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a b s t r a c t

The paper aims to explore the existence of diverse lump and interaction solutions to
linear partial differential equations in (3+1)-dimensions. The remarkable richness of exact
solutions to a class of linear partial differential equations in (3+1)-dimensions will be
exhibited through Maple symbolic computations, which yields exact lump, lump-periodic
and lump–soliton solutions. The results expand the understanding of lump, freakwave and
breather solutions and their interaction solutions in soliton theory.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Lump solutions are a particular kind of exact solutions, which describe various important nonlinear phenomena in
nature [1,2]. More specifically, such solutions can be generated from solitons by taking long wave limits [3]. There are also
positons and complexitons to integrable equations, enriching the diversity of solitons [4,5]. Interaction solutions between
two different kinds of exact solutions exhibit more diverse nonlinear phenomena [6].

Soliton solutions are exponentially localized in all directions in space and time, and lump solutions, rationally localized
in all directions in space. Through a Hirota bilinear form:

P(Dx,Dt )f · f = 0, (1.1)

where P is a polynomial and Dx and Dt are Hirota’s bilinear derivatives, an N-soliton solution in (1+1)-dimensions can be
defined by

f =

∑
µ=0,1

exp(
N∑
i=1

µiξi +
∑
i<j

µiµjaij), (1.2)
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where⎧⎨⎩ξi = kix − ωit + ξi,0, 1 ≤ i ≤ N,

eaij = −
P(ki − kj, ωj − ωi)
P(ki + kj, ωj + ωi)

, 1 ≤ i < j ≤ N,
(1.3)

with ki and ωi satisfying the dispersion relation and ξi,0 being arbitrary shifts. The KPI equation

(ut + 6uux + uxxx)x − uyy = 0 (1.4)

has a lump solution [7]:

u = 2(ln f )xx, f =
(
a1x + a2y + a3t + a4

)2
+

(
a5x + a6y + a7t + a8

)2
+ a9, (1.5)

where

a3 =
a1a22 − a1a62 + 2 a2a5a6

a12 + a52
, a7 =

2a1a2a6 − a22a5 + a5a62

a12 + a52
, a9 =

3(a12 + a52)3

(a1a6 − a2a5)2
, (1.6)

and the other parameters ai’s are arbitrary but need to satisfy a1a6 − a2a5 ̸= 0, which guarantees rational localization in all
directions in the (x, y)-plane. Other integrable equations, possessing lump solutions, include the three-dimensional three-
wave resonant interaction [8], the BKP equation [9,10], the Davey–Stewartson equation II [3], the Ishimori-I equation [11]
and many others [12,13].

It is recognized by making symbolic computations that many nonintegrable equations possess lump solutions as well,
including (2+1)-dimensional generalized KP, BKP and Sawada–Kotera equations [14–16]. Moreover, various studies show
the existence of interaction solutions between lumps and another kind of exact solutions to nonlinear integrable equation in
(2+1)-dimensions, which contain lump–soliton interaction solutions (see, e.g., [17–20]) and lump–kink interaction solutions
(see, e.g., [21–24]). Nevertheless, in the (3+1)-dimensional case, only lump-type solutions are presented for the integrable
Jimbo–Miwa equations, which are rationally localized in almost all but not all directions in space. All presented analytical
rational solutions to the (3+1)-dimensional Jimbo–Miwa equation in [25–27] and the (3+1)-dimensional Jimbo–Miwa like
equation in [28] are not rationally localized in all directions in space. It is absolutely very interesting and important to explore
lump and interaction solutions to partial differential equations in (3+1)-dimensions.

This paper aims at showing that there do exist abundant lump solutions and their interaction solutions to linear partial
differential equations in (3+1)-dimensions. A class of particular examples in (3+1)-dimensions will be considered to exhibit
such solution phenomena. We will explicitly generate lump solutions and mixed lump-periodic and lump–soliton solutions
for a specially chosen class of (3+1)-dimensional linear partial differential equations. Based onMaple symbolic computations,
sufficient conditions and examples of lump and interaction solutionswill be provided, togetherwith three-dimensional plots
and contour plots of special examples of the presented solutions. Some concluding remarks will be given in the final section.

2. Abundant lump and interaction solutions

Let u = u(x, y, z, t) be a real function of x, y, z, t ∈ R. We consider a class of linear partial differential equations (PDEs)
in (3+1)-dimensions:

α1uxy + α2uxz + α3uxt + α4uyz + α5uyt + α6uzt + α7uxx + α8uyy + α9uzz + α10utt = 0, (2.1)

where αi, 1 ≤ i ≤ 10, are real constants, and the subscripts denote partial differentiation.
We search for a kind of exact solutions

u = v(ξ1, ξ2, ξ3, ξ4) (2.2)

where v is an arbitrary real function, and ξi, 1 ≤ i ≤ 4, are four wave variables:

ξi = aix + biy + ciz + dit + ei, 1 ≤ i ≤ 4, (2.3)

in which ai, bi, ci, di and ei, 1 ≤ i ≤ 4, are real constants to be determined. Then, the linear PDE (2.1) becomes
4∑

i=1

4∑
j=i

wijvξiξj = 0, (2.4)

where wij, 1 ≤ i ≤ j ≤ 4, are quadratic functions of the parameters ai, bi, ci and di, 1 ≤ i ≤ 4. Upon setting all coefficients
of the ten second partial derivatives of v to be zero, we obtain a system of equations on the parameters:⎧⎪⎨⎪⎩

α1aibi + α2aici + α3aidi + α4bici + α5bidi
+ α6cidi + α7a2i + α8b2i + α9c2i + α10d2i = 0, 1 ≤ i ≤ 4,

α1(aibj + ajbi) + α2(aicj + ajci) + α3(aidj + ajdi) + α4(bicj + bjci) + α5(bidj + bjdi)
+ α6(cidj + cjdi) + 2α7aiaj + 2α8bibj + 2α9cicj + 2α10didj = 0, 1 ≤ i < j ≤ 4.

(2.5)
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Direct symbolic computations with Maple can determine a bunch of solutions to this system of quadratic equations. The
interesting two ones are stated as follows:{

b2 =
a2
a4

γ1, b3 =
a3
a4

γ1, b4 = γ1, c3 =
a3c4
a4

, d2 =
a2d4
a4

, d3 =
a3d4
a4

,

α1 = γ2, α2 = −
b1α4 + d1α6

a1
, α7 = γ3, α8 = −

α4(α4α10 − α5α6)
α2
6

, α9 = 0
}

,

(2.6)

where⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

γ1 =
a4b1α4 + (a4d1 − a1d4)α6

a1α4
,

γ2 =
a1α3α4α6 + b1α4(2α4α10 − α5α6) + d1α6(2α4α10 − α5α6)

a1α2
6

,

γ3 = −
a1α3α6(b1α4 + d1α6) + α10(b1α4 + d1α6)2

a21α
2
6

;

and {
b2 =

a2b4
a4

, b3 =
a3b4
a4

, c1 = 0, d2 = γ1, d3 = γ2, α1 = −
d1
a1

α5, α4 =
a4d1 − a1d4

a1c4
α5,

α6 = γ3, α7 =
d1(b1α5 − a1α3)

2a21
, α8 = 0, α9 = γ4, α10 = −

a1α3 + b1α5

2d1

}
,

(2.7)

where⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
γ1 =

a1c2d4 + a2c4d1 − a4c2d1
a1c4

,

γ2 =
a1c3d4 + a3c4d1 − a4c3d1

a1c4
, γ3 =

b1(a1d4 − a4d1)α5 − a21c4α2

a1c4d1
,

γ4 =
(a1d4 + a4d1)2(a1α3 − b1α5) + 2a21c4(a1d4 − a4d1)α2 − 4a1a4d1d4(a1α3 − b1α5)

2a21c
2
4d1

.

In each set of the two solutions listed above, the parameters not determined in the set are arbitrary provided that all
expressions in the set are meaningful. Though those two choices engender lumps and their interaction solutions, we remark
that all the resulting solutions satisfy a determinant identity⏐⏐⏐⏐⏐⏐⏐

a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

⏐⏐⏐⏐⏐⏐⏐ = 0. (2.8)

From those two solutions, we can derive the corresponding two following results.

Case 1.
Upon taking a1 = b1 = −d1 and a4 = c4 = d4, we can know that the following reduced linear PDE:

uxy + uxt + uyz + uyt + uzt + utt = 0 (2.9)

possesses a class of exact solutions

u = (ln f )xx, f = ξ
2n1
1 + ξ

2n2
2 + ξ

2n3
3 + g(ξ4), (2.10)

where ni, 1 ≤ i ≤ 3, are arbitrary natural numbers, the wave variables ξi, 1 ≤ i ≤ 4, are defined by⎧⎪⎨⎪⎩
ξ1 = a1x + a1y + c1z − a1t + e1,
ξ2 = a2x − a2y + c2z + a2t + e2,
ξ3 = a3x − a3y + a3z + a3t + e3,
ξ4 = a4x − a4y + a4z + a4t + e4,

(2.11)

and the function g is arbitrary. Therefore, upon taking

g(ξ4) = β1, β2 + β3 cos ξ4, or β4 cosh ξ4, (2.12)

where βi, 1 ≤ i ≤ 4, are proper constants to fulfill the positivity of f , we can generate lump solutions, and interaction
solutions: lump-periodic and lump–soliton solutions to the linear PDE (2.9). The resulting solution with n1 = n2 = n3 = 1
is

u =
fxxf − f 2x

f 2
=

2a21 + 2a22 + 2a23 + a24g
′′(ξ4)

f
−

(2a1ξ1 + 2a2ξ2 + 2a3ξ3 + a4g ′(ξ4))2

f 2
. (2.13)
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Case 2. Upon taking a1 = −b1 = −d1, a4 = b4 = d4 and c4 = 2d4, we can know that the following reduced linear PDE:

uxy − uyz + uyt + uzt +
1
2
uxx −

1
2
uzz −

1
2
utt = 0 (2.14)

possesses a class of exact solutions

u = (ln f )xx, f = ξ
2n1
1 + ξ

2n2
2 + ξ

2n3
3 + g(ξ4), (2.15)

where ni, 1 ≤ i ≤ 3, are arbitrary natural numbers, the wave variables ξi, 1 ≤ i ≤ 4, are defined by⎧⎪⎨⎪⎩
ξ1 = a1x − a1y − a1t + e1,
ξ2 = a2x + a2y + c2z + (c2 − a2)t + e2,
ξ3 = a3x + a3y + c3z + (c3 − a3)t + e3,
ξ4 = d4x + d4y + 2d4z + d4t + e4,

(2.16)

and the function g is arbitrary. Therefore, upon taking

g(ξ4) = β1, β2 + β3 sin ξ4, or β4 cosh ξ4, (2.17)

where βi, 1 ≤ i ≤ 4, are proper constants to fulfill the positivity of f , we can generate lump solutions, and interaction
solutions: lump-periodic and lump–soliton solutions to the linear PDE (2.14). The resulting solution with n1 = n2 = n3 = 1
is

u =
fxxf − f 2x

f 2
=

2a21 + 2a22 + 2a23 + d24g
′′(ξ4)

f
−

(2a1ξ1 + 2a2ξ2 + 2a3ξ3 + d4g ′(ξ4))2

f 2
. (2.18)

Specially taking⎧⎪⎨⎪⎩
a1 = −1, a2 = a, c2 = 1,
a3 = 2, c3 = 3, d4 = 1,
n1 = n2 = n3 = 1,
β1 = 1, β2 = 15, β3 = 16, β4 = 25,

(2.19)

we get the three special solutions to the reduced PDE (2.14):⎧⎨⎩u1 =
12f1 − (12x + 8y + 14z + 2t)2

f 21
,

f1 = (−x + y + t)2 + (x + y + z)2 + (2x + 2y + 3z + t)2 + 1,
(2.20)

⎧⎪⎨⎪⎩u2 =
(12 − 15 sin ξ4)f2 − (12x + 8y + 14z + 2t + 15 cos ξ4)2

f 22
,

f2 = (−x + y + t)2 + (x + y + z)2 + (2x + 2y + 3z + t)2 + 15 sin ξ4 + 16,
(2.21)

and ⎧⎨⎩u3 =
(12 + 25 cosh ξ4)f3 − (12x + 8y + 14z + 2t + 25 sinh ξ4)2

f 23
,

f3 = (−x + y + t)2 + (x + y + z)2 + (2x + 2y + 3z + t)2 + 25 cosh ξ4,

(2.22)

where ξ4 = x + y + 2z + t . Three three-dimensional plots and contour plots of those solutions are presented in Figs. 1–3.
All above results enrich the existing theories of soliton solutions and dromion-type solutions through basic approaches,

including the Hirota perturbation technique and symmetry constraints (see, e.g., [29–34]).

3. Concluding remarks

We have considered a class of linear partial differential equations in (3+1)-dimensions to explore abundant lump
solutions and their interaction solutions: lump-periodic solutions and lump–soliton solutions, which amends soliton theory
of nonlinear integrable equations. A class of particular lump and interaction solutions were explicitly worked out through
Maple symbolic computations, and three-dimensional plots and contour plots of three specially chosen solutionsweremade
with Maple.

We remark that the presented solutions in (2.13) and (2.18) with g = 0 are all lump solutions, rationally localized in all
directions in the (x, y, z)-space, but we failed to generate any rational solution to the considered class of (3+1)-dimensional
linear partial differential equations, which is localized in all directions in the whole (x, y, z, t)-space. All the obtained lump,
lump-periodic and lump–soliton solutions supplement exact solutions generated from various kinds of combinations [35–
37]. It is also interesting to search for lump and interaction solutions to other generalized bilinear and tri-linear differential
equations involving generalized bilinear derivatives [38,39]. The corresponding interaction solutions will generally not be
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Fig. 1. Profiles of u1 when t = 0, 1, 2 and z = −2: 3d plots (top) and contour plots (bottom).

Fig. 2. Profiles of u2 when t = 0, 0.5, 1 and z = 1: 3d plots (top) and contour plots (bottom).

resonant solutions generated through the linear superposition principle [40,41]. Integrable equations determined in terms
of generalized bilinear derivatives [38,39] will have different interaction solutions, including lump-periodic, lump–kink and
lump–soliton solutions, but lump solutions derived from quadratic functions remain the same as in the Hirota derivative
case (see [42] for more details).

The richness of interaction solutions should imply that there exist diverse Lie–Bäcklund symmetries, which amends
symmetry theories on partial differential equations, particularly integrable equations. It is well known that the Wronskian
technique can solve integrable equations, and therefore, our study creates an interesting question: how can one generalize
Wronskian solutions by introducing matrix entries of new type? Also, there is no doubt that it is important to establish
a fundamental theory of lump solutions and their interactions for difference–differential equations. All those interesting
problems deserve our further investigation and effort.
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Fig. 3. Profiles of u3 when t = 0, 0.5, 1 and z = 0: 3d plots (top) and contour plots (bottom).
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