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through a specific Riemann–Hilbert problem with an identity jump matrix.
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1. Introduction

The Riemann–Hilbert method is one of the most powerful approaches to generate integrable systems and their soliton
solutions [1]. Its basic starting point is a kind ofmatrix spectral problems,which possess bounded eigenfunctions analytically
extendable to the upper or lower half-plane. There is a close connection with the inverse scattering method in soliton
theory [2]. The asymptotics at infinity on the real axis necessary in constructing the scattering coefficients is used primarily in
solving the corresponding Riemann–Hilbert problems [1]. Specific Riemann–Hilbert problemswith the identity jumpmatrix
lead to N-soliton solutions, which could contain rational solutions and periodic solutions.

To formulate a Riemann–Hilbert problem, we usually start with taking the following pair of equivalent matrix spectral
problems

ψx = i[A(λ), ψ] + P̌(u, λ)ψ,ψt = i[B(λ), ψ] + Q̌ (u, λ)ψ,

where [·, ·] is thematrix commutator, λ is a spectral parameter, u is a potential, A, B are two constant n×nmatrices, P̌, Q̌ are
trace-less n × nmatrices and ψ is an n × nmatrix eigenfunction. An important step is to explore the existence of analytical
matrix eigenfunctions with the asymptotic conditions

ψ±
→ In, when x, t → ±∞,
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where In stands for the identitymatrix of size n, to determine two analyticalmatrix functions P±(x, t, λ), which are analytical
in the upper and lower half-planes, respectively. Then formulate a Riemann–Hilbert problem on the real line:

P−(x, t, λ)P+(x, t, λ) = EG(λ)E−1, λ ∈ R,

where E = eiA(λ)x+iB(λ)t . Upon taking G to be the identity matrix In, the corresponding Riemann–Hilbert problem can be
explicitly solved to present N-soliton solutions by checking asymptotic behaviors of the matrix functions at infinity of λ. We
shall consider an example of coupled mKdV equations and generate its N-soliton solutions by a special Riemann–Hilbert
problem.

The rest of the paper is structured as follows. In Section 2, with the aid of the zero-curvature formulation and the trace
identity, we rederive the AKNS soliton hierarchy with four components and its bi-Hamiltonian structure from a newmatrix
spectral problem suited for the Riemann–Hilbert theory. In Section 3, taking a system of coupled mKdV equations as an
example, we analyze analytical properties of matrix eigenfunctions for an equivalent spectral problem, and then formulate
a kind of Riemann–Hilbert problems associated with the newly introduced spectral problem. In Section 4, we compute
N-soliton solutions to the considered system of coupled mKdV equations from a specific Riemann–Hilbert problem, which
possesses the identity jump matrix on the real axis. In the last section, we present a few concluding remarks, together with
some discussions on other solution methods.

2. AKNS soliton hierarchy with four components

2.1. Soliton hierarchy

Let us first recall the zero curvature formulation and the trace identity [3]. We follow the standard procedure suited for
Riemann–Hilbert problems, where we consistently use the unit imaginary number i. Let U = U(u, λ) be a square spectral
matrix belonging to a given matrix loop algebra, where u is a potential and λ is a spectral parameter. Assume that

W = W (u, λ) =

∞∑
k=0

Wkλ
−k

=

∞∑
k=0

Wk(u)λ−k (2.1)

solves the corresponding stationary zero curvature equation

Wx = i[U,W ]. (2.2)

Then introduce a series of Lax matrices

V [r]
= V [r](u, λ) = (λrW )+ +∆r , r ≥ 0, (2.3)

where the subscript +denotes the operation of taking a polynomial part in λ and ∆r , r ≥ 0, are appropriate modification
terms, to generate a soliton hierarchy

ut = Kr (u) = Kr (x, t, u, ux, . . .), r ≥ 0, (2.4)

from a series of zero curvature equations

Ut − V [r]
x + i[U, V [r]

] = 0, r ≥ 0. (2.5)

The two matrices U and V [r] are called a Lax pair [4] of the rth soliton equation in the hierarchy (2.4). The zero curvature
equations in (2.5) are the compatibility conditions of the spatial and temporal spectral problems

− iφx = Uφ = U(u, λ)φ, − iφt = V [r]φ = V [r](u, λ)φ, r ≥ 0, (2.6)

where φ is the matrix eigenfunction.
An important task in soliton theory is to show the Liouville integrability of a soliton hierarchy. This can be achieved

usually by establishing a bi-Hamiltonian structure [5]:

ut = Kr = J
δH̃r+1

δu
= M

δH̃r

δu
, r ≥ 1, (2.7)

where J and M constitute a Hamiltonian pair and δ
δu denotes the variational derivative (see, e.g., [6]). The Hamiltonian

structures can be often furnished through applying the trace identity [3]:
δ

δu

∫
tr(W

∂U
∂λ

)dx = λ−γ ∂

∂λ

[
λγ tr(W

∂U
∂u

)
]
, γ = −

λ

2
d
dλ

ln |tr(W 2)|, (2.8)

or more generally, the variational identity [7]:
δ

δu

∫
⟨W ,

∂U
∂λ

⟩dx = λ−γ ∂

∂λ

[
λγ ⟨W ,

∂U
∂u

⟩

]
, γ = −

λ

2
d
dλ

ln |⟨W ,W ⟩|, (2.9)
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where ⟨·, ·⟩ is a non-degenerate, symmetric and ad-invariant bilinear form on the underlyingmatrix loop algebra [8]. The bi-
Hamiltonian structure guarantees that infinitely many Lie symmetries {Kn}

∞

n=0 and conserved quantities {H̃n}
∞

n=0 commute:

[Kn1 , Kn2 ] = K ′

n1 [Kn2 ] − K ′

n2 [Kn1 ] = 0, (2.10)

{H̃n1 , H̃n2}N =

∫ (δH̃n1

δu

)T
N
δH̃n2

δu
dx = 0, (2.11)

where n1, n2 ≥ 0, N = J orM , and K ′ denotes the Gateaux derivative of K :

K ′(u)[S] =
∂

∂ε

⏐⏐⏐
ε=0

K (u + εS, ux + εSx, . . .).

It is known that for an evolution equationut = K (u), H̃ =
∫
H dx is a conserved functional iff δH̃

δu is an adjoint symmetry [9],
and so, the Hamiltonian structures link conserved functionals to adjoint symmetries and further symmetries. When the
underlying matrix loop algebra in the zero curvature formulation is simple, the associated zero curvature equations yield
classical soliton hierarchies [10]; when semisimple, the associated zero curvature equations yield a collection of different
soliton hierarchies; and when non-semisimple, we obtain hierarchies of integrable couplings [11], which require extra care
in presenting soliton solutions.

2.2. AKNS hierarchy with four components

Let us consider a 3 × 3 matrix spectral problem

− iφx = Uφ = U(u, λ)φ, U = (Ukl)3×3 =

[
α1λ p1 p2
q1 α2λ 0
q2 0 α2λ

]
, (2.12)

where α1 and α2 are real constants, λ is a spectral parameter and u is a four-dimensional potential

u = (p, qT )T , p = (p1, p2), q = (q1, q2)T . (2.13)

The special reduction of p2 = q2 = 0 transforms (2.12) into the AKNS spectral problem [12], and thus it is called a four-
component AKNS spectral problem. Since Λ = diag(α1, α2, α2) has a multiple eigenvalue, the spectral problem (2.12) is
degenerate.

To derive the associated soliton hierarchy, we first solve the stationary zero curvature equation (2.2) corresponding to
(2.12). We suppose that a solutionW is given by

W =

[
a b
c d

]
, (2.14)

where a is a scalar, bT and c are two-dimensional columns, and d is a 2 × 2 matrix. Then the stationary zero curvature
equation (2.2) becomes

ax = i(pc − bq), bx = i(αλb + pd − ap), cx = i(−αλc + qa − dq), dx = i(qb − cp), (2.15)

where α = α1 − α2. We seek a formal series solution as

W =

[
a b
c d

]
=

∞∑
m=0

Wmλ
−m, Wm = Wm(u) =

[
a[m] b[m]

c[m] d[m]

]
, m ≥ 0, (2.16)

with b[m], c[m] and d[m] being assumed to be

b[m]
= (b[m]

1 , b[m]

2 ), c[m]
= (c[m]

1 , c[m]

2 )T , d[m]
= (d[m]

kl )2×2, m ≥ 0. (2.17)

Thus, the system (2.15) equivalently leads to the following recursion relations:

b[0]
= 0, c[0]

= 0, a[0]
x = 0, d[0]

x = 0, (2.18a)

b[m+1]
=

1
α
(−ib[m]

x − pd[m]
+ a[m]p), m ≥ 0, (2.18b)

c[m+1]
=

1
α
(ic[m]

x + qa[m]
− d[m]q), m ≥ 0, (2.18c)

a[m]

x = i(pc[m]
− b[m]q), d[m]

x = i(qb[m]
− c[m]p), m ≥ 1. (2.18d)

We choose the initial values as follows:

a[0]
= β1, d[0]

= β2I2, (2.19)
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where β1, β2 are arbitrary real constants and I2 = diag(1, 1), and take constants of integration in (2.18d) to be zero,
i.e., require

Wm|u=0 = 0, m ≥ 1. (2.20)

Therefore, with a[0] and d[0] given by (2.19), all matrices Wm, m ≥ 1, will be uniquely determined. For instance, a direct
computation, based on (2.18), tells that

b[1]
k =

β

α
pk, c

[1]
k =

β

α
qk, a[1]

= 0, d[1]
kl = 0; (2.21a)

b[2]
k = −

β

α2 ipk,x, c
[2]
k =

β

α2 iqk,x, a
[2]

= −
β

α2 (p1q1 + p2q2), d
[2]
kl =

β

α2 plqk; (2.21b)

b[3]
k = −

β

α3 [pk,xx + 2(p1q1 + p2q2)pk], c
[3]
k = −

β

α3 [qk,xx + 2(p1q1 + p2q2)qk], (2.21c)

a[3]
= −

β

α3 i(p1q1,x − p1,xq1 + p2q2,x − p2,xq2), d
[3]
kl = −

β

α3 i(pl,xqk − plqk,x); (2.21d)

b[4]
k =

β

α4 i[pk,xxx + 3(p1q1 + p2q2)pk,x + 3(p1,xq1 + p2,xq2)pk], (2.21e)

c[4]
k = −

β

α4 i[qk,xxx + 3(p1q1 + p2q2)qk,x + 3(p1q1,x + p2q2,x)qk], (2.21f)

a[4]
=
β

α4 [3(p1q1 + p2q2)2 + p1q1,xx − p1,xq1,x + p1,xxq1 + p2q2,xx − p2,xq2,x + p2,xxq2], (2.21g)

d[4]
kl = −

β

α4 [3pl(p1q1 + p2q2)qk + pl,xxqk − pl,xqk,x + plqk,xx]; (2.21h)

where β = β1 − β2 and 1 ≤ k, l ≤ 2. Based on (2.18d), we can obtain, from (2.18b) and (2.18c), a recursion relation for b[m]

and c[m]:[
c[m+1]

b[m+1]T

]
= Ψ

[
c[m]

b[m]T

]
, m ≥ 1, (2.22)

where Ψ is a 4 × 4 matrix operator

Ψ =
i
α

⎡⎢⎢⎢⎢⎣
(∂ +

2∑
k=1

qk∂−1pk)I2 + q∂−1p −q∂−1qT − (q∂−1qT )T

pT∂−1p + (pT∂−1p)T −(∂ +

2∑
k=1

pk∂−1qk)I2 − pT∂−1qT

⎤⎥⎥⎥⎥⎦ . (2.23)

To get a soliton hierarchy, we introduce, for all integers r ≥ 0, the following Lax matrices

V [r]
= V [r](u, λ) = (V [r]

kl )3×3 = (λrW )+ =

r∑
k=0

Wkλ
r−k, r ≥ 0, (2.24)

where themodification terms are taken as zero. The compatibility conditions of (2.6), i.e., the zero curvature equations (2.5),
generate the AKNS soliton hierarchy with four components

ut =

[
pT

q

]
t
= Kr = i

[
αb[r+1]T

−αc[r+1]

]
, r ≥ 0. (2.25)

The first two nonlinear systems in the soliton hierarchy (2.25) read

pk,t = −
β

α2 i[pk,xx + 2(p1q1 + p2q2)pk], 1 ≤ k ≤ 2, (2.26a)

qk,t =
β

α2 i[qk,xx + 2(p1q1 + p2q2)qk], 1 ≤ k ≤ 2, (2.26b)

and

pk,t = −
β

α3 [pk,xxx + 3(p1q1 + p2q2)pk,x + 3(p1,xq1 + p2,xq2)pk], 1 ≤ k ≤ 2, (2.27a)

qk,t = −
β

α3 [qk,xxx + 3(p1q1 + p2q2)qk,x + 3(p1q1,x + p2q2,x)qk], 1 ≤ k ≤ 2, (2.27b)

which are the four-component versions of the AKNS systems of coupled nonlinear Schrödinger equations and coupledmKdV
equations, respectively. Under a symmetric reduction, the four-component AKNS equations (2.26b) can be reduced to the
Manakov system [13], for which a decomposition into finite-dimensional integrable Hamiltonian systems was presented
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in [14], while as the four-component AKNS equations (2.27b) contain variousmKdV equations, forwhich there exist different
kinds of integrable decompositions under symmetry constraints (see, e.g., [15,16]).

The AKNS soliton hierarchy (2.25) with four components has a Hamiltonian structure [9], which can be generated using
the trace identity [3], or more generally, the variational identity [7]. Actually, we have

− i tr(W
∂U
∂λ

) = α1a + α2tr(d) =

∞∑
m=0

(α1a[m]
+ α2d

[m]

11 + α2d
[m]

22 )λ−m,

and

− i tr(W
∂U
∂u

) =

[
c
bT

]
=

∑
m≥0

Gm−1λ
−m.

Inserting these expressions into the trace identity and considering the case ofm = 2, we get γ = 0 and thus we obtain

δH̃m

δu
= iGm−1, H̃m = −

i
m

∫
(α1a[m+1]

+ α2d
[m+1]
11 + α2d

[m+1]
22 ) dx, Gm−1 =

[
c[m]

b[m]T

]
, m ≥ 1. (2.28)

A bi-Hamiltonian structure of the four-component AKNS equations (2.25) then follows:

ut = Kr = JGr = J
δH̃r+1

δu
= M

δH̃r

δu
, r ≥ 1, (2.29)

where the Hamiltonian pair (J,M = JΨ ) is given by

J =

[
0 αI2

−αI2 0

]
, (2.30a)

M = i

⎡⎢⎢⎢⎢⎣
pT∂−1p + (pT∂−1p)T −(∂ +

2∑
k=1

pk∂−1qk)I2 − pT∂−1qT

−(∂ +

2∑
k=1

pk∂−1qk)I2 − q∂−1p q∂−1qT + (q∂−1qT )T

⎤⎥⎥⎥⎥⎦ . (2.30b)

Adjoint symmetry constraints or equivalently symmetry constraints separate the four-component AKNS equations into two
commuting finite-dimensional Liouville integrable Hamiltonian systems [9]. In the next section, wewill focus on the system
of coupled mKdV equations (2.27b).

3. Riemann–Hilbert problems

The spectral problems of the system of coupled mKdV equations (2.27b) are

− iφx = Uφ, − iφt = V [3]φ, (3.1)

with

U = λΛ+ P, V [3]
= λ3Ω + Q , (3.2)

whereΛ = diag(α1, α2, α2),Ω = diag(β1, β2, β2), and

P =

[ 0 p1 p2
q1 0 0
q2 0 0

]
, Q =

[
a[1]λ2 + a[2]λ+ a[3] b[1]λ2 + b[2]λ+ b[3]

c[1]λ2 + c[2]λ+ c[3] d[1]λ2 + d[2]λ+ d[3]

]
, (3.3)

a[m], b[m], c[m] and d[m], 1 ≤ m ≤ 3, being defined in (2.21h).
In this section, we present the scattering and inverse scattering methods for the coupled mKdV system (2.27b) using

the Riemann–Hilbert formulation [1,17,18]. The resulting results will lay the groundwork for N-soliton solutions in the next
section. Suppose that all the potentials rapidly vanish when x → ±∞ or t → ±∞ and satisfy∫

∞

−∞

∫
∞

−∞

|x|m|t|n(|p1| + |p2| + |q1| + |q2|) dxdt < ∞, m, n ≥ 0. (3.4)

For the sake of presentation, we also assume that α = α1 − α2 < 0 and β = β1 − β2 < 0.
In the Riemann–Hilbert formulation, we treat φ in the spectral problems (3.1) as a fundamental matrix. From (3.1), we

note, under (3.4), that when x, t → ±∞, one has the asymptotic behavior: φ ∼ E = eiλΛx+iλ3Ωt . This motivates us to
introduce the variable transformation

ψ = φe−iλΛx−iλ3Ωt , (3.5)
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to have the canonical normalization for the associated Riemann–Hilbert problem:

ψ → I3, when x, t → ±∞, (3.6)

where I3 = diag(1, 1, 1). This way, the spectral problems in (3.1) equivalently lead to

ψx = iλ[Λ, ψ] + P̌ψ, (3.7)

ψt = iλ3[Ω, ψ] + Q̌ψ, (3.8)

where P̌ = iP and Q̌ = iQ . Noting tr(P̌) = tr(Q̌ ) = 0, we have

detψ = 1, (3.9)

by Abel’s formula.
Let us now consider the formulation of an associated Riemann–Hilbert problem with the variable x. In the scattering

problem, we first introduce the matrix solutions ψ±(x, λ) of (3.7) with the asymptotic conditions

ψ±
→ I3, when x → ±∞, (3.10)

respectively. The subscripts above refer to which end of the x-axis the boundary conditions are required. Then, by (3.9), we
have detψ±

= 1 for all x ∈ R. Since φ±
= ψ±E are both solutions of (3.1), they must be linearly related, and so we can have

ψ−E = ψ+ES(λ), λ ∈ R, (3.11)

where

S(λ) =

[s11 s12 s13
s21 s22 s23
s31 s32 s33

]
, λ ∈ R, (3.12)

is the scattering matrix. Note that det(S(λ)) = 1 since det(ψ±) = 1. Using the method of variation in parameters as well as
the boundary condition (3.10), we can turn the x-part of (3.1) into the following Volterra integral equations for ψ± [1]:

ψ−(λ, x) = I3 +

∫ x

−∞

eiλΛ(x−y)P̌(y)ψ−(λ, y)eiλΛ(y−x) dy, (3.13)

ψ+(λ, x) = I3 −

∫
∞

x
eiλΛ(x−y)P̌(y)ψ+(λ, y)eiλΛ(y−x) dy. (3.14)

Thus,ψ± allows analytical continuations off the real axis λ ∈ R as long as the integrals on their right hand sides converge. It
is direct to see that the integral equation for the first column ofψ− contains only the exponential factor e−iαλ(x−y), which, due
to y < x in the integral, decays when λ is in the upper half-plane C+

= {z ∈ C| Im(z) > 0}, and the integral equation for the
last two columns of ψ+ contains only the exponential factor eiαλ(x−y), which, due to y > x in the integral, also decays when
λ is in the upper half-plane C+. Thus, these three columns can be analytically continued to the upper half-plane λ ∈ C+.
Similarly, we find that the last two columns of ψ− and the first column of ψ+ can be analytically continued to the lower
half-plane λ ∈ C−

= {z ∈ C| Im(z) < 0}. Let us express

ψ±
= (ψ±

1 , ψ
±

2 , ψ
±

3 ), (3.15)

that is, ψ±

k stands for the kth column of φ± (1 ≤ k ≤ 3). Then the matrix solution

P+
= P+(x, λ) = (ψ−

1 , ψ
+

2 , ψ
+

3 ) = ψ−H1 + ψ+H2 (3.16)

is analytic in λ ∈ C+, and the matrix solution

(ψ+

1 , ψ
−

2 , ψ
−

3 ) = ψ+H1 + ψ−H2 (3.17)

is analytic in λ ∈ C−, whereH1 = diag(1, 0, 0) andH2 = diag(0, 1, 1). In addition, from the Volterra integral equation (3.13),
we find that

P+(x, λ) → I3, when λ ∈ C+
→ ∞, (3.18)

and

(ψ+

1 , ψ
−

2 , ψ
−

3 ) → I3, when λ ∈ C−
→ ∞. (3.19)

Next we construct the analytic counterpart of P+ in the lower half-plane C−. Note that the adjoint equation of the x-part
of (3.1) and the adjoint equation of (3.7) read as

iφ̃x = φ̃U, (3.20)
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and

iψ̃x = λ[ψ̃,Λ] + ψ̃P . (3.21)

It is easy to see that the inverse matrices φ̃±
= (φ±)−1 and ψ̃±

= (ψ±)−1 solve these adjoint equations, respectively. If we
express ψ̃± as follows:

ψ̃±
=

⎡⎣ψ̃±,1

ψ̃±,2

ψ̃±,3

⎤⎦ , (3.22)

that is, ψ̃±,k stands for the kth row of ψ̃± (1 ≤ k ≤ 3). Then by similar arguments, we can show that adjoint matrix solution

P−
=

⎡⎣ψ̃−,1

ψ̃+,2

ψ̃+,3

⎤⎦ = H1ψ̃
−

+ H2ψ̃
+

= H1(ψ−)−1
+ H2(ψ+)−1 (3.23)

is analytic for λ ∈ C−, and the other matrix solution⎡⎣ψ̃+,1

ψ̃−,2

ψ̃−,3

⎤⎦ = H1ψ̃
+

+ H2ψ̃
−

= H1(ψ+)−1
+ H2(ψ−)−1 (3.24)

is analytic for λ ∈ C+. In the same way, we see that

P−(x, λ) → I3, when λ ∈ C−
→ ∞, (3.25)

and ⎡⎣ψ̃+,1

ψ̃−,2

ψ̃−,3

⎤⎦ → I3, when λ ∈ C+
→ ∞. (3.26)

Now we have constructed two matrix functions P+ and P−, which are analytic in C+ and C−, respectively. It is direct to
see that on the real line, the two matrix functions P+ and P− are related by

P−(x, λ)P+(x, λ) = G(x, λ), λ ∈ R, (3.27)

where

G(x, λ) = E(H1 + H2S)(H1 + S−1H2)E−1

= E

[ 1 s13s32 − s12s33 s12s23 − s13s22
s21 1 0
s31 0 1

]
E−1. (3.28)

Eqs. (3.27) and (3.28) are exactly the associated matrix Riemann–Hilbert problem we wanted to present. The asymptotics

P±(x, λ) → I3, when λ ∈ C±
→ ∞, (3.29)

provide the canonical normalization condition for the established Riemann–Hilbert problem.
To finish the direct scattering transform, we take the derivative of (3.11) with time t and use the vanishing conditions of

the potentials, we can show that S satisfies

St = iλ3[Ω, S], (3.30)

which gives the time evolution of the scattering coefficients:⎧⎨⎩
s11,t = s22,t = s33,t = s23,t = s32,t = 0,
s12 = s12(λ, 0)eiβλ

3t , s13 = s13(λ, 0)eiβλ
3t ,

s21 = s21(λ, 0)e−iβλ3t , s31 = s31(λ, 0)e−iβλ3t .

(3.31)

4. N-soliton solutions

The Riemann–Hilbert problemswith zeros generate soliton solutions. The uniqueness of the associated Riemann–Hilbert
problem (3.27) does not hold unless the zeros of det P+ and det P− in the upper and lower half-planes are specified and
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the kernel structures of P± at these zeros are determined [19,20]. Following the definitions of P± as well as the scattering
relation between ψ+ and ψ−, we find that

det P+(x, λ) = s33(λ), det P−(x, λ) = ŝ33(λ), (4.1)

where ŝ33 = (S−1)33 = s11s22 − s12s21 due to det S = 1. Suppose that s33 has zeros {λk ∈ C+, 1 ≤ k ≤ N}, and ŝ33 has
zeros {λ̂k ∈ C−, 1 ≤ k ≤ N}. For simplicity, we assume that these zeros, λk and λ̂k, 1 ≤ k ≤ N, are simple. Then, each of
ker P+(λk), 1 ≤ k ≤ N , contains only a single column vector, denoted by vk, 1 ≤ k ≤ N; and each of ker P+(λ̂k), 1 ≤ k ≤ N ,
a row vector, denoted by v̂k, 1 ≤ k ≤ N:

P+(λk)vk = 0, v̂kP−(λ̂k) = 0, 1 ≤ k ≤ N. (4.2)

The Riemann–Hilbert problem (3.27) with the canonical normalization condition (3.29) and the zero structure (4.2) can
be solved explicitly [1,21], and thus one can readily reconstruct the potential P as follows. Note that P+ is a solution to the
spectral problem (3.7). Therefore, as long as we expand P+ at large λ as

P+(x, λ) = I3 +
1
λ
P+

1 (x) + O(
1
λ2

), λ → ∞, (4.3)

inserting this expansion into (3.7) and comparing O(1) terms leads to

P̌ = −i[Λ, P+

1 ], (4.4)

which implies that

P = −[Λ, P+

1 ] =

⎡⎣ 0 −α(P+

1 )12 −α(P+

1 )13
α(P+

1 )21 0 0
α(P+

1 )31 0 0

⎤⎦ , (4.5)

where P+

1 = ((P+

1 )kl)1≤k,l≤3. Further, the potentials pk and qk, k = 1, 2, can be computed as{
p1 = −α(P+

1 )12, p2 = −α(P+

1 )13,
q1 = α(P+

1 )21, q2 = α(P+

1 )31,
(4.6)

To obtain soliton solutions, we set G = I3 in the Riemann–Hilbert problem (3.27). This can be achieved if we assume
s12 = s13 = s21 = s31 = 0, which means that there is no reflection in the scattering problem. The solutions to this specific
Riemann–Hilbert problem can be given as follows (see, e.g., [1,21]):

P+(λ) = I3 −

N∑
k,l=1

vk(M−1)klv̂l
λ− λ̂l

, P−(λ) = I3 +

N∑
k,l=1

vk(M−1)klv̂l
λ− λl

, (4.7)

whereM = (Mkl)N×N is a square matrix whose entries read

Mkl =
v̂kvl

λl − λ̂k
, 1 ≤ k, l ≤ N. (4.8)

Noting that the zeros λk and λ̂k are constants, i.e., space and time independent, we can easily find the spatial and temporal
evolutions for the vectors, vk(x, t) and v̂k(x, t), 1 ≤ k ≤ N . For example, let us take the x-derivative of both sides of the
equation P+(λk)vk = 0. By using (3.7) and then P+(λk)vk = 0, we get

P+(λk, x)
(dvk

dx
− iλkΛvk

)
= 0, 1 ≤ k ≤ N,

which implies

dvk
dx

= iλkΛvk, 1 ≤ k ≤ N.

The time dependence of vk:

dvk
dt

= iλ3kΩvk, 1 ≤ k ≤ N,

can be determined similarly through an associated Riemann–Hilbert problem with the variable t . Summing up, we obtain

vk(x, t) = eiλkΛx+iλ3kΩtvk,0, 1 ≤ k ≤ N, (4.9)

v̂k(x, t) = v̂k,0e−iλ̂kΛx−iλ̂3kΩt , 1 ≤ k ≤ N, (4.10)

where vk,0 and v̂k,0, 1 ≤ k ≤ N , are arbitrary constant vectors.
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Finally, from (4.7), we get

P+

1 = −

N∑
k,l=1

vk(M−1)klv̂l, (4.11)

and thus by (4.6), the N-soliton solution to the system of coupled mKdV equations (2.27b):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p1 = α

N∑
k,l=1

vk,1(M−1)klv̂l,2, p2 = α

N∑
k,l=1

vk,1(M−1)klv̂l,3,

q1 = −α

N∑
k,l=1

vk,2(M−1)klv̂l,1, q2 = −α

N∑
k,l=1

vk,3(M−1)klv̂l,1,

(4.12)

where vk = (vk,1, vk,2, vk,3)T and v̂k = (v̂k,1, v̂k,2, v̂k,3), 1 ≤ k ≤ N , are arbitrary.

5. Concluding remarks

Thepaper is dedicated to development of Riemann–Hilbert problem representations and associatedN-soliton solutions to
integrable equations. The starting point is a kind of equivalent spectral problem,which guarantees the existence of analytical
eigenfunctions in the upper or lower half-plane. We considered a 3 × 3 degenerate matrix spatial spectral problem and
worked out its soliton hierarchy. Taking the system of coupled mKdV equations as an example, we computed its associated
Riemann–Hilbert problems, together with an explicit formula for jump matrices. From the case of taking the identity jump
matrix, we generated N-soliton solutions to the considered system of coupled mKdV equations.

We see the effectiveness of using the Riemann–Hilbert formulation to derive N-soliton solutions (see, [22–24], for other
examples). We point out that lump solutions could be generated within the Riemann–Hilbert formulation. How about
other solutions such as positon solutions and complexiton solutions [25,26]? About systems of coupled mKdV equations,
there are other studies such as integrable couplings [27], super hierarchies [28] and fractional counterparts [29]. The
Riemann–Hilbert method has been also generalized to solve initial–boundary value problems of integrable equations on the
half-line [30]. There are many other approaches to soliton solutions in the field of integrable systems, which include the
bilinear method [31,32], the Wronskian technique [33,34] and the Darboux transformation [35]. It should be interesting to
study exact solutions to soliton equations, particularly rational solutions [36,37] and algebro-geometric solutions [38,39],
using other solution techniques.
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