing case. We will compute
the leading asymptotics of this coupled NLS system by analyzing an associated oscillatory RH problem in the physically
interesting region x = O(t). RH problems have been made for an unreduced coupled NLS system in [48]. We point out
that this coupled NLS system (1.2) has a slightly different matrix spectral problem from the one for the multiple wave
interaction equations [56].

By |[M|, let us denote an equivalent matrix norm for a matrix M (may not be square):

M| = [r(MtM)]2, (13)

where M denotes the Hermitian transpose of M, and 83 = {(fi, 2, f3)Ifi € S, 1 <i < 3}, where S denotes the Schwartz
space. The primary result of the paper is as follows.

Theorem 1.1. Let p(x, t) = (p1(x, t), p2(x, t), p3(X, t)) solves the Cauchy problem of the three-component coupled NLS system
(1.2) with the initial data in S>. Suppose that y(k) = (y1(k), y2(k), y3(k)) is the reflection coefficient vector in S* associated
with the initial data and satisfies

y*(—=k*) = y(k), sup|y(k)| < oo, wheno =1,
keR
or

y*(=k*) = y(k), sup|y(k) <1, wheno = —1.
keR

Then, in the physically interesting region x = O(t), the leading asymptotics of the solution is given by
p(x, t) = (p1(x, t), pa(x, t), p3(x, t))

1 . 02 ~ v _im lnt
_ T(iv)(8t) "V edikot+2X (ko) +5 =7 1 (k o(—), b
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where I'(-) is the Gamma function and

ko = —%, = —% In(1 4 oy (ko)[2),
oo L T I+ oly(€)7)
X (ko) = %[/:oo st (1.5)
“ In(1+oly&)*) — In(1+ oly(ke)l*)
de |.
+/k\0—1 g—k() é]

The rest of the paper is organized as follows. In Section 2, within the zero-curvature formulation, we derive an
integrable coupled hierarchy, which includes the three-component coupled NLS system (1.2) as the first nonlinear one, and
furnish its bi-Hamiltonian structure, starting from the 4 x 4 matrix spectral problem (1.1). In Section 3, taking the coupled
NLS system (1.2) as an example, we formulate an associated oscillatory RH problem for it. In Section 4, we evaluate its
leading long-time asymptotics through deforming the oscillatory RH problem by the nonlinear steepest descent method.
In the last section, we summarize our main results and give some remarks.

2. An integrable three-component coupled hierarchy
2.1. Zero curvature formulation

We start to recall the zero curvature formulation for constructing integrable hierarchies [70]. Let u be a vector
potential, k be a spectral parameter, and I, stand for the nth order identity matrix. Assume that U = U(u, k) is a square
spectral matrix in a given matrix loop algebra (see, e.g., [37]), and

W =W(u, k) = Zw k™ iwm(u)lrm (2.1)
m=0

solves the corresponding stationary zero curvature equation

W, = i[U, W]. (2.2)
Using this solution W, we define an infinite sequence of Lax matrices

vl = vl k) = (KW), + A, 7> 0, (2.3)

where the subscript + denotes the operation of taking a polynomial part in k, and A;, r > 0, are appropriate modification
terms such that the spatial and temporal matrix spectral problems

—igy = U = U(u, k)p, —ippy = V' = VI, k)p, 1 > 0, (2.4)

are compatible, where ¢ is the matrix eigenfunction. This is guaranteed to occur if we require an infinite sequence of zero
curvature equations, the compatibility conditions of (2.4),

U —VvIhiu, vl =o, r>o, (2.5)
which essentially generates an integrable hierarchy
u = K(u) =K (x,t,u,uy,...), r > 0. (2.6)

The matrices U and V[ are called a Lax pair [29] of the rth integrable system in the hierarchy (2.6). We point out that
only for computational convenience in formulating a Riemann-Hilbert problem later, we have input the unit imaginary
number i in the above statement.

To show the Liouville integrability of the hierarchy (2.6), we normally try to furnish a bi-Hamiltonian structure [59]:

= s > ]7 2.7
Su su r= (2.7)

where J; and J, constitute a Hamiltonian pair and % is the variational derivative (see, e.g., [50]). The Hamiltonian
structures can usually be achieved through the trace identity [70]:

U k d
2 dx = k7' [/Vt wf], S YT 28
o U e [ V) O] (28)
or more generally, the variational identity [47]:
8 au , 0 ou k d
2w, Syax =k [1 W,—], =X S mw,w 2.9
su ) W g™ ol WGy 2 ak M 1W- WL (29)
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where (-, -) is a non-degenerate, symmetric and ad-invariant bilinear form on the underlying matrix loop algebra [35,52].
The bi-Hamiltonian structure most often guarantees the existence of infinitely many commuting Lie symmetries {K,}>°
and conserved quantities {H,};2,:

[Kny» Kny 1 = K [Kny ] — K, [Kny 1 = 0, (2.10)
and
. SHa \T 8H
{Fny s Hny In =/( '”) N—2dx=0, (2.11)
Su Su

where ny,n, > 0, N =J; or J,, and K’ stands for the Gateaux derivative of K with respect to u:

3
K'Wis] = o~

K(u+ &S, uy + &Sy, ...).
e=0

Such Abelian algebras of symmetries and conserved quantities can also be generated directly from Lax pairs and the
associated Lie bracket for Lax matrices is given by (see, e.g., [32-34]):

Vi, Vi 11 = Vy, [Kny 1 = Vi, [Kny 1+ [Viy, Vi1, 11,2 > 0. (2.12)

It is also known that for a system of evolution equations , H = fde is conserved if and only if % is an adjoint
symmetry [38,57], and thus, Hamiltonian structures connect conserved functionals with adjoint symmetries and further
symmetries. Pairs of adjoint symmetries and symmetries precisely correspond to conservation laws [38,41].

When the underlying matrix loop algebra in the zero curvature formulation is simple, the associated zero cur-
vature equations produce classical integrable hierarchies [16,69]; when semisimple, the associated zero curvature
equations generate a set of different integrable hierarchies; and when non-semisimple, we obtain hierarchies of integrable
couplings [53], which require extra care in recognizing their specific structures.

2.2. A three-component coupled hierarchy

Let us start from a 4 x 4 matrix spectral problem

-k p1 p2 D3
op; k 0 0

op; 0 k 0 [’
op; 0 0 k

—igy =U¢p = U(u, k)p, U = (Uji)axa = (2.13)

where u = p’ = (p1, p2, p3)T is a three-component vector potential. Since the leading matrix diag(—1, 1, 1, 1) has a
multiple eigenvalue, this spectral problem (2.13) is degenerate, which is slightly different from the case of multiple wave
interaction equations, where we do not have zeros [56].

To derive an associated integrable coupled hierarchy, we first solve the stationary zero curvature equation (2.2)
associated with (2.13). A solution W is assumed to be determined by

a b
W:[ o ] (2.14)

where a is a real scalar, b is three-dimensional row, and d is a 3 x 3 Hermitian matrix. Obviously, the stationary zero
curvature equation (2.2) is now equivalent to

ay = io(pb" — bp"), by = i(—2kb + pd — ap), dy = ioc(p'b — bip). (2.15)
We search for a formal series solution as follows:

W= iwmk_”‘, m = Wp(u) = |: 0?7[[’:” Z[g :| , m>0, (2.16)

m=0

with bI™ and d™ being assumed to be

p™ = (b, b5 BYM), d™ = (dM)s3, m > 0. (2.17)
It is easy to see that the system (2.15) presents the following equivalent recursion relations:

b =0, ¢ =0, d =0, (2.18a)

pimt1l _ %(ib)l(mj 4 pd™ — g™y m > 0, (2.18b)

al™ = ig (pb!™t — pmipt) dlm — jg(ptpm! — pMTp) m > 1. (2.18¢)
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The three-component NLS system (1.2) can correspond to the special initial values:
a® = -3, d% = (2.19)
We also set all constants of integration in (2.18c) to be zero, that is, require
Winlueo= 0, m > 1. (2.20)

Then, with @ and d'® given by (2.19), all matrices W,,, m > 1, are uniquely determined. For example, based on (2.18),
a direct computation tells

3
b =ipj,, d? =0 Y Ipl?, dif' = —opp}; (2.21b)
3
B3l _ _1[ e+ 200 iPpy] (2.21¢)
i =73 Dj.xx Dil”)pj |, .
=1
1. & 1
d® = —Zio Y (pij — b)), di! = —Sio(puap} — pipj): (2.21d)
=1
3 3
pi — Ly L3 2y 13 \p; 221
i = = ilpe+ 30 () 1P Py + 30 () prap) il (221€)
I=1 =1
1 3 3
d = — 23 PPV + 0 Y (b — Prab + Do) (2.21f)
=1
3
44— 13 2y x x - 221
i = J13P_ P + 0 (Pwd] — P + Db (2.21g)

=1

where 1 < j, 1 < 3. Based on (2.18b) and (2.18c), we can also obtain a recursion relation for b'™ and c!™ = o bl™;
clm+1] clml
|: plm+11T } =V |: plmiT } mz=1, (2.22)
where ¥ is a 6 x 6 matrix operator

3
@+ Y ad 'p)ls+q9'p —qd7'q" —(q9~'q")"

i =1
w1 , : (2.23)

plo~p+ (a7 —(0+ ) pid'a)ls—p'aT'q
=1
with g = op'. It is obvious that we actually have

3
pim T = {a[p 07+ (" ) DM — [+ 0 ) pd P +op d T p T, m = 1. (2.24)
=1

To generate an integrable three-component coupled hierarchy, it is now standard to take, for all integers r > 0, the
following Lax matrices

VT = v, 2) = (Vi aes = W), = wa’ s (2.25)

where the modification terms, A, (r > 0), are set to be zero. The compatibility conditions of the matrix spectral problems
in (2.4), i.e,, the zero curvature equations (2.5), generate the integrable three-component coupled hierarchy:
=pl =K = 2" r>o0. (2.26)

The first two nonlinear systems in this integrable coupled hierarchy (2.26) are the three-component coupled NLS system
(1.2) and the three-component coupled modified Korteweg-de Vries system

1 .
Pt = =5 [Pie + 30(Ip1 * + 1p2* + p3I*)pjx + 30 (PiP1x + P5P2x + P3P3)p;]. 1<j<3. (227)



6 W.X. Ma / Journal of Geometry and Physics 153 (2020) 103669

The three-component integrable coupled hierarchy (2.26) with an extended six-component potential u = (p, q")T =
(p, op*)T possesses a Hamiltonian structure [46,57], which can be worked out through the trace identity [70], or more
generally, the variational identity [47]. By a direct computation, we have

aU >
—it(W ) = —a+t(d) = > (=d™ +d 4 trd k™,
m=0
and
U c _
—ltr(Wa*) = |: pT ] = Zcm—lk m,
m=>0
b
where W = d ] and ¢ = ob'. Inserting these into the trace identity and considering the case of m = 2 tell y’ = 0,
and thus
8Hn . - i clml
TJ = iGp_1, Hm = —E/(—a[m“] +d N 4 trd)y Y dx, Gy = [ i } m=>1, (2.28)

where cI™ = obl™1, Then it follows that the extended six-component coupled NLS systems, consisting of (2.26) and its
conjugate compartment, possesses the following bi-Hamiltonian structure:

SH SH
U =K =hG=h——t =h—, r=>1, (2.29)
Su Su
where the Hamiltonian pair (J1, J, = J1¥) is given by
0 -2l
h= [ o 0 ] : (2.30a)
3
p’ 97 'p+(p" 0 'p) —(0+ Y pd g —pTo'q
L=i s k=1 , (2.30b)
—(0+ ) pd gl —qd'p qd7'q" + (g9~ 'q")’

k=1
where ¢ = op' again. Adjoint symmetry constraints (or almost equivalently symmetry constraints) decompose a four-
component coupled NLS system with p3 = g3 = 0 into two commuting finite-dimensional Liouville integrable Hamiltonian
systems in [57]. In what follows, we will concentrate on the three-component coupled NLS system (1.2).

3. An associated oscillatory Riemann-Hilbert problem

For a matrix M = M(k; x, t), we define its £P-norm as follows:

IMllp = [IIM]]p (3.1)
where |[M| denotes the matrix norm of M given by (1.3) and ||f||, is the £P-norm of a function f of k. We assume that

A < B means 3 C > 0 such that |A| < CB. (3.2)
When C depends on a few parameters o, ay, ..., @, We Write A <4, «,...«, B, but where appropriate, we often suppress

some of the parameters for simplicity.

For an oriented contour in the complex plane, we denote the left-hand side by + and the right-hand side by —, as
one travels on the contour in the direction of the arrow. A Riemann-Hilbert (RH) problem (I", J) on an oriented contour
I' C C (open or closed) with a jump matrix J defined on I" is defined by

{ M..(k) = M_(k)J(k), ke I,

M(k) — Jo, as k — oo, (33)

where Jy is a given matrix determining a boundary condition at infinity, and My are analytic in the + side regions and
continuous to I" from the = sides, and M = M.. in the = side regions, respectively.

3.1. An equivalent matrix spectral problem

In Section 2, we have seen that the matrix spectral problems of the three-component coupled NLS system (1.2) read

—igy = Ugp = U(u, k)p, —ipe = V¢ = VP(u, k)g, (34)
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with the Lax pair being of the form

U(u, k) = kA +P, VB (u, k) =k*Q2 +Q, (3.5)
where u = p" = (p1, p2, p3)" and

A = diag(—1,1,1,1), £2 =diag(—3,1,1, 1). (3.6)

The other two matrices P and Q are given by

T o p 0~ ak+d?  bUk4+b2 T T Qi Qn (3.7)
- Gp* 0|’ - ab“”k—l—ab[z]f d[”k—i—dm - Q1 0Qn |’ :

where al™ pml dml 1 < m < 2, are defined in ??, and thus

Qu = opp', Qiz = 2pk + ipx,
{ Q1 =20p'k —iopl, Qs =—opp. G8)
As usual, for the spectral problems in (3.4), upon making the variable transformation

¢ = VE,, Eg = eikAx+ik2f2t’ (3.9)
we can impose the canonical normalization condition:

Yy — Iy, whenx,t — +o0. (3.10)
The equivalent pair of matrix spectral problems are as follows:

Y = ik[A, Y] + Py, (3.11)

v = ilP12, Y1+ Qv (3.12)
where P = iP and Q = iQ. Noting tr(13) = tr(é) = 0, we have

dety =1, (3.13)

by a generalized Liouville’s formula [54].
Applying the method of variation in parameters and using the canonical normalization condition (3.10), we can
transform the x-part of (3.4) into the following Volterra integral equations for v [66]:

X
Vet =1i+ [ IRk e dy, (3.14)
o | v |
Ptk =1i— [ DB Gy dy. (3.15)
X
Similarly, we can turn the t-part of (3.4) into the following Volterra integral equations:
t
V_(k,t) =14 ~|—f k=)0 (s)yr_(k, s)el’ 2D s, (3.16)
o .
Yalk, t) =1, — / ek 2= (s\yr, (k, 5)e 2670 g, (3.17)
t

Based on the structures of A and £2, we can show that the first column of 1»_ and the last three columns of v/, consist
of analytical functions in the upper half plane C,, and the first column of v, and the last three columns of i/_ consist
of analytical functions in the lower half plane C_ (see also [43,44,46]). All this will help us formulate an associated RH
problem for the three-component coupled NLS system (1.2).

3.2. An oscillatory Riemann-Hilbert problem

The scattering matrix S is determined through
Y = g el gy (3.18)
where e?MX = e*MXe~M for a scalar & and two same order square matrices M and X. For simplicity, we also write
MT(k*) = (M(K))T, M~'(k") = (M(K*))™", (3.19)
for a matrix M depending on k € C. It is due to

Ut(k*) = T,U(k")T, !, VBIT(k*) = T, VBT !, T, = diag(1, 0,0, 0), (3.20)

o



8 W.X. Ma / Journal of Geometry and Physics 153 (2020) 103669

_2}% __________

Fig. 3.1. Increasing and decreasing of 6.

that we have

Yik*) = T,y (k9T T, (321)
and

ST(k*) = T,S ' (k)T . (3.22)
Note that det S(A) = 1 because of det .. = 1. It then follows from detS = 1 and (3.22) that

St1(k*) = det[Sy(k)]. S3;(k*) = —oSia(k)adj[Sp(k)],

where adj(M) denotes the adjoint matrix of M and S = (Sji)2x2 with Sy, being a 3 x 3 matrix block. Thus, the scattering
matrix S can be expressed as

_ det[a’(k*)] b(k)
“M_[—meWWWW)aw ’ 5:23)
where a is a 3 x 3 matrix block.
Let us now introduce
Y 1(k)
M(k: x, t) = (WM’ Yy r(k)), keCy, (3.24)
(Vs n(k), v g(K)a~'(k)), ke C_,

where ¥, | and ¥, g denote the first column and the rest columns of ., respectively. Then, the matrix M solves the
following oscillatory RH problem

M (k; x, t) = M_(k; x, t)J(k; x, t), k € R, (325)
M(k; x,t) — I4, as k — oo, ’
where M. (k; x, t) = lim,_, o+ M(k £ ie, x, t) and the jump matrix is given by
, T+ oy(k)yi(ke) —e 20y (k)
Jk; x, t) = [ —e2tK () Is , (3.26)
with
kx 2 ~1
O(k) = 0(k; x, t) = + + 2k*, y(k) = b(k)a™ (k). (3.27)

The behavior of the oscillatory factor e?®) depends on the increasing and decreasing of 6(k) (see Fig. 3.1) and the

signature of Reif(k) (see Fig. 3.2). The associated oscillatory RH problem, defined by (3.25) and (3.26), is our starting
point to explore long-time asymptotics for the three-component coupled NLS system (1.2).
In what follows, we assume that y lies in S> and satisfies

y*(=k*) = y(k), 0 <1+ o sup|y(k)| < oo, (3.28)
keR

where is equivalent to the conditions on y (k) in Theorem 1.1. The analysis on RH problems in [79] tells that the above RH
problem (3.25) is essentially equivalent to a Fredholm integral equation of the second kind. For such Fredholm equations,
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Reio >0 Reio <0
T(k)
0 ky
R(k)
Reif< 0 Reio >0

Fig. 3.2. The signature table of Reif.

the existences and uniqueness of solutions can be guaranteed by satisfying the conditions in the vanishing lemma [1]. A
direct computation also shows [42,46] that one can evaluate the potential p(x, t) by using the solution M(k; x, t) to the
RH problem (3.25) as follows.

Theorem 3.1. Assume that y lies in 83 and satisfies the conditions in (3.28). Then there exists a unique solution M(k; x, t)
to the Riemann-Hilbert problem (3.25), and the solution of the three-component coupled NLS system (1.2) is recovered via

p(x, t) = (p1(x, t), pa(x, t), p3(x, t)) = 2 lim (kM(k; , x, t))12, (3.29)

k— o0

where M is partitioned into a block matrix M = (Mj1)2x2, in which My, is a 3 x 3 matrix block.

4. Long-time asymptotics

We will first deal with the Riemann-Hilbert (RH) problem presented by (3.25) and (3.26), and then compute the leading
long-time aymptotics for the three-component coupled NLS system (1.2), through applying the nonlinear steepest descent
method by Deift and Zhou [12]. We will focus on the physically interesting region |§| < C, where C is a constant.

4.1. Transformation of the RH problem

It is direct to see that the jump matrix J has a upper-lower factorization and a lower-upper factorization:

1 —e 20y (k) 1 0
J _[ 0 I3 —oe?®yi(k*) I3 |’ (4
and
-l O 1 _e2it0(k)y(k)
J= et T (o) Je T+oy(kyT(ke) |, (4.2)
Ty TE) 13 0 I
where
PR +oyky k) 0
T 0 I3+ oy (k*)y (k)™

We are going to introduce another RH problem to replace the upper-lower factorization by the lower-upper factorization
to make the analytic and decay properties of the two factorizations to be consistent.

Obviously, the stationary point of 6 is kg = —4%, by solving %lkzkoz 0. Let §(k) solve the following RH problem
8+(k) = (I3 + oy T(k )y (k))5-(k), k < ko,
=65_(k), k > ko, (4.3)

8(k) — I, as k — oo,
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which leads to a scalar RH problem
dets, (k) = (14 o|y(k)?)dets_(k), k < ko,
=deté_(k), k > ko, (4.4)
det8(k) — 1, as k — oo,
noting that
det(I; + oy T(K*)y(k)) = 1+ oy (k)y (k) = 1+ o|y (k)%

where the norm of y is defined by (1.3).

It follows from (3.28) that the jump matrix Is + oy f(k*)y(k) is positive definite. Thus, the vanishing lemma (see,
e.g., [1]) tells that the RH problem (4.3) has a unique solution §(k). Also, the Plemelj formula [1] gives the unique solution
of the above scalar RH problem (4.4):

k 2
dets(k) = &%, x(k) = - f 0 w

2
Note that the above integral is singular as k — ko. We can actually express the integral as follows:

dt. (4.5)

“In(1+olyE)’) . (o7 In(1+oly(E))
L,O £—k ds_/,w £E—k d&

In(1 ko)|? / —d

+1n(1 + o[y (ko)I*) L Eok 3

ko 2y 2

+[ In(1 + oy (§)F°) = In(1 + oy (ko)) .

ko—1 &E—k
(T In(1 + oy ()P

+1In(1 + o]y (ko)|*) In(k — ko)
—In(1+ o|y(ke)*)In(k — ko + 1)
+ f"“ In(1 + oy (¢)P) - In(1 + oy (ko))
ko—1 &§—k
where all the terms, with an exception In(k — ko), are analytic for k in a neighborhood of kq. Therefore, det § can be written
as follows:

dg,

1 . .
dets() = (1+ —p)"e™™, (46)

where
1
v=——In(l + oy ko)),
b

and

. 1 [/'"01 In(1+aly(§)*)

fhoy=ga| | e

+/"° In(1 + o ly(€)I*) = In(1 + oy (ko))
ko—1 & —ko
By the uniqueness for (4.3), we obtain
(k) = (8T(k*) 71, (4.7)
which implies that
8+(k) = ((8 (k)T
It then follows that

dg].

3+alyk)?, k< ko,
s (k)2 = 48
8+ (k) [ 3. k > ko, (4.8)
_ _olyk?
o2 =1 2 Traopuor k< ko, (4.9)
3, k > kg,
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+ —

_ 0 K, .

Fig. 4.1. The oriented contour on R.

and
2 _
det 5, (k) s{ Rl = oo o=t (4.10)
dets (k) <1 L o=1 411
et = 1 (1 )Pyt < 00, 0 = —1. (411

Therefore, by the maximum principle for analytic functions, we determine the boundedness
|6(k)| < oo, |deté(k)| < oo, ke C, (4.12)

from the canonical normalization condition of the above two RH problems.
Let us now define
det 5(k) 0
Alk) = |: 0 57 1(k)

and a vector-valued spectral induced function

:| , keC, (4.13)

Y0
k) = Troytoyiae): K < ko. (4.14)
y(k), k > ko.

By M4, we denote
MA(k; x, t) = M(k; x, t)A™?, (4.15)

and reverse the orientation for k > kg as shown in Fig. 4.1. Then, M solves the following RH problem on R oriented as
in Fig. 4.1:

{ M2(k; x, t) = MA2(k; x, t)J2(k; X, t), k € R,

4.16
MA(k; x, t) = I, as k — oo, (4.16)
whose jump matrix is given by

J2 (ks x, t) = A_(k)(k; x, £) AL (k)
:{ ! 0 ][ 1 e W det 5, (] o(k)s4 (k) ] a1

dets_(k)

We will deform this RH problem to evaluate the long-time asymptotics of the three-component coupled NLS system (1.2).
4.2. Decomposition of the spectral induced function

In order to determine the required deformation, we first make a decomposition of the spectral induced function p(k)
defined by (4.14).
Let L denote the contour

L:{k:ko+we3Tﬂi:—oo<w<oo} (4.18)
and L*, the complex conjugate of L. Define X as the contour

Y =LUL*UR (4.19)
with the orientation in Fig. 4.2. We will focus on the contour X, though any similar contour, the part L of which locates
in the region where Re i6(k) is positive, will work.
Proposition 4.1. The vector-valued spectral induced function p(k) has a decomposition on the real axis:

p(k) = R(k) + hq(k) + hy(k), k € R, (4.20)

where R(k) is piecewise rational, h,(k) has an analytic continuation from R to L in the region where Reif(k) > 0, and where
R, h1 and hy satisfy

R(k) = O((1 + |k — ko|*)™), k e C, (4.21)
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Fig. 4.2. The oriented jump contour X.

hi(k) + ho(k) = O((k — ko)1), k € R, (4.22)
and hy and h, have the estimates as t — o0:
1

e 20y (k) <

~

———, keR, 423
(1+ |k — ko|?)t! (423)

|e 200, (k)| < L (4.24)

T o ke
(1+ [k — kol “)t!
in which 1 is an arbitrary positive integer. Taking the Hermitian conjugate

pT(k*) = RY(K*) + hi(k*) + hi(k*) (4.25)

yields the same estimates for e2"h!(k*) and e2**®hl(k*) on R and L*, respectively.

Proof. We consider the Fourier transform with respect to 6 € (—2k(2), o). Because k — 6(k) is one-to-one in k < ko
or k > ko (see Fig. 3.1). In the proof, we adopt the differential notation ds = %ﬂds for brevity, while dealing with the
Fourier transform. We only consider the physically interesting region x = O(t) and so kg is bounded. Let r be a fixed
positive integer:

r=4q9+1, qeZy, (4.26)

with an even number q.
(a) First, we consider the case of k < k. In this case, we have p(k) = —y(k)(1 — y(k)yT(k*))~'. By Taylor’s theorem
with the integral form of the remainder, we have

r k
. _ 1 .
(k= ko + 1) *°p(k) = 1y (ke — koY + f ((- — ko + )0 p(-)I (& )k — £ ) de. (4.27)
j=0 " ko
Define
1 L 4
R(k) = TEEE Z“j (k — ko), (4.28)
j=0
and express
p(k) = h(k) + R(k), k < ko. (4.29)
Then, we have
@ p(k) dR(k) .
; = i <j< 4.30
dki lk=k, dld =k, =J=T ( )
and the coefficients
- - 1 d] \r+6 P
w= (k) = ﬁ@[(k — ko +1) p(k)]‘k:ko, o<j<r, (431)

decay rapidly as kg — oc.
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By the characteristic of R in (4.28), we have

dh(k) _0 0<i<r (432)
dii lk=ky =J=T )
Based on this property, we will try to split h into two parts
h(k) = ha(k) + ha(k), (4.33)

where h; is small and h, has an analytic continuation from R to L in the region where Re if(k) > 0. This way, we obtain
the required splitting of p. The properties of R and h in (4.21) and (4.22) are direct consequences of (4.28) and (4.32).
Let us introduce
(k— ko)t
k)= ——"—.
)= iy
We consider the Fourier transform with respect to 6 € (—2k§, 00). Because k — (k) is one-to-one in k < ko (see Fig. 3.1),
we define
(h/a)(k) = h(k(0))/a(k(9)), —2ki =06(ky) <6 < o0,
=0, 0 < —2k3.

(4.34)

(4.35)

Based on (4.32), we have

(h/a)(B) = O((k(B) — ko) ™'79), 6 — B(ko) = —2kg; (4.36)
and as dk/d6 = [4(k(6) — ko)]!, we see that

h/a € H(—00o <6 <00), 0 <j<3q+2, (4.37)

where the H’s are Hilbert spaces. Now from the Fourier inversion theorem, we have
o]
(h/a)(k) = / e (h/a)(s)ds, k < ko, (4.38)
—00

where iT/E is the Fourier transform

ko
(h/a)(s) = — / e W) (h/a)(k)dO(k), s € R. (4.39)

By the formulae (4.27), (4.29) and (4.34), we have

_ boy3g+2
(k — ko)t Fk, ko), (4.40)

(W)= 4 i+ e

where

1
Sk ko) = - f (C = ko + 17 ()" ko + wlk = ko))(1 = w) duw, (441)
- Jo

from which we also have
df(k, ko)
’ dki

Then, it follows that

INE R
[

do/ o
ko
</
—00

1 dyih, 2 _
(4(7 )—(k)‘ l4(k — ko)ldk
3
<1, 0§j§5q+1, (4.42)

‘51, k <k, j>0.

k — ko) dk/ o
(k — ko)*a+2=% ‘2

=g + s | (IO

from which, by the Plancherel theorem, we know

foou + Y |(fa)s)ds 1, 0 <j < §q+ 1. (4.43)

oo
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0 R(k)

Fig. 4.3. Part of Reif(k) > 0 in the upper half k-plane.

Now make a splitting for h as follows:
o0
h(k) = a(k) / e M (f/a)(s)ds
t

t
+ a(k) / eSO (R/a)(s)ds

= hy(k) + ha(k). (4.44)

On one hand, based on (4.43), for k < kg, we have

le=2Wh, (k)| < la(k)| / " \(h/a)(s)|ds
<tatol( [+ s9a)" ([ e

<l / ws—zfas)%( / T4 s2)1'|(h’/3>(s)|as)%

oo

1

[N}

1 ® o\3 1 .3
s (| ) s ———— 1=jsq+1 (445)

Ik — ko +il* \Je (1+ |k — ko|>)t—2 2
On the other hand, we know that Re i6(k) is positive in the hatched region in Fig. 4.3, and thus that h,(k) has an analytic
continuation from R to the line L in the upper half k-plane. Let k be on the part of the line L with w > 0. Then, we can

have that
t

|e—2it€(k)h2(k)| < |a(k)|e—tREi9(k)f e(s_[)REie(k)Km)(SNaS

—00
q ) t aS 1 t - 1
< w ze—tRe19(l<)(f 2>2<f (1+s2)|(h/a)(s)|2ds>2
14 |k — kol oo 1+ oo
< 1 wqeerei@(k)7 (4.46)
~ 14 |k — kol
again based on (4.43). But Reif(k) = 2w?. Therefore, we have
1 1

le2t0Wp, (k)] < - £3 wle—2tw’ < _
(14 |k —kol|?)t2 (14 |k —kol|*)t2
This completes the proof for the case k < k.
(b) Second, we consider the case of k > k. In this case, we have p(k) = y(k), k > ko. Again, we use Taylor’s theorem
to obtain
k
0

r ‘ 1
(k — ko — )" p(k) = Z 1 (k = ko) + — / (- — ko — i) P p())FD(E )k — £ dé. (4.47)
pars ! Jk
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Similarly define

1 d ,
Rk = ————— Tk — koY, 448
(k) (k—lw—i)f*ﬁ%“” o) (4.48)
and set
h(k) = p(k) — R(k). (4.49)
As before, we know that
dh(k) .
- =0,0<j< 450
did le=kg ~— =IET (4.50)
and
+ + 1d 1\7+6 ;
"= (ko) = jf,@[(k — ko — i) " p(k)] Lo 0=i=r, (451)
. k=kq

decay rapidly as kg — oo. The properties of R and h in (4.21) and (4.22) are direct consequences of (4.48) and (4.50).
Let us similarly introduce

(k — ko)t
k)= ——"—. 452
) = Gy (4.52)
Following the Fourier inversion theorem, we have
(h/B)Kk) = (h/B)(K(B)) = / "N (h/B)(s)ds, k > ko, (4.53)
where h//TS is the Fourier transform
RS = [ e pioo = [ e n/pkoNis. s e k. (454)
ko —2k3
Based on the formulae (4.47), (4.49) and (4.52), we see that
(k — ko)31+2
h/B)k) = —————g(k, ko), 455
(W BYK) = s 8k Ko) (4.55)
where
1 ! .
gk, ko) = " / ((-—ko— i)”sp(-))( ko + wik — ko))(1 — w) dw, (4.56)
*Jo
from which it follows that
dg(k, ko) .
‘T‘ <1, k>=ky, j=0.
Now, we can similarly compute that
Xy dNish 2_
ZY () ’ do(k
/ko (@) (ﬁ)(‘) (k)
o 1 d\is/h 2 -
= ———— ) (= )(k)| [4(k — ko)]dk
/ko ‘(4(I<—ko)dk) (,3)(‘)‘ L4k = ko)ldk
3
<1, 0§j§5q+1. (4.57)
By the Plancherel theorem,
| B s <o, 0 <1< Sq 41 (458)

Again, we split

(k) = B f " TR s)s

+ Bk / €S 0(7B)s)ds

oo

= hy(k) + hy(k). (4.59)
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(k)

Fig. 4.4. Part of Reif(k) > 0 in the lower half k-plane.

On one hand, for k > kg, similarly as in the previous example (4.45), we see that

) 1
|e—21t€(k)h](k)| L —, 0<j< §q + 1.
Ik — ko — i3 2

On the other hand, hy(k) has an analytic continuation from R to the part of the line L:
Kw) = ko + we™%, w >0, (4.60)

in the lower half k-plane, as shown in Fig. 4.4. Let k be on the ray (4.60). Similarly as in the previous case k < kg, we can
show that
wqeftRe i6(k)

e Oy £ —— 5.
|k — ko — |92

But we know Reif(k) = 2w?, and thus, we have

] q—th2
ey £ e o o
(14 [k —kol)t? ™ (14 [k — ko|2)t2

since ko is bounded. This completes the proof for the case k > ko. O

We are now ready to make a deformation of the RH problem (4.16).
4.3. Deformation of the RH problem

Let us first state what a deformation of a RH problem is. Suppose that we have a RH problem (77, ]) on an oriented
contour I (see Fig. 4.5):

{ M. (k) = M_(k)(k), ke I,

M(k) = Jo, as k — oo, (4.61)

and that on a part (which could be the whole contour 1) of I" from k; to k; in the direction of I", denoted by IF,,, the
jump matrix J has a factorization
J(k) = b2 (k)1(K)bo(k), k € Ty (4.62)

where b, have invertible and analytic continuations to the + sides of a region D (see Fig. 4.5) supported by k; and k;,
respectively. We introduce an extended oriented contour I"’ (see Fig. 4.5):

'=ruap, ' =TIV U Ly, 3D =B, UB_, (4.63)
and an extended jump matrix J':
J' (k) =]J(k), k € I"\ Tk,
J'(k) =Ji(k), k € Tk,
J'(k) = b+( ), k €B,,
J(k) = bZ'(k), k €B_.

(4.64)
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R(k)

Fig. 4.5. Deformation of a RH problem.

Obviously, the original RH problem (4.61) on I' is equivalent to the following RH problem on I"’:

M (k) =M"(k)'(k), keI,

M'(k) — Jo, as k — oo,

and the relation between the two solutions is given by
M'(k) = M(k), ke C\ D,

M'(k) = M(k)by'(k), k € D,

M'(k) = M(k)b='(k), k € D_.

17

(4.65)

(4.66)

It is clear that one RH problem is solvable if and only if the other RH problem is solvable, and the solution to the one
problem gives the solution to the other problem precisely by (4.66). We call (I'’,J’) a deformation of the RH problem
(", J). When D is not bounded, we have to require that b, (k) and b_(k) tend to the identity matrix as k — oo, in order

to keep the same normalization condition.

We now deform the RH problem (4.16) from R to the augmented contour X. To the end, we observe that the jump

matrix J4(k; , x, t) can be factorized as
JAUk; x, t)=(b_)" by, by =L+ wy, keR,
where
—2it0(k) 0 0
o, — [ 0 e 20M[det s, (k)] p(k)S. (k) ] o [ ) }

0 0 e2it0005=1 (1) o ("
det§_(k)

Moreover, using the decomposition of p (4.20), we can make
wy = o + o}

0 e 2t0M[det 8, (k)]hy (k)84 (k) 0 e 2t [det 8, (k)][ha(k) + R(k)18.(k)
“lo 0 Tlo 0 :

0 0 0 0
o=’ +0* = anite(k)ajl(lc)h}\(k*) + aez"“’(k)sﬂ(k)[hl(k*)JrRT(k*)] 0 ,
T dets_(k) 0 dets_(k)

and hence, we have the factorizations for b4 :
by = b b = (I4 + o )4 + &)

[ 1 e 2®O[det s, (k)lhy(k)S (k) 1 e 200 [det 8, (k)[ha(k) + R(k)184 (k)
“|lo I3 0 I ’
b2 b? = (Iy — @° Iy — )

=
1T

1 0 1 0
= 3 aezw(k)ﬁ:l(k)hi(k*) I _ Ueziw(")ﬁ:;(k)[hz(k* )+RJr(k* N 13 .
dets_(k) 3 etd-—(k)

Further based on (4.67), the jump matrix J4 has the following factorization:
JAGKk; x,£) = (B4) (b)) 'BYIbE = (b2)ib%, k € R.

(4.67)

(4.68)

(4.69)

(4.70)

(4.71)

(4.72)

(4.73)
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We point out that we can accurately find that
bgt = wi|p:h1 s bi = wi|p:h2+R-

It is now a standard procedure to introduce

MA4(k; x, t), ke 22U 82,
MP(k; x, t) = { M2(k; x, t)(b2)™!, ke 25U 824, (4.74)
M4(k; x, £)(b%) ™", k€ 25U £,

and deform the original RH problem (4.16) on R to the following new RH problem on X':

M (k; x, t) = ME(k; x, t)3(k; x, t), k€ X, (4.75)
MA(k; x, t) — Ly, k — o0, '
whose jump matrix reads
bS, keR, b, keR,
=), b= b%, kel, b= L, kel (4.76)
Iy, kel*, b%, kel*.

The canonical normalization condition in (4.75) can be verified, indeed. For example, (b‘i)‘1 converges to I as k — oo in
$26, because we observe that for fixed x, t, by the definition of h;, in (4.59) and the boundedness of det$ and § in (4.12),
we have

t

672it9(k)[det 8(k)]h2(k)8(k)| S/ |ﬂ(k)|e7[REi9(k)\/ 6(57”REIH(’()|(}T/-B)(S)|&$

—00

k= kol" / (7B)s)lds < ——

= |k — ko — 1|92 Nk = ko — i

and by the definition of R in (4.48) and the boundedness of det$ and § in (4.12), we have

Lot k=KoYl _ 1

i |
2ito(k) .
e det 8(k)IR(k)S(k)| < ;

both of which converge to 0 as k — oo in 2.
It is known that the above RH problem (4.75) can be solved by using the Cauchy operators as follows (see [5,8]). Let

d
(Cif)(k):/ f(&) dé

— ke X, LAz 4.77
W E—kpomi ST (477)

denote the two Cauchy operators on X. As is well known, the two operators Cy are bounded from £?(X) to £3(X), and
Cy — C_ = 1. Define

Cof = C(fol )+ C_(fo) (4.78)
for a 4 x 4 matrix-valued function f, where

o = +(b) — 1), of =o' + . (4.79)
Assume that u* = uf(k; x, t) € £2(X) + £°(X) solves a basic inverse equation

w=1Iy +C et (4.80)

Then

ks x, O)wb(k; x, t) d
Mﬁ(k;x,r):14+/ plex orllx 0 d§ o\ s, (4.81)
5 E—k 2mi

presents the unique solution of the RH problem (4.75).
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(k)

0 k[] Rk)

Fig. 4.6. The oriented contour X’.

Theorem 4.2. The solution p(x, t) of the three-component coupled NLS system (1.2) is expressed by

p(X, t) = (pl(xa t)v pZ(Xs t)a p3(X, t))
= leim (kM?(k; , x, t))12

K— 00

d
i f JEE %, D0i(E) S ),
¥ T
d
i / (1= G ) LE) () )1 (4582)
> b/

Proof. This statement can be shown by Theorem 3.1, (4.15) and (4.74). O
4.4. Second contour deformation and reduction

Let X’ be the reduced contour X’ = X \ R with the orientation as in Fig. 4.6. We further deform the RH problem
(4.75) from X to X', and estimate the difference between the two RH problems, one on X' and the other on X’.
Let w® : ¥ — M(4, C) be a sum of two terms

@ = " _‘_wb7 (483)

where w® = " | R is supported on R and is composed of the contribution to w* from terms of type h;(k) and hﬁ(k*) and
P = o [ LUL* is supported on L U L* and is composed of terms of type h,(k) and h;(k*).
Define

o = o — o (4.84)
Obviously o’ = 0 on R, and thus, ' is supported on X’ and is composed of the contribution to » from terms of type
R(k) and R*(k*).
Lemma 4.3. For an arbitrary positive integer I, we have
ol 21y c2@nesem) S €7 (4.85)
||wb||Ll(LUL*)mL2(LUL*)m5w(LUL*) <t (4.86)
(4.87)

NN

_1
o'l 2zy S €4, ol grsy St

Proof. The estimates (4.85) and (4.86). can be derived, similarly to Proposition 4.1. Based on the definition of R(k), we
can see that
IR(K)| < (1 + [k —kol®)™!

on the line L = {k = ko + we% : —00 < w < o0o}. Then using (4.12), we find that

e 210 det S(kYIR(S(K)| S e~ (1 + [k — kol*) ",

since Reif(k) = 2w? on the line L. It then follows from a direct computation that the estimate (4.87) holds. O
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Similarly to Proposition 2.23 in [12], we can get the following estimate.

Proposition 4.4. As t — oo, the inverse of the operator 1 — C,y : £3(X) — £?(X) exists and is uniformly bounded:

(1= Co) M2y S 1. (4.88)

Corollary 4.5. Ast — oo, the inverse of the operator 1 — C,: : £2(X) — £*(X) exists and is uniformly bounded:

101 = Ce) Ml g2y S 10 (4.89)

Proof. By C,: = C,y + C,e, We have
Cot — Corll 25y = IICut ll c2(x) S 0%l £oo(x).
Also, it follows from Lemma 4.3 that
Il zoo(s) < el oo + NPl emes) St
Therefore, we obtain
IC0z = Corll sy S 7 (4.90)

Now first from 1 —C,s = (1 — C,y) — (C,: — C,/), we know, based on (4.90), that (1 — C,:)~! exists.

w

Second, the second resolvent identity implies
(1=C) MGt = C)1 = Ct) ' =(1=C) ' = (1= Cue) " (491)

Again based on (4.90), we see, using this identity, that the estimate in the corollary follows from Proposition 4.4. O

Theorem 4.6. As t — oo, we have

/ (1= Coo) L) (€ )P (£ )dE = / (1= Co) L) (€ ) () + O( ). (4.92)
X

X
Proof. First, from (4.91), we can obtain
(1= Cp) L) =((1 = ) La)e + & + ((1 = )™ (Curla)
+ (1= G N(Coln) e’
+ (1= Cor) " Ce(1 = Cpe ) )(Cla)e" (4.93)
Second, directly using Lemma 4.3, we can compute that
o'l 21y < ol 21y + Il z1gus S €7
(1 = Cor) " (Cuela)) ¥l 215y < 1T = Cor) MMl 22y | Caelall 2y 0% 2 5
; 1
S ||w€||£2(2)||wﬁ”£2(2) b ||we||£2():)(||we||52():) + llo ||1:2():)) St : 4,
||((] - wa)”(Cweh))wellgl(z) <I(1- Cw’)q||LZ(2)||Cw’14||£2():)||0)e||£2():)
1
Sl g2yl ll 2z St Fa,
(1 = Cor) " Cae(1 = Cpt ) )(Cpela)® [l 215y
< (1 - Cw’)_1 ||52():)||Cwe||£2(z)||(1 - th)_l ||£2():)||th14||£2(2)”wungl():)
-1
S e lles(mllof|Fa S €72
Now, together with (4.93), this completes the proof of the theorem. O

Note that as k € R, w'(k) = 0, we can reduce C,, from £2(X) to £2(X"), and for simplicity, we still denote this reduced
operator by C,/. Thus

/ (1= Co) ) (E)o(E)d = / (1= Co) L) (&) ().
X X/

and then from Theorems 4.2 and 4.6, we obtain the following theorem.
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I

4

Fig. 4.7. Oriented contour X,.

Theorem 4.7. Ast — oo, we have
. _ N -
pix o) =i( [ (1= ) +oeh
Denote 4’ = (1 — C,y)"'l4, and then the matrix
"(k; x, t)o'(k; x, t) d
Wilkix, =4 [ HEED2ERD
/ E—k 2mi
presents a solution to the following RH problem
M/ (k; x,t) = M (k; x, t)]'(k; x, t), k€ X7,
M'(k; x,t) — I, as k — oo,

whose jump matrix is given by
J=0)"",, b, =hto,, o =0+,
[0 e 2%®det §(k)IR(k)S(k)

/ —
0 0 ],w_(k)_O,keL,

0 0
o (k)=0, o’ (k)= 0e20)5=1(RRT (k*) e kelL*.
det §(k)

4.5. Rescaling and second reduction

21

(4.94)

(4.95)

(4.96)

(4.97)

(4.98)

(4.99)

Let Xy denote the contours {k = wei%i : w € R} oriented inward as in X', (see Fig. 4.7). Motivated by the method

of stationary phase, define the scaling transformations

!
N:£X(5') = £3(50). f > Nf. (NFk) = flko + 7;7”

and denote
@ =Nuw'.
A direct change-of-variable argument tells that
C, = N7'C,N,

where C;, is a bounded operator from £2(%y) into £2(Xy). On the line

i:{k:ae%:—oo<a<oo}

we have

k) = @ (k) = [ 0 (N } |

and on the conjugate line L*, we have

. . )
(k) = o-(k) = [ (Ns,)(k) 0 }

(4.100)

(4.101)

(4.102)

(4.103)

(4.104)

(4.105)
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where
. 2it9(k)8—l I RT k*
s1(k) = e~ 2Wdet S(k)IR(IS(K), sa(k) = — 25 (R (4.106)
dets(k)

Lemma 4.8. Ast — oo, we have the estimates

IINS)K) <t kel (4.107)
where §(k) = e~ 2P0 [R(k)5(k) — (det §(k))R(k)], and

IINSYK) < ¢!, kel (4.108)

where 8(k) = —o 20 [s=1(k)RT(k*) — (det §)~'(k)RT(k*)].

Proof. We only prove the estimate (4.107) and the proof of the other estimate is completely similar.
It follows directly from (4.3) and (4.4) that § satisfies the following RH problem
+(k) = 8_(k)(1 + aly(k)*) + e~ 2W0f k), k < ko,

5
5.(k) = 8_(k), k> ko, (4.109)
5(k) — 0, ask—>oo

where
FUk) = ROy (k) (k) — |y (k)P13)8 - (k). (4.110)
The solution of this vector RH problem can be determined by
5 ko @2it0(&)
500 =x00) [ 5o et @)
—o0 X4(E)(§ — k) 2mi
with

1 ko ln<1+a|y(s)|2>dé

X(k) = e2ni /- (4.112)

Observing that

Ry'y =Ry PPl =R—p)y'y —(R=p)ly’ls = (hh + ha)y Ty — (i + ha)ly I,
we can have f(k) = O((k — ko)*') when k — ko, upon noting the definition of h = h; + h, and decompose f(k) into two
parts: f(k) = fi(k) + fo(k), where f;(k) satisfies
. 1
le Ol < 7. keR, (4.113)
(1+ [k —ko + ¢!

and f>(k) has an analytical continuation from R to L; (see Fig. 4.8):

1 i
Lt={k=ko—?+we37:0§w<oo} (4.114)

and satisfies

: 1
|e—21t9(k)f2(k)| < > k e L. (4115)
(1+ [k —ko + 7]7)t!

Let k € L, and we decompose

< koo e MOf(E)  ds
Né&)(k) =X(ko + — /
(N8)(k) = X(ko Jg) k-1 X1 (E)(E — ko — T)Zm

ko—1 ~2it6(¢)
+x(ko+l—<)/ 0 e ThE) &
o XH(ENE —ko — ﬁ) 2mi

V8t

ko—1 —2it6(€)
+X(ko + L)f € 2169) . ﬁ
oo Xi(E)NE — ko — =) 27l

V8t

= T] +T2 +T3
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L b=k

Fig. 4.8. The oriented contour L;.

For the first and second terms, we can have
ko ! 22
|ms/ _ VO e ik 22
ko 1§ = ko — 7| t kt2
ko—1 | a—2it(£) ko—1 1
mis [ T cevae [ g et
—o 1§ +ko— 0 1+ —ko+ 1|
which are due to f(k) = O((k — ko)1) and

| <t™' k0 (k =0, obvious),

K

1 1 .
|& — ko — z—,ée(—oo,ko—?), kel,

: |
8t 2t
respectively. By using Cauchy’s Theorem, we can have a similar estimate |T3| < t~**! through computing the integral

in T3 along the contour L; instead of the interval (—oo, ko — %), Finally, combining those three estimates, we obtain the
estimate (4.107). The proof is finished. O

Express the jump matrix J° as

PP =Us—02) s+ ), (4.116)
where
B : ik?
0 82kPie=" y (ko) } ke s
0 O E) 0°
0 L
=0l =1 ¢ o (4.117)
0 —82k2vie—'7 v(ko)
0 Holyko)? |, ke Xg,
L 0
i 0 0 ,
ik , ke Xg,
0 —085 2k 2e'T yt(ky) O 0
W=t =1 L . 5 (4.118)
4
—2 i ytiky) } ke Xy,
L o ke o
with
80 — (St)f%iveﬁkgt+)~((k0)' (4_1.19)
Based on (4.107), (4.108) and Lemma 3.35 in [12], we can obtain

" — w0||c°0():o)mcl():0)mcl(>:0) ko E (4.120)
NG
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Therefore, we have

[ (= e
_ / (N1 — Co) " NIa) () (8 )&
Z‘/
_ / (1= Co) ' 1a)(& — ko)WBONG/((& — ko)WBT)dE
Z‘/

1
=— (1= Co) 1) (& )o(& )&
\/§ Eo( 4)
1 Int
=— (1= Cpo) '1a)(§)0(£)dE + O(—).
\/5 Z‘o( 4) t
It now follows that
= —=([ (@-cormeees) ot (a121)
pxt= V8t \s, bl /12 t ’
For k e C\ X, we set
1—C0) 'I4)(&)’(&) d
M"(k)=14+/ (C 0)'a) () (E)id (4.122)
%o E—k 2mi
which solves the following RH problem
MO (k; x, t) = MO (k; x, t)JO(k; x, t), k € Xg,
+( ) =( Vo ) 0 (4.123)
MOk; x,t) — I, as k — oo.
Particularly, from an asymptotic expansion
MO
MO(k) =I5 + 71 +0(k™2), k — oo,
we get
Ml == [ (- cor e
1 P @ 2 ’
Now from (4.121), we obtain
1 Int
)= ——(M? o(—). 4.124
p(x, t) @( iz +0(=-) ( )
4.6. A model RH problem with an explicit solution
To determine (M?)lz explicitly, we solve a model RH problem
W (k) = U_(Kw(ko), w(ko) = k"~ 34520, (4.125)
The solution to this RH problem is given by
w(k) = Hkk"4ed®4 | H(k) = 62 M° = 58M°(k)5; 2, (4.126)
where 84 = diag(s; ", Sol3) and 8, = (8)7".
Since the jump matrix w(ko) is independent of k along each ray of X, we obtain
dw, (k dw_(I
) _ dv (K)o, (4.127)

dk dk

Together with (4.125), this implies that d¥ (k)

W ~1(k) has no jump discontinuity along any of the rays of X. Directly from

the solution (4.126), we obtain a
dw (k dH(k 1 i
( )tp”(k) = LH*1(I<) + —ikH(k)AH™ (k) — l—”H(k)AH”(k)
dk dk 2 k
1 1. 1, _
= 0(%) + 5zkA - 5usOA[A, M?185 4.
Then Liouville’s theorem tells that
dw (I 1
d,((‘) — kAW () = BU k) (4.128)
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where
_ 1 A 07e—A _ 0 :3]2
B = —5150 [A, M]16," = By 0 . (4.129)
In particular, we obtain
(MY)12 = —i83 Bia. (4.130)

Let us partition ¥ (k) into the following form

(k) = [ Yii(k)  Wia(k) i|

4131
k) (k) (4131
where ¥11(k) is a scalar and ¥5,(k) is a 3 x 3 matrix block. From the differential equation (4.128) for ¥, we get
dle/]](k) i k2
ac (Br2B — 5~ Z)‘I’n(k),
dwqq1(k i
Br2¥a1(k) = ;L( ) + *kllfn(k),
d?B12 ¥ (k) k?
sk ried, — ) Brwn(i
T8 = (Br2Par + 7 ) B2 (),
1 dﬂlZWZZ(k) i
Yok — —kB1aWr(k)),
12(k) = B i 5 B12Waa(k))
where
B12B21=v >0 (4.132)

provided that y (ko) # 0 (note that the case of y(ky) = 0 is, of course, trivial).
As is well known, the following Weber’s equation

d*g(¢) 1 ¢ B
dc? +(a+5 - Z)g(é‘)—o
has a general solution

g(;) = ClDa(g) + CZDa(_g)»

where cq, ¢, are arbitrary constants and D,4(¢) denotes the standard (entire) parabolic-cylinder function and satisfies

dD,
;{“ L4 Snuo) - ab, () =0, (4133)
F(a+1)e% . F(a+1)e‘% .
Do(£¢) = ————D_41(&i¢) + ————D_4_1(Fi?), 4.134
o(£8) oo a—1(%£it) Nt a-1(Fi¢) ( )
where I'(-) stands for the Gamma function. From the textbook [73] (see pp. 347-349), we know that as ¢ — oo,
2
£ T (1+0(:72), jarg | < 2.,
Du(¢) = a2 V2 gariy—a—1g 2 x 57 (4.135)
(&) =7 (¢% 7 — pEe™ic )(+0(c ), & <args <, :

2
({“e’% - r‘{z)e*“’”{ a-la )(1 +0(07%), -2 <args < —%.
Denote a = if12 821 and then
i . 1
B12B21 £ 5= +i(Fa + E)-
Thus we find
W11(k) = dq1Dg(e” I)+ d2Da(e T k)
Bra¥n(k) = dsD_q(e 3 k) + daD_g(e” 7 k),

where d; and d, are constants, and ds and d4 are row vectors of constants. Note that as argk € (—37”, %) and k — oo,
we have

. ik . ik2
Ik et — 1, (ke — Is.

Therefore, for argk € (—7%, %), we have

Wyi(k) = e T Dy(e T k), PraWan(k) = Proe @ D_o(e” 5 k),
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and further,

7 (V) 7(v=3i)

BraWa =ae T Dy4(e7k), Wiy =fe & D_q (e 7k).

For argk € (—3, —Z), we have
3mi

Wyi(k) = €T Dy(e T k), BraWan(k) = Broe™ & D_g(e 7 k),

and further,

w(v+i) n(i—3v) 3mi

i
Pr2¥a =ae 7 Dy 1(e4k), ¥ip =Ppe & D_g (e 4k).

Along the ray argk = —7, we have

k
W, (k) = w_(k)[ (1) y(l3°) ]

from which it follows that

Broe™ T Dy 1(eT k) = e¥ Do(e¥ k)y(ko) + Broe™ + D_g s(e k). (4.136)
Also, based on (4.134), we obtain
i ra+1) za 3mi I'la+1) _aa _xi
Do(edk)= ——e2D_4 1(edk)+ ———e 2 D_, 4(e” 4k). (4.137)
a «/E a—1 \/E a—1
Now plugging (4.137) into (4.136), we separate the coefficients of the two independent special functions to get
F(a+1) v _ ;i VF(IV) v, mi
=———e2 ay(ky) = ——-e2 Tay(ky), (4.138)
B12 Nz YKo Nz YKo

since a = iv. Finally, we conclude that (1.4) is a consequence of (4.124), (4.130) and (4.138).
5. Concluding remarks

We have determined the leading long-time asymptotics for the Cauchy problem of the three-component coupled
nonlinear Schrédinger (NLS) equation, based on an associated oscillatory Riemann-Hilbert (RH) problem. The essential
analysis is that via the nonlinear steepest descent method, we deformed the associated oscillatory RH problem to a model
one which is solvable explicitly, and guaranteed small errors between solutions to the different deformed RH problems.
Our result is an application of the nonlinear steepest descent method to long-time asymptotics for integrable systems
associated with 4 x 4 matrix spectral problems.

There are more and more studies on long-time asymptotics for integrable systems (see, e.g., [7,10,18,22,23,30]) and
even nonlocal integrable systems (see, e.g., [67]). Moreover, it has been generalized to evaluate long-time asymptotics of
initial-boundary value problems of integrable systems on the half-line (see, e.g., [22,30,63]), and asymptotics of integrable
systems whose RH problems possess rational phases (see, e.g., [76]) or jump matrices of lower regularity (see, e.g., [31,62]).

Various solution approaches also exist in the field of integrable systems, some of which are the Hirota direct
method [24], the generalized bilinear technique [36], the Darboux transformation [61], and the Wronskian technique
[17,55]. Connections, similarities and differences between different approaches would be very interesting. There are many
studies on counterparts of integrable systems, such as integrable couplings [75], super hierarchies [15] and fractional
analogous systems [14,21]. It will be an important topic for further study to explore long-time asymptotics of those
generalized integrable counterparts via the nonlinear steepest descent method. Particularly, it will be physically important
to determine limiting behaviors of solutions incorporating features of other exact solutions, such as lump solutions [51,58],
from the perspective of steepest descent based on RH problems. Such problems may show different asymptotic features
in different regions of space and/or time. Boundary layer theory [27] can be used to match different asymptotics explored
in different regions.
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