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Abstract

This paper presents the first negative-order matrix AKNS flow, derived by associating
a Lax pair containing a first-order pole in the spectral parameter with the matrix AKNS
spectral problem. The corresponding Darboux transformation is constructed within the
AKNS framework. Starting from a seed solution, a class of exact and explicit solutions
to the nonlinear negative-order model is generated via a single application of the derived
Darboux transformation.
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1 Introduction

The Darboux transformation is a powerful algebraic method for generating new solutions
from known ones in integrable systems, especially in soliton theory [1]. Applied to the Lax
pair of an integrable system, it preserves integrability and enables the construction of multi-
soliton solutions, rational solutions, rogue waves, and other complex structures. The method
has been extended to matrix, higher-dimensional, noncommutative, and supersymmetric
settings (see, e.g., [2—4]). Consider the zero-curvature formulation for integrable systems,
in which a system of PDEs
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Ut:K(U):K(.T,t,’U,,’U,z,“'), (1)

is represented by the zero-curvature condition:

U —V,+[U,V]=0, @)

where U and V are matrix-valued functions (the Lax pair) belonging to a matrix loop algebra
[5]. This zero-curvature equation arises as the compatibility condition of the matrix spectral
problems

bz =U¢ =U(u,\)o, ¢r =V =V(u,\)g, 3)

where A is the spectral parameter and ¢ is the vector eigenfunction.

A Darboux transformation consists of a gauge transformation ¢’ = D¢ and a new poten-
tial ' = u/(u), with D = D(u, A) a matrix function of A, such that the transformed func-
tion ¢’ solves a pair of matrix spectral problems of the same structure:

¢, =U'¢/ =UW N, ¢, =V'¢ = V(' N, 4)

where U’ and V" retain the structure of the original Lax pair. The Darboux matrix D must
satisfy the two compatibility conditions:

U'D=DU+D,, V'D=DV + D,. 3)

One of important tasks in the field of integrable systems is to construct such Darboux trans-
formations explicitly. Suppose that U and V are N x N matrices. A first-order transforma-
tion can often be chosen in the form:

D(A\) =My — S, (6)
where Iy is the identity matrix of order N and S is an /N X N matrix independent of A.

Given N eigenvalues A1, Ao, - - - , Aw, let ¢l denote the corresponding eigenfunctions that
satisfy:

o = U, X))o, o' = V(w Ao, 1<j< N, @)
for some fixed solution u of (1). Then, a standard choice for the matrix S is:
S=HAH' H = (¢!, o™), ®)

where A = diag(A1, -+, An), as described in [2, 6]. Verifying the compatibility conditions
(5) ensures the validity of the transformation.

In this letter, we begin with the matrix AKNS spectral problem and propose the first neg-
ative-order matrix AKNS flow. We construct its associated Darboux transformation within
the AKNS framework and apply it once to generate a class of explicit solutions. The final
section offers concluding remarks and discusses directions for future research.
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2 The Lax Pair and the Matrix Model

Let a1 and ap be two distinct constants, and let m and n be natural numbers. We consider
the AKNS spectral matrix [7] of the form:

. I, 0 0
U=iM+Q, A= a10 azfn]’Q:{r 8}’ ©)

where g and r are the potential matrices of sizes m x n and n x m, respectively. We define
the Lax operator by

1
V= ——W o= 1 — (2, (10)
a
where
W=WitWo, Wi=—i| ¥ V], wp=i V —@ 11
- 1 2, 1 — 0 w ) 2 — T 0 ) ()

with v and w being two square potential matrices of orders m and n, respectively.
The zero-curvature equation

U -V, +[U,V]=0 (12)

is equivalent to

—a\U, — W, + [U, W] = 0. (13)

By equating coefficients of powers of A, we obtain the system:

—aQ + Z[A7 W} =0,
{ v = ()
The first equation is satisfied identically due to the choices:
(A W] =0, [A, W] = —iaQ; (15)

For the second equation, we compute
) 0 — . 0
@] =i o] ] =i | 9 |- e

TV —wr

Thus, the second equation yields:
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0 (17

Since V contains a simple pole of A, this system represents the first negative-order matrix
AKNS flow. It should be noted that this represents a special case of the system introduced
in [6], corresponding to the parameter choices

n=2pr=x, xo=1t Ay =-U, ag = —a), Ay =W. (18)

All functions involved in the Lax pair U and V, including ¢ and r, depends solely on x and
t. Consequently, there is no dependence on z; and ps.
If we take

a

v = B

0y (ar), w= 5 +9; " (ra)s, (19)

where a is an arbitrary constant, then the system simplifies to:

Qe — 905 1 (rq)e — 03 M (qr)eq = aq, 20)
rie — 10y H(qr)e — 05 1 (rq)wr = ar.

When a = 1, this system corresponds to the first negative-order AKNS system studied in
[8]. Furthermore, in the scalar case m = n = 1, it reduces to the first negative-order scalar
AKNS system presented in [9, 10]. There are other negative-order AKNS flows (see, e.g.,
[11-13]). It is worth noting that the resulting equations do not depend explicitly on the
constants «v; and as.

Let

m=n=1, w=—v. 21

Then, the system becomes

0, (22)

With r = ¢, this reduces to

Gtz + 2vq = 0,
{w+m%—o 23
Let
m=n=1, r=q(-z,t), w=uv(-zt), (24)
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then the system becomes a nonlocal model:
Gtz + (v — v(=2,1))g =0,
{ vy + (qq(—2,t))e = 0. (25)
3 Darboux Transformation
3.1 Compatibility Conditions
We assume that he Darboux matrix takes the form:
D(A\) = Mg — S. (26)

To satisfy the Darboux transformation conditions, this matrix must fulfill the spatial
requirement

U'D = DU + D,, @7

where U is given by (9), and the transformed operator is
U =iAA+ Q. (28)
Substituting into the requirement yields:
(A + QYN pgn — S) = Mppyn — S)(IAA + Q) — S,
which implies:
Q' =Q+i[A, 5], (29)
and

S, = Q'S — SQ = [Q+iAS, ). (30)

Next, we consider the temporal compatibility condition:

V'D = DV + Dy, 31
where
! 1 /
Vi=—-——W". (32)
a
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This gives:

W/()\Im+n - S) = ()\Im+n - S)W + CY)\St,

which implies:

W' =W +aS;, W'S—SW =0.
Thus, we have
W'=SWSs1,
and

1
Si = ~(SWS™ —W).

3.2 Construction of the Darboux Matrix

Following the general framework (see, e.g., [2, 6]), we formulate the matrix S as:

S=HAH !,
where
H= (¢[1]7 e 7¢[7n+n])7 A = diag()\b e 7)\m+n)7

and each column vector ¢! satisfies the matrix spectral problems:

oW = U(u, Ao, ¢!l = V(u, Ao, 1< j <m+n.

It follows that

H, =iAHA+QH, H,=WHB,

where

BZdlag(_TM’ 7—(1)\ N ).

We can then compute:
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(36)

(37

(3%
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S, =H,AH ' — HA(H 'H,H™)
=iAHA’H '+ QHAH ' — HAH '(iAHA + QH)H !
=iAHA’H '+ QHAH ' —iHAH 'AHAH ' — HAH'Q
=QS — SQ +iAS* —iSAS,

which confirms that the spatial condition (30) is satisfied.

Similarly, from the second equality in (38), we obtain:

Sy =HAH ' —~HA(H 'HH 'Y=WHBAH ' - HA(H'WHBH™).
Using the identity a BA = — I, 4y, it simplifies to:

Sy =WH(aBAYH™' — HAH 'WH(aB)H*
=-WHH '+ HAH 'WHA'H™!
=-W+SWS™t =W+ W,

confirming the temporal condition (34).

3.3 The Darboux Transformation

We thus obtain the Darboux transformation:

1
¢ = Msn — 8)p, U =idA+Q', V' = —JWC (40)

with
Q' =Q+ilA,S], W =SWS™, (41)

where S is given by (35). Based on the structure of U and W in (9) and (11), this transforma-
tion gives the following expressions for the transformed quantities:

q = q+i[A, Sz, v =71+ i[A, S]o1,
{ v = i(SWS )11, w = i(SWS~ 1), (42)
where M}, denotes the (j, k)-th block of the matrix M.
3.4 Explicit Solutions
As an application, consider the seed solution
qg=1r=0, v="19, w=wp, (43)

where vy and w are constant matrices. Then, the eigenfunctions take the form:
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03 (44)

with
] _ 5]

7' =explion A\j L,z + a%'\.yvot),ul ,

4]

‘ : ) 1<j<m+n, (45)
5 = exp(iaaA;Inz + a%\jwot)p[gk

where u[lj I and /L[Qj Vare arbitrary constant vectors of sizes m and n, respectively. Then, the

following explicit solutions to the system (17) are obtained:
q/ = ’L[A, 5]12, 7’/ = Z[A7 S]Ql, 1}/ = ia(SWS_l)H, IU/ = i(SWS_l)QQ, (46)

where S = HAH ' with H = (¢!, -+ | ¢I™*]) and A = diag(\1, -+, Agn).

4 Concluding Remarks

We have constructed the first negative-order matrix AKNS flow and its associated Darboux
transformation, along with a class of explicit solutions generated from a single application
of the transformation. Iterating this process /N times yields a higher-order Darboux transfor-
mation. Other developments on Darboux transformations for negative-order flows can be
found in the literature (see, e.g., [14—16]).

An intriguing question is whether negative-order flows form commuting hierarchies, anal-
ogous to their well-known positive-order counterparts. A broader generalization involves Lax
operators with higher-order poles in the spectral parameter, and a major open problem is to
characterize Darboux transformations in this extended, higher negative-order framework.

Constrained Lax pairs are of particular interest, especially when reductions are imposed
on the general spectral matrix U (see, e.g., [17, 18]). Such reductions often lead to nonlocal
integrable models, which themselves form commuting hierarchies [19]. A central challenge
is to develop systematic methods for constructing Darboux transformations in these con-
strained matrix settings.
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