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Exact solutions to Tu system through
Painleve analysis*

Ma Wenxiu
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Abstract The truncated Painlevé series for nonlincar Tu system is carefully analysed.
The relations of Tu system to the equation @,— @ =oad”+fid+7yof Riccati type are
derived from the series and some properties on that equation of Riccati type itself
arc exposed. Further, three sorts of explicit exact solutions to Tu system arc pro-
posed by considering the above equation of Riccati type.

Keywords integrable system; Painlevé analysis; truncated Painlcvé serics; cquation

of Riccati type

Although the Painlevé property usced as a test for intcgrability of nonlincar
partial differential equations is only a Ablowitz—Ramani—Scgur conjecture!”; the
study of the Painlevé property may improve the understanding of algebraic,
geomctrical and analytic propertics of integrability for PDEs. for c¢xample, Lax

{25}

represcntation, Bicklund transformation and bilincar form Morcover, by the
truncated Painlevé serics, we can often generate explicit exact solutions to
nonlinear PDE’s, including KdV equation, Sin-Gordon cquation, KP equation
and Burgers —KdV equation etc., no matter whether they possess integrability!®
A point that we will explain by ecxample is that the Painlevé scrics for a
nonlinear PDE contains a lot of information about the solutions of the PDE.

We want to analyse, by the Painlevé expansion, a simple but interesting sys-

{ui=ux+2v,

v, =28uv, e==%1.

tem of coupled equations

(1)
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This system was first introduced by Tu and then is called as Tu system. Tu system (1)
has many nice properties, for instance, the existence of infinitc many symmetrics and
conservation laws” and the nondegenerate Hamiltonian structure'®. In fact, the second
equation of Tu system may be casily written as

u,—u, =2eu(u,—u,)
by using the first equation of (1). What is more, if setting v=¢", the Tu system (1) can
be roduced to the following nonlinear equation

0, -, 486" =)
A tnivial solution for (1) is that u= " (x+¢), v=0 with an arbitrary function fEC*(R).

Now let u te a soluticn of Tu sysem (1) and assume that
u=@ Y u P V=Y v, el
i=0 i=0

where @=@(x, t) and u,=u,(x, t) are analytic functions of x,tin a neigbborhood
of the singularity manifold detcrmined by ®(x, t)=0. Substituting (2) into Tu sys-
tem (1), we can determine the possible valucs of (%,, 2,): (2, 2,)=(1, 2). In $2, we
further discuss the Painlevé series (2) and in §3, establish two relations of the Tu
system to an equation of Riccati type. Eventually in 34, wc cxhibit three sorts of

explicit exact solutions, derived form the trnucatcd Painlevé series, to Tu system (1).
1 Truncated Painlevé series

Make the Painlevé series for Tu system (1)
u:@"lZuidy’ V= ¢722V,,d)".
i=0 i=o

Substitution into Tu system (1) defines the following recurrence relations for (u,,
v), i=20, .
U Hi-DPu,=u,, +(-1)Pu,+2v,i=20,

{v,.,i+(i—2)Qv,=2sZuxvi, i>0. (3)

l
K+l=i

where we accept u_,=v_,=0. When i=0, (3) engenders
— Quy=—-Du ot 2V,
{—2@"0:281401)0
This system has a solution

{uo =22, @
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Therefore the coefficient determinant of the recurrence relation (3) at thc i—th

step reads as

(i-1)(P-®) -2 : .
r(l) det _d)‘ (a),_d)‘) l¢, 1( i ,\)(l l)(l 2)
Resonances occur at i=—1, 2 wherc thc u, v, arc arbitrary. The Rescnance at
i= —1 corresponds to the arbitrary function @. it iz easy to sce that the recur-

rence relation is consistently satisfied at the rescnance 1=2 (for more information,
see Ref. [11]). Thus Tu systern (1) posscesses the WTC —Painlevé property!?.

In the foliowing, we would hike to a'nalyse the truncated Painlevé serics.
Propesition 1 Let n20. If u,=0, i2n, then v,=0, izn+1.
Proof It follows from the first recurrence relation in (3).
Proposition 2 Let n23. If u,=0, iZn, but u, ,#0, then v,=0, i20.
Proof By Proposition 1, we know that v,=0, iZn+1. Then we can prove that v, =0,
0<is<n by the mathematical induction for i.

First, from the second recurrence relation with i=2n—1 in (3), we obtain

U, U, = ukv, =0,

Kbl=2n-1
and thus v, =0 because u, ,70. Herc we have used Cn—1)—12n+1, i. e. n=23. Now
we assume that v,=0, iZm for some 0sm<n. Set i =n+m~—2 and notc (n+m—2)
—12m. This moment the second recurrence relation in (3) reduces
Vo= 2 un=0,

ne1m-1
K+l=n+m-2

which means Vv, _, =0, Therefore we have v,=0, i20, by the mathematical induction.
From Propositions -1 and 2, the trivial truncated Painlevé series of Tu system (1)

must be of the following form

Doy v—.u°+“l +V.
u="@ TS T Y ©)

In the case of the above Painlevé series, the recurrence relations (3) become some identities

for i24, and give

{u"" =uyt2v, ©)
Vo~ d)ivl = 28ugY, +uVy);
u,=u,+2v,

_ . (7
V= 28U, uv);
Vy =28u,Y,; ®)

respectively for i=1, 2, 3.
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2 Relations of Tu system to the equation of Riccati type

Let us carefully consider the truncated Painlevé series (5). Noticing our selection (4),

we obtain from (6)

1 € . y
1 ’2_ Uy~ U= — '2— (C’,A \ q).,‘)-, )
v, — EV) =y, = ,;A D(D— D),

= — - (V.
2& i

and thus we may chcose

¢ 9 10
u‘ZTW‘ v (10)

Further from the first cquality of (7), we obtain

I 8 (ml B ¢¥)" + @ll(q)X_ ¢I)I

(u,—u,)= 7T & an

and now the second equality of (7) automatically holds. Let us now give some

manipulations with the equality (8). We first have

Vy =280V, = "'d')“‘ V2
which means that
A V2 - ] d)ii
Ci-al =0 or C; a (6,—5,()?' =0.
D D .
Note that 6‘?“ =g (1; . The last cquality may be rewritten as

a,{%[a(% a,(@—%)}}:O- (12)

Integrating the above equation three times with respect to ¢, we obtain
D — @ =od+ D4y, DF(, 13)

where 2 =f =7 =0, but 2, B, 7 can be chosen as arbitrary functions of %. The
partial diffcrential equation (13) is of Riccati type and the coefficients «, f,
7 are three changeable functions of 1.

Summing up, we obtain
Theorem 1 If @=®(y, 1) satisfies the equation (13) of Riccati type, then (u, v)
=(u. V) (D) of
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_ W _ ST
U= 5 +u, 7 + 7 D (14)
ve o 4 Y +v:_p_(a..5)(_ﬂ +£'_)
Qr 7] 22 PoTx @ 20 7
and (u, V)=(u, V(P of
i e @ e\ AN
u:=u1=? —:,5* y VZ::vz:‘I (a“ il'ij y (15)

are two solutions to Tu system (1).

This theoren: shows two rclations between Tu system (1) and the equation
(13) of Riccati type. We also have the following result about the equation (13).
Theorem 2 Let f€C”(R) be an arbitréry function of 7. if @=@(x, t) is a solution

to the equation (13) of Riccati’ type, then % and( @+ f are still solutions to the

equation (13) of Riccati type. : .
Proof From the equation (13), after some calculation. we may obtain

(5 )= (g b= =Wy P =Bl )2,
(D), — (P+]), =D+ Y+ B(P+/) +7,

where

a=a, f=f-2fa, y=y— f—af*~pf .
. 1 % :
In addition (5 )i=— — #0, (P+4f), =@ #0. Therefore
lutions of (13). The proof is completed.
By Theorems land 2, a direct calculation may show
Corollary 1 Let @=@(x, t) is a solution of (13). Then (i) for an arbitrary
X —function f€ C* (R),

and @+ fare two so-

1
0]

— £¢l + & ¢ii V= & a ja) i + i
u= ¢+f —‘—2_?5 __2—(1 Ox)( <D+f _é?')

is still a solution of Tu system (1), and (ii) we have the relation (u, V)(% )=1(u,

(D).

Also through Theorem 2, for the cquation (13) we can gencrate a sort of new
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solutions from one known solution @=®y, ¢ ):
D= [+

£+
S !
i

bt 7w

provided that the functions f, 1<i<n, only depena on the variaklc 7.

3 Exact solutions to Tu system

In this secition, we will exhibit some exact solutions to the Tu system (1) by
analysing another equivalent form of the cquation (12). Directly calculating the
derivative of 0, in the equation (12), we may obtain that equivalent form

O P34 DP+3P - P43 DD+ P D D3P D=0, £, (16)

LI T {11 1 xiii 0 iti

which is homogeneous with respect to @.
Case 1 Let us choose @,=0, Hence the solutions of the equation (16) possess

the form @=f(x)t+g(X), f #0, with two changeable functions f g € C*(R). In this
case, we have u,=v,=0. Further we obtain exact solutions of Tu system (1)

_Me B oV oMo [t g (17)

[ ft+g '’ > (7] 2 (ft+g)’
with two arbitrary x —functions f, g € C*(R) satisfying f2+ g*#0.
Case 2 We choose the second simple case: @,,=0; the equation (16) becomes
@i+¢x1id>ii(pi_’d)xi =0, Q#O. (18)
Let @= )’ +gOOt+h(X), £, g, h € C°(R), f*+¢*#0. Then @ satisfies (18) if and
only if
2+ f9—1f9.=0. (19)
This equation has many trivial solutions. For example,
f=ajl+aga, g=2a,x*+a,x+(a,a,—2a,a’), a, € R, 0<i<2;
f=ax""'+bx", g=2ax""*+2bx"*', a, b € R, n=0.
Now we have

&
w=—Qfi+g), u=5—

W= = QU+ =2+ (- g))

&
V= _2— (2fxt+gx_2f): v2=0'

Therefore we obtain exact solutions of Tu system (1)
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_ Uy - _ _8(2ﬁ+g) + ef 20a
u=-g tu fHgt+h 2i+g : (20a)

2+ (g, — - e 2ft+g,—2f

yo ooy o8 Qttglr+ g -ttt g)) | E fxz. 9.2/ 20m)
[ 7} 2 (B +gt+h) 2 gtk

where the x—functions f; g, h € C*(R) may be all chaugeable, but need to satisfy

. , A 5 S
(19) andf2+_gz+h2#0. In addition, we see by Theorem 1 that (0,~0) fitg =0

iff (19) holds.
Case 3 Finally we choose
@=f(x)e"+g(x), f g € C*(R), a € R, af#0. (21)
Then @ always satisfies (16). This moment v,=0. Therefore we obtain exact solu-

tions of Tu system (1)

_ Yo .V __ at (afgtfg.— fg)e”
=t T G gy , (22b)

with an arbitrary coefficient a € R and two arbitrary x—functions f, g € C*(R)
satisfying f2+¢*#0. In particular, if we choose that f=¢'™ h € C*(R), g=1, we
obtain a special analytic solution

aé

2

u= th -%— [at + h(x)),

V= — ﬁgf- [a— hx(rx)]sech2 % fat + h(x)],

which includes a solution given by Li and Tian [12] for the case of € = —1. When
h=bx+c, b,c € R, b#0 or a, the above solution reduces a soliton solution with

the speed —a/b.
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