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Abstract
This paper presents the first negative-order matrix AKNS flow, derived by associating 
a Lax pair containing a first-order pole in the spectral parameter with the matrix AKNS 
spectral problem. The corresponding Darboux transformation is constructed within the 
AKNS framework. Starting from a seed solution, a class of exact and explicit solutions 
to the nonlinear negative-order model is generated via a single application of the derived 
Darboux transformation.
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1  Introduction

The Darboux transformation is a powerful algebraic method for generating new solutions 
from known ones in integrable systems, especially in soliton theory [1]. Applied to the Lax 
pair of an integrable system, it preserves integrability and enables the construction of multi-
soliton solutions, rational solutions, rogue waves, and other complex structures. The method 
has been extended to matrix, higher-dimensional, noncommutative, and supersymmetric 
settings (see, e.g., [2–4]). Consider the zero-curvature formulation for integrable systems, 
in which a system of PDEs
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	 ut = K(u) = K(x, t, u, ux, · · · ),� (1)

is represented by the zero-curvature condition:

	 Ut − Vx + [U, V ] = 0,� (2)

where U and V are matrix-valued functions (the Lax pair) belonging to a matrix loop algebra 
[5]. This zero-curvature equation arises as the compatibility condition of the matrix spectral 
problems

	 ϕx = Uϕ = U(u, λ)ϕ, ϕt = V ϕ = V (u, λ)ϕ,� (3)

where λ is the spectral parameter and ϕ is the vector eigenfunction.
A Darboux transformation consists of a gauge transformation ϕ′ = Dϕ and a new poten-

tial u′ = u′(u), with D = D(u, λ) a matrix function of λ, such that the transformed func-
tion ϕ′ solves a pair of matrix spectral problems of the same structure:

	 ϕ′
x = U ′ϕ′ = U(u′, λ)ϕ′, ϕ′

t = V ′ϕ′ = V (u′, λ)ϕ′,� (4)

where U ′ and V ′ retain the structure of the original Lax pair. The Darboux matrix D must 
satisfy the two compatibility conditions:

	 U ′D = DU + Dx, V ′D = DV + Dt.� (5)

One of important tasks in the field of integrable systems is to construct such Darboux trans-
formations explicitly. Suppose that U and V are N × N  matrices. A first-order transforma-
tion can often be chosen in the form:

	 D(λ) = λIN − S,� (6)

where IN  is the identity matrix of order N and S is an N × N  matrix independent of λ. 
Given N eigenvalues λ1, λ2, · · · , λN , let ϕ[j] denote the corresponding eigenfunctions that 
satisfy:

	 ϕ[j]
x = U(u, λj)ϕ[j], ϕ

[j]
t = V (u, λj)ϕ[j], 1 ≤ j ≤ N,� (7)

for some fixed solution u of (1). Then, a standard choice for the matrix S is:

	 S = HAH−1, H = (ϕ[1], · · · , ϕ[N ]),� (8)

where A = diag(λ1, · · · , λN ), as described in [2, 6]. Verifying the compatibility conditions 
(5) ensures the validity of the transformation.

In this letter, we begin with the matrix AKNS spectral problem and propose the first neg-
ative-order matrix AKNS flow. We construct its associated Darboux transformation within 
the AKNS framework and apply it once to generate a class of explicit solutions. The final 
section offers concluding remarks and discusses directions for future research.
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2  The Lax Pair and the Matrix Model

Let α1 and α2 be two distinct constants, and let m and n be natural numbers. We consider 
the AKNS spectral matrix [7] of the form:

	
U = iλΛ + Q, Λ =

[
α1Im 0

0 α2In

]
, Q =

[ 0 q
r 0

]
,� (9)

where q and r are the potential matrices of sizes m × n and n × m, respectively. We define 
the Lax operator by

	
V = − 1

αλ
W, α = α1 − α2,� (10)

where

	
W = W1 + W2, W1 = −i

[
v 0
0 w

]
, W2 = i

[ 0 −qt
rt 0

]
,� (11)

with v and w being two square potential matrices of orders m and n, respectively.
The zero-curvature equation

	 Ut − Vx + [U, V ] = 0� (12)

is equivalent to

	 −αλUt − Wx + [U, W ] = 0.� (13)

By equating coefficients of powers of λ, we obtain the system:

	

{ −αQt + i[Λ, W ] = 0,
−Wx + [Q, W ] = 0. � (14)

The first equation is satisfied identically due to the choices:

	
[
Λ, W1

]
= 0,

[
Λ, W2

]
= −iαQt� (15)

For the second equation, we compute

	
[
Q, W1

]
= −i

[ 0 qw − vq
rv − wr 0

]
,

[
Q, W2

]
= i

[ (qr)t 0
0 −(rq)t

]
.� (16)

Thus, the second equation yields:
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



qtx − qw + vq = 0,
rtx + rv − wr = 0,
vx + (qr)t = 0,
wx − (rq)t = 0.

� (17)

Since V contains a simple pole of λ, this system represents the first negative-order matrix 
AKNS flow. It should be noted that this represents a special case of the system introduced 
in [6], corresponding to the parameter choices

	 n = 2, p1 = x, x2 = t, A1 = −U, a2 = −αλ, A2 = W.� (18)

All functions involved in the Lax pair U and V, including q and r, depends solely on x and 
t. Consequently, there is no dependence on x1 and p2.

If we take

	
v = −a

2
− ∂−1

x (qr)t, w = a

2
+ ∂−1

x (rq)t,� (19)

where a is an arbitrary constant, then the system simplifies to:

	

{
qtx − q∂−1

x (rq)t − ∂−1
x (qr)tq = aq,

rtx − r∂−1
x (qr)t − ∂−1

x (rq)tr = ar.
� (20)

When a = 1, this system corresponds to the first negative-order AKNS system studied in 
[8]. Furthermore, in the scalar case m = n = 1, it reduces to the first negative-order scalar 
AKNS system presented in [9, 10]. There are other negative-order AKNS flows (see, e.g., 
[11–13]). It is worth noting that the resulting equations do not depend explicitly on the 
constants α1 and α2.

Let

	 m = n = 1, w = −v.� (21)

Then, the system becomes

	

{
qtx + 2vq = 0,
rtx + 2vr = 0,
vx + (qr)t = 0.

� (22)

With r = q, this reduces to

	

{
qtx + 2vq = 0,
vx + (q2)t = 0. � (23)

Let

	 m = n = 1, r = q(−x, t), w = v(−x, t),� (24)
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then the system becomes a nonlocal model:

	

{
qtx + (v − v(−x, t))q = 0,

vx + (qq(−x, t))t = 0. � (25)

3  Darboux Transformation

3.1  Compatibility Conditions

We assume that he Darboux matrix takes the form:

	 D(λ) = λIm+n − S.� (26)

To satisfy the Darboux transformation conditions, this matrix must fulfill the spatial 
requirement

	 U ′D = DU + Dx,� (27)

where U is given by (9), and the transformed operator is

	 U ′ = iλΛ + Q′.� (28)

Substituting into the requirement yields:

	 (iλΛ + Q′)(λIm+n − S) = (λIm+n − S)(iλΛ + Q) − Sx,

which implies:

	 Q′ = Q + i[Λ, S],� (29)

and

	 Sx = Q′S − SQ = [Q + iΛS, S].� (30)

Next, we consider the temporal compatibility condition:

	 V ′D = DV + Dt,� (31)

where

	
V ′ = − 1

αλ
W ′.� (32)
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This gives:

	 W ′(λIm+n − S) = (λIm+n − S)W + αλSt,

which implies:

	 W ′ = W + αSt, W ′S − SW = 0.

Thus, we have

	 W ′ = SWS−1,� (33)

and

	
St = 1

α
(SWS−1 − W ).� (34)

3.2  Construction of the Darboux Matrix

Following the general framework (see, e.g., [2, 6]), we formulate the matrix S as:

	 S = HAH−1,� (35)

where

	 H = (ϕ[1], · · · , ϕ[m+n]), A = diag(λ1, · · · , λm+n),� (36)

and each column vector ϕ[j] satisfies the matrix spectral problems:

	 ϕ[j]
x = U(u, λj)ϕ[j], ϕ

[j]
t = V (u, λj)ϕ[j], 1 ≤ j ≤ m + n.� (37)

It follows that

	 Hx = iΛHA + QH, Ht = WHB,� (38)

where

	
B = diag(− 1

αλ1
, · · · , − 1

αλm+n
).� (39)

We can then compute:
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Sx =HxAH−1 − HA(H−1HxH−1)
=iΛHA2H−1 + QHAH−1 − HAH−1(iΛHA + QH)H−1

=iΛHA2H−1 + QHAH−1 − iHAH−1ΛHAH−1 − HAH−1Q

=QS − SQ + iΛS2 − iSΛS,

which confirms that the spatial condition (30) is satisfied.
Similarly, from the second equality in (38), we obtain:

	 St = HtAH−1 − HA(H−1HtH
−1) = WHBAH−1 − HA(H−1WHBH−1).

Using the identity αBA = −Im+n, it simplifies to:

	

αSt =WH(αBA)H−1 − HAH−1WH(αB)H−1

= − WHH−1 + HAH−1WHA−1H−1

= − W + SWS−1 = −W + W ′,

confirming the temporal condition (34).

3.3  The Darboux Transformation

We thus obtain the Darboux transformation:

	
ϕ′ = (λIm+n − S)ϕ, U ′ = iλΛ + Q′, V ′ = − 1

αλ
W ′,� (40)

with

	 Q′ = Q + i[Λ, S], W ′ = SWS−1,� (41)

where S is given by (35). Based on the structure of U and W in (9) and (11), this transforma-
tion gives the following expressions for the transformed quantities:

	

{
q′ = q + i[Λ, S]12, r′ = r + i[Λ, S]21,
v′ = i(SWS−1)11, w′ = i(SWS−1)22, � (42)

where Mjk denotes the (j, k)-th block of the matrix M.

3.4  Explicit Solutions

As an application, consider the seed solution

	 q = r = 0, v = v0, w = w0,� (43)

where v0 and w0 are constant matrices. Then, the eigenfunctions take the form:
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	 ϕ[j] = (ϕ[j]T
1 , ϕ

[j]T
2 )T ,� (44)

with

	

{
ϕ

[j]
1 = exp(iα1λjImx + i

αλj
v0t)µ[j]

1 ,

ϕ
[j]
2 = exp(iα2λjInx + i

αλj
w0t)µ[j]

2 ,
1 ≤ j ≤ m + n,� (45)

where µ[j]
1  and µ[j]

2  are arbitrary constant vectors of sizes m and n, respectively. Then, the 
following explicit solutions to the system (17) are obtained:

	 q′ = i[Λ, S]12, r′ = i[Λ, S]21, v′ = iα(SWS−1)11, w′ = i(SWS−1)22,� (46)

where S = HAH−1 with H = (ϕ[1], · · · , ϕ[m+n]) and A = diag(λ1, · · · , λm+n).

4  Concluding Remarks

We have constructed the first negative-order matrix AKNS flow and its associated Darboux 
transformation, along with a class of explicit solutions generated from a single application 
of the transformation. Iterating this process N times yields a higher-order Darboux transfor-
mation. Other developments on Darboux transformations for negative-order flows can be 
found in the literature (see, e.g., [14–16]).

An intriguing question is whether negative-order flows form commuting hierarchies, anal-
ogous to their well-known positive-order counterparts. A broader generalization involves Lax 
operators with higher-order poles in the spectral parameter, and a major open problem is to 
characterize Darboux transformations in this extended, higher negative-order framework.

Constrained Lax pairs are of particular interest, especially when reductions are imposed 
on the general spectral matrix U (see, e.g., [17, 18]). Such reductions often lead to nonlocal 
integrable models, which themselves form commuting hierarchies [19]. A central challenge 
is to develop systematic methods for constructing Darboux transformations in these con-
strained matrix settings.
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