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Abstract: Based on a specific matrix Lie algebra, we propose a spectral matrix with four potentials and generate its

associated Liouville integrable Hamiltonian hierarchy. The zero curvature formulation and the trace identity are the basic

tools. The Liouville integrability of the resulting hierarchy is shown by determining its recursion operator and bi-

Hamiltonian structure. Two illustrative examples of generalized combined nonlinear Schrödinger equations and modified

Korteweg-de Vries equations are explicitly presented. The success lies in introducing a specific 4� 4 spectral matrix which

keads to an integrable hierarchy.

Keywords: Matrix eigenvalue problem; Zero curvature equation; Integrable hierarchy; NLS equations; mKdV equations

Mathematics Subject Classification: 37K15; 35Q55; 37K40

1. Introduction

Integrable models comes in hierarchies [1, 2] and are

generated from Lax pairs of matrix eigenvalue problems

[3]. Lax pairs can also be used to establish Hamiltonian

structures, which connect symmetries with conserved

quantities. Integrable models have various applications in

physical and engineering sciences, including fluid dynam-

ics, nonlinear optics and quantum mechanics.

Among typical examples of integrable hierarchies are

the Ablowitz–Kaup–Newell–Segur hierarchy [4] and its

various hierarchies of integrable couplings [6]. Matrix Lie

algebras provide a solid foundation for constructing inte-

grable models and building their Lax pairs [5–7]. It is

always intriguing to explore what Lax pairs will yield

integrable models. In this paper, we would like to present a

novel matrix eigenvalue problem and compute an

associated integrable hierarchy, based on a specific matrix

Lie algebra.

It is known that the zero curvature formulation paves the

way for exploring integrable models (see [7, 8] for details).

As usual, we denote a q-dimensional column potential

vector by u ¼ ðu1; � � � ; uqÞT and the spectral parameter by

k. Starting from a given loop matrix algebra ~g with the loop

parameter k, we take a spatial spectral matrix:

M ¼ Mðu; kÞ ¼ u1F1ðkÞ þ � � � þ uqFqðkÞ þ F0ðkÞ; ð1Þ

where the elements F1; � � � ;Fq are linear independent in the

vector space ~g. The above element F0 is always assumed to

be pseudo-regular:

Im adF0
� Ker adF0

¼ ~g; ½Ker adF0
;Ker adF0

� ¼ 0;

where adF0
denotes the adjoint action of F0 on ~g. Then we

can find a Laurent series solution Y ¼
P

n� 0 k
�nY ½n� to the

stationary zero curvature equation

Yx ¼ ½M; Y � ð2Þ

in the underlying loop algebra ~g.
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The second step is to define an infinite sequence of

temporal spectral matrices

N
½m� ¼ ðkmYÞþ þ Dr ¼

Xm

n¼0

km�nY ½n� þ Dm; m� 0; ð3Þ

where Dm 2 ~g; m� 0, which provide the other parts of Lax

pairs. The zero curvature equations:

Mtm �N
½m�
x þ ½M;N

½m�� ¼ 0; m� 0; ð4Þ

produce a hierarchy of integrable models:

utm ¼ X½m� ¼ X½m�ðuÞ; m� 0; ð5Þ

which actually represent the solvability conditions of the

spatial and temporal matrix eigenvalue problems:

ux ¼ Mu; utm ¼ N
½m�u; m� 0: ð6Þ

The last step is to establish a bi-Hamiltonian structure for

the hierarchy (5), by finding a recursion operator and

applying the so-called trace identity:

d
du

Z

tr Y
oM

ok

� �

dx ¼ k�j o

ok
kjtr Y

oM

ou

� �

; ð7Þ

where d
du is the variational derivative with respect to u, and

j is a constant, independent of the spectral parameter k. It
then follows from that every member in the hierarchy is

Liouville integrable (see, e.g., [7, 9]).

There are abundant hierarchies of Liouville integrable

models, presented in the literature [4–21]. The case of two

components is popular and the well-known examples

include the Ablowitz-Kaup-Newell-Segur integrable hier-

archy [4], the Heisenberg hintegrable ierarchy [22], the

Kaup–Newell integrable hierarchy [23] and the Wadati–

Konno–Ichikawa integrable hierarchy [24]. Their associ-

ated spectral matrices are given by

M ¼ k u1
u2 �k

� �

; M ¼ ku3 ku1
ku2 �ku3

� �

; M

¼ k2 ku1
ku2 �k2

� �

; M ¼ k ku1
ku2 �k

� �

ð8Þ

where u1u2 þ u23 ¼ 1; respectively.

This paper aims to propose a specific 4� 4 spectral

matrix and generate a hierarchy of four-component Liou-

ville integrable models within the zero curvature formu-

lation, based on a special matrix Lie algebra. A recurson

operator and a bi-Hamiltonian structure will be explored to

show the Liouville integrability for the resulting hierarchy.

Two illustrative examples, consisting of generalized com-

bined integrable nonlinear Schrödinger and modified Kor-

teweg-de Vries models, are presented. The success lies in

presenting a specific 4� 4 spectral matrix which leads to

an integrable hierarchy. A conclusion and a few concluding

remarks are given in the last section.

2. A four-component integrable hierarchy

Let d be an arbitrary real number, and T be a square matrix

of order r 2 N such that

T2 ¼ Ir; ð9Þ

wheer Ir denotes the identity matrix of order r. Let us

define a set ~g of block matrices to be

~g ¼ A ¼ A1 A2

A3 A4

� �

2r�2r

�
�
�
�A4 ¼ TA1T

�1; A3 ¼ dTA2T
�1

� �

ð10Þ

Obviously, this forms a matrix Lie algebra under the matrix

commutator ½A;B� ¼ AB� BA. We will utilize the Lie

algebra with r ¼ 2 and

T ¼ 0 1

1 0

� �

or
0 �1

�1 0

� �

ð11Þ

to introduce a specific spectral matrix below.

Let a1 and a2 be two arbitrary real numbers, and

u ¼ uðx; tÞ ¼ ðu1; u2; u3; u4ÞT , a column vector with four

potentials. Assume that

a ¼ a1 � a2 6¼ 0: ð12Þ

Based on recent studies on matrix eigenvalue problems

involving four potentials (see, e.g., [25–27] and [28, 29] for

examples of matrix eigenvalue problems of arbitrary-order

and fourth-order, respectively), we would like to propose a

matrix eigenvalue problem of the form:

ux ¼ Mu ¼ Mðu; kÞu; M

¼

a1k u1 u2 0

u3 a2k 0 u4

du4 0 a2k u3

0 du2 u1 a1k

2

6
6
6
4

3

7
7
7
5
;

ð13Þ

where k is again the spectral parameter. This spectral

matrix M is from the previous matrix Lie algebra ~g,
mentioned previously. The eigenvalue problem can not be

any reduction of the matrix Ablowitz-Kaup-Newell-Segur

eigenvalue problem (see, e.g., [30]). Interestingly, an

associated integrable hierarchy of bi-Hamiltonian equa-

tions can be generated, which shows particular combined

structures of integrable models. Obviously, the case of d ¼
0 yields integrable couplings, which are not of perturbation

type.

To constuct an associated integrable hierarchy, let us

first solve the corresponding stationary zero curvature

equation (2) by taking
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Y ¼

a b e f

c � a � f g

dg � df � a c

df de b a

2

6
6
6
4

3

7
7
7
5
¼

X

n� 0

k�nY ½n�;

ð14Þ

where the basic objects can be stated a sfollows:

a ¼
P

n� 0 k
�na½n�; b ¼

P
n� 0 k

�nb½n�; c ¼
P

n� 0 k
�nc½n�;

e ¼
P

n� 0 k
�ne½n�; f ¼

P
n� 0 k

�nf ½n�; g ¼
P

n� 0 k
�ng½n�:

(

ð15Þ

The reason to take this form is that with M in (13), an

arbitrary matrix in ~g will lead to a commutator matrix of

the above mentioned form. Now we can observe that the

corresponding stationary zero curvature equation (2)

becomes

ax ¼ cu1 þ dgu2 � bu3 � deu4;

bx ¼ akb� 2au1 � 2dfu2;

cx ¼ �akcþ 2au3 þ 2dfu4;

8
><

>:
ð16Þ

ex ¼ ake� 2au2 � 2fu1;

gx ¼ �akgþ 2au4 þ 2fu3;

fx ¼ gu1 þ cu2 � eu3 � bu4:

8
><

>:
ð17Þ

These equations equivalently yield the initial conditions:

a½0�x ¼ 0; b½0� ¼ c½0� ¼ e½0� ¼ g½0� ¼ 0; f ½0�x ¼ 0; ð18Þ

and the recursion relations which determine the Laurent

series solution:

b½nþ1� ¼ 1
a ½b

½n�
x þ 2a½n�u1 þ 2df ½n�u2�;

c½nþ1� ¼ � 1
a ½c

½n�
x � 2a½n�u3 � 2df ½n�u4�;

(

ð19Þ

e½nþ1� ¼ 1
a ½e

½n�
x þ 2f ½n�u1 þ 2a½n�u2�;

g½nþ1� ¼ � 1
a ½g

½n�
x � 2f ½n�u3 � 2a½n�u4�;

(

ð20Þ

a
½nþ1�
x ¼ c½nþ1�u1 þ dg½nþ1�u2 � b½nþ1�u3 � de½nþ1�u4;

f
½nþ1�
x ¼ g½nþ1�u1 þ c½nþ1�u2 � e½nþ1�u3 � b½nþ1�u4;

(

ð21Þ

where n� 0. To have a uniqueness of Laurent series

solutions, we just need to take the initial data,

a½0� ¼ 1

2
b; f ½0� ¼ 1

2
c; ð22Þ

where b and c are two arbitrary constants, and select the

constants of integration to be zero,

a½n�ju¼0 ¼ 0; f ½n�ju¼0 ¼ 0; n� 1: ð23Þ

In this way, one can work out that

b½1� ¼ 1
a ðbu1 þ dcu2Þ; c½1� ¼ 1

a ðbu3 þ dcu4Þ;
e½1� ¼ 1

a ðcu1 þ bu2Þ; g½1� ¼ 1
a ðcu3 þ bu4Þ;

a½1� ¼ f ½1� ¼ 0;

8
><

>:

b½2� ¼ 1
a2 ðbu1;x þ dcu2;xÞ; c½2� ¼ � 1

a2 ðbu3;x þ dcu4;xÞ;
e½2� ¼ 1

a2 ðcu1;x þ bu2;xÞ; g½2� ¼ � 1
a2 ðcu3;x þ bu4;xÞ;

(

a½2� ¼ � 1
a2 ½ðbu3 þ dcu4Þu1 þ dðcu3 þ bu4Þu2�;

f ½2� ¼ � 1
a2 ½ðcu3 þ bu4Þu1 þ ðbu3 þ dcu4Þu2�;

(

b½3� ¼ 1
a3 ½bu1;xx þ dcu2;xx � 2ðbu3 þ dcu4Þu21 � 4dðcu3 þ bu4Þu1u2 � 2dðbu3 þ dcu4Þu22�;

c½3� ¼ 1
a3 ½bu3;xx þ dcu4;xx � 2ðbu1 þ dcu2Þu23 � 4dðcu1 þ bu2Þu3u4 � 2dðbu1 þ dcu2Þu24�;

(

e½3� ¼ 1
a3 ½cu1;xx þ bu2;xx � 2ðcu3 þ bu4Þu21 � 4ðbu3 þ dcu4Þu1u2 � 2dðcu3 þ bu4Þu22�;

g½3� ¼ 1
a3 ½cu3;xx þ bu4;xx � 2ðcu1 þ bu2Þu23 � 4ðbu1 þ dcu2Þu3u4 � 2dðcu1 þ bu2Þu24�;

(

a½3� ¼ 1
a3 ½�ðbu3 þ dcu4Þu1;x � dðcu3 þ bu4Þu2;x þ ðbu1 þ dcu2Þu3;x þ dðcu1 þ bu2Þu4;x�;

f ½3� ¼ 1
a3 ½�ðcu3 þ bu4Þu1;x � ðbu3 þ dcu4Þu2;x þ ðcu1 þ bu2Þu3;x þ ðbu1 þ dcu2Þu4;x�;

(

and

A combined integrable hierarchy with four potentials and its recursion operator



b½4� ¼ 1
a4 bu1;xxx þ dcu2;xxx � 6½ðbu3
	

þdcu4Þu1 þ dðcu3 þ bu4Þu2�u1;x
�6d½ðcu3 þ bu4Þu1 þ ðbu3 þ dcu4Þu2�u2;x



;

c½4� ¼ � 1
a4 bu3;xxx þ dcu4;xxx � 6½ðbu3 þ dcu4Þu1 þ dðcu3 þ bu4Þu2�u3;x
	

�6d½ðcu3 þ bu4Þu1 þ ðbu3 þ dcu4Þu2�u4;x


;

8
>>>>>><

>>>>>>:

e½4� ¼ 1
a4 cu1;xxx þ bu2;xxx � 6½ðcu3 þ bu4Þu1 þ ðbu3 þ dcu4Þu2�u1;x
	

�6½ðbu3 þ dcu4Þu1 þ dðcu3 þ bu4Þu2�u2;x


;

g½4� ¼ � 1
a4 cu3;xxx þ bu4;xxx � 6½ðcu3 þ bu4Þu1 þ ðbu3 þ dcu4Þu2�u3;x
	

�6½ðbu3 þ dcu4Þu1 þ dðcu3 þ bu4Þu2�u4;x


;

8
>>>><

>>>>:

a½4� ¼ 1
a4 ½�ðbu3 þ dcu4Þu1;xx � dðcu3 þ bu4Þu2;xx � ðbu1 þ dcu2Þu3;xx � dðcu1 þ bu2Þu4;xx

þðbu3;x þ dcu4;xÞu1;x þ dðcu3;x þ bu4;xÞÞu2;x þ 3ðbu23 þ 2dcu3u4 þ dbu24Þu21
þ6dðcu23 þ 2bu3u4 þ dcu24Þu1u2 þ 3dðbu23 þ 2dcu3u4 þ dbu24Þu22�;

f ½4� ¼ 1
a4 ½�ðcu3 þ bu4Þu1;xx � ðbu3 þ dcu4Þu2;xx � ðcu1 þ bu2Þu3;xx � ðbu1 þ dcu2Þu4;xx

þðcu3;x þ bu4;xÞu1;x þ ðbu3;x þ dcu4;xÞÞu2;x þ 3ðcu23 þ 2bu3u4 þ dcu24Þu21
þ6ðbu23 þ 2dcu3u4 þ dbu24Þu1u2 þ 3dðcu23 þ 2bu3u4 þ dcu24Þu22�:

Upon observing the above results, one can impose Dr ¼
0; m� 0; to formulate

utm ¼ N
½m�u ¼ N

½m�ðu; kÞu; N
½m� ¼ ðkmYÞþ ¼

Xm

n¼0

knY ½m�n�; m� 0;

ð24Þ

as the temporal matrix eigenvalue problems within the zero

curvature formulation. The solvability conditions of the

spatial and temporal matrix eigenvalue problems in (13)

and (24) are the zero curvature equations in (4). These

equations yield

a hierarchy of integrable models with four potentials:

utm ¼ X½m� ¼ X½m�ðuÞ ¼ ðab½mþ1�; ae½mþ1�;�ac½mþ1�;�ag½mþ1�ÞT ; m� 0;

ð25Þ

or more concretely,

u1;tm ¼ ab½mþ1�; u2;tm ¼ ae½mþ1�; u3;tm ¼ �ac½mþ1�; u4;tm

¼ �ag½mþ1�; m� 0:
ð26Þ

The first two nonlinear examples in this hierarchy are the

model of combined integrable nonlinear Schrödinger

equations:

u1;t2 ¼ 1
a2 ½bu1;xx þ dcu2;xx � 2ðbu3 þ dcu4Þu21 � 4dðcu3 þ bu4Þu1u2 � 2dðbu3 þ dcu4Þu22�;

u2;t2 ¼ 1
a2 ½cu1;xx þ bu2;xx � 2ðcu3 þ bu4Þu21 � 4du1u2ðbu3 þ dcu4Þ � 2dðcu3 þ bu4Þu22�;

u3;t2 ¼ � 1
a2 ½bu3;xx þ dcu4;xx � 2ðbu1 þ dcu2Þu23 � 4dðcu1 þ bu2Þu3u4 � 2dðbu1 þ dcu2Þu24�;

u4;t2 ¼ � 1
a2 ½cu3;xx þ bu4;xx � 2ðcu1 þ bu2Þu23 � 4dðbu1 þ dcu2Þu3u4 � 2dðcu1 þ bu2Þu24�;

8
>>><

>>>:

ð27Þ

and the model of combined integrable modified Korteweg-

de Vries equations:

u1;t3 ¼ 1
a3 bu1;xxx þ dcu2;xxx � 6½ðbu3 þ dcu4Þu1 þ dðcu3 þ bu4Þu2�u1;x
	

�6d½ðcu3 þ bu4Þu1 þ ðbu3 þ dcu4Þu2�u2;x


;

u2;t3 ¼ 1
a3 cu1;xxx þ bu2;xxx � 6½ðcu3 þ bu4Þu1 þ ðbu3 þ dcu4Þu2�u1;x
	

�6½ðbu3 þ dcu4Þu1 þ dðcu3 þ bu4Þu2�u2;x


;

u3;t3 ¼ � 1
a3 �bu3;xxx � dcu4;xxx þ 6½ðbu3 þ dcu4Þu1 þ dðcu3 þ bu4Þu2�u3;x
	

þ6d½ðcu3 þ bu4Þu1 þ ðbu3 þ dcu4Þu2�u4;x


;

u4;t3 ¼ � 1
a3 �cu3;xxx � bu4;xxx þ 6½ðcu3 þ bu4Þu1 þ ðbu3 þ dcu4Þu2�u3;x
	

þ6½ðbu3 þ dcu4Þu1 þ dðcu3 þ bu4Þu2�u4;x


:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð28Þ

These systems provide two coupled integrable models with

four components, which enlarge the category of coupled

integrable models of nonlinear Schrödinger equations and

modified Korteweg-de Vries equations (see, e.g., [31–33]).

One characteristic phenomenon is that each equation con-

tains two derivative terms of the highest order, and so, we

call them combined models.

Three special cases of d ¼ 0, b ¼ 0 and c ¼ 0 in the

resulting hierarchy are interesting. The first case presents

novel integrable couplings of the the AKNS hierarchy,

which are not of perturbation type. The other two cases

W-X Ma



produce reduced hierarchies of uncombined integrable

models.

If one takes a ¼ �d ¼ b ¼ 1 and c ¼ 0 in the model

(27), one gets a coupled integrable nonlinear Schrödinger

type model:

u1;t2 ¼ u1;xx � 2u3ðu21 þ u22Þ þ 4u1u2u4;

u2;t2 ¼ u2;xx þ 2u4ðu21 þ u22Þ � 4u1u2u3;

u3;t2 ¼ �u3;xx þ 2u1ðu23 þ u24Þ � 4u2u3u4;

u4;t2 ¼ �u4;xx � 2u2ðu23 þ u24Þ þ 4u1u3u4:

8
>>><

>>>:

ð29Þ

If one takes a ¼ �d ¼ c ¼ 1 and b ¼ 0 in the model (27),

one obtains another coupled integrable nonlinear

Schrödinger type model:

u1;t2 ¼ �u2;xx þ 2u4ðu21 � u22Þ þ 4u1u2u3;

u2;t2 ¼ u1;xx � 2u3ðu21 � u22Þ þ 4u1u2u4;

u3;t2 ¼ u4;xx � 2u2ðu23 � u24Þ � 4u1u3u4;

u4;t2 ¼ �u3;xx þ 2u1ðu23 � u24Þ � 4u2u3u4:

8
>>><

>>>:

ð30Þ

The selection of a ¼ �d ¼ b ¼ 1 and c ¼ 0 in the model

(28), leads to a coupled integrable modified Korteweg-de

Vries type model:

u1;t3 ¼ u1;xxx � 6ðu1u3 � u2u4Þu1;x þ 6ðu1u4 þ u2u3Þu2;x;
u2;t3 ¼ u2;xxx � 6ðu1u4 þ u2u3Þu1;x � 6ðu1u3 � u2u4Þu2;x;
u3;t3 ¼ u3;xxx � 6ðu1u3 � u2u4Þu3;x þ 6ðu1u4 þ u2u3Þu4;x;
u4;t3 ¼ u4;xxx � 6ðu1u4 þ u2u3Þu3;x � 6ðu1u3 � u2u4Þu4;x:

8
>>><

>>>:

ð31Þ

The selection of a ¼ �d ¼ c ¼ 1 and b ¼ 0 in the model

(28) yields another coupled integrable modified Korteweg-

de Vries type model:

u1;t3 ¼ �u2;xxx þ 6ðu1u4 þ u2u3Þu1;x þ 6ðu1u3 � u2u4Þu2;x;
u2;t3 ¼ u1;xxx � 6ðu1u3 � u2u4Þu1;x þ 6ðu1u4 þ u2u3Þu2;x;
u3;t3 ¼ �u4;xxx þ 6ðu1u4 þ u2u3Þu3;x þ 6ðu1u3 � u2u4Þu4;x;
u4;t3 ¼ u3;xxx � 6ðu1u3 � u2u4Þu3;x þ 6ðu1u4 þ u2u3Þu4;x:

8
>>><

>>>:

ð32Þ

These models are different from the vector AKNS inte-

grable models. The first class of integrable models contain

the ones, previously presented in [28, 29]. Moreover, there

is an interesting phenomenon that the two models in each

pair just exchange the first component with the second

component and the third component with the fourth com-

ponent in the vector fields on the right hand sides.

3. Recursion operator and bi-Hamiltonian structure

Let us assume d 6¼ 0 now. To furnish Hamiltonian struc-

tures to explore the Liouville integrability for the soliton

hierarchy (26), we can take advantage of the trace identity

(7) in the case of the spatial matrix eigenvalue problem

(13). Noting that the Laurent series solution Y is deter-

mined by (14), one can then easily work out

tr
�
Y
oM

ok

�
¼ 2aa; tr

�
Y
oM

ou

�
¼ ð2c; 2dg; 2b; 2deÞT ; ð33Þ

and consequently, the trace identity leads to

d
du

Z

k�ðnþ1Þaa½nþ1� dx

¼ k�j o

ok
kj�nðc½n�; dg½n�; b½n�; de½n�ÞT ; n� 0:

ð34Þ

Checking with n ¼ 2 tells j ¼ 0; and therefore, one arrives

at

d
du

H½n� ¼ ðc½nþ1�; dg½nþ1�; b½nþ1�; de½nþ1�ÞT ; n� 0; ð35Þ

where the Hamiltonian functionals are determined by

H½n� ¼ �
Z

aa½nþ2�

nþ 1
dx; n� 0: ð36Þ

This enables us to produce a Hamiltonian structure for the

hierarchy (26):

utm ¼ X½m� ¼ J1
dH½m�

du
; m� 0; ð37Þ

where the Hamiltonian operator J1 is given by

J1 ¼
0

a 0

0 a
d

�a 0

0 � a
d

0

2

6
6
4

3

7
7
5 ð38Þ

and the functionals H½m� are defined by (36). As a conse-

quence, we have an interrelation S ¼ J1
dH
du between a

symmetry S and a conserved functional H of each model in

the hierarchy.

The characteristic commutative property for the vector

fields X½n�

½½X½n1�;X½n2��� ¼ X½n1�0ðuÞ½X½n2��
� X½n2�0ðuÞ½X½n1�� ¼ 0; n1; n2 � 0;

ð39Þ

follows from an algebra of Lax operators:

½½N ½n1�;N ½n2��� ¼ N
½n1�0ðuÞ½X½n2�� �N

½n2�0ðuÞ½X½n1��
þ ½N ½n1�;N ½n2�� ¼ 0; n1; n2 � 0:

ð40Þ

This can directly be verified by analyzing the relation

between the isospectral zero curvature equations (see [36]

for details).

On the other hand, from the recursion relation

X½mþ1� ¼ UX½m�, we can compute a hereditary recursion

A combined integrable hierarchy with four potentials and its recursion operator



operator U ¼ ðUjkÞ4�4 [34] for the hierarchy (26), which

reads as follows:

U11 ¼ 1
a ðox � 2u1o

�1u3 � 2du2o
�1u4Þ; U12 ¼ 1

a ð�2du1o
�1u4 � 2du2o

�1u3Þ;
U13 ¼ 1

a ð�2u1o
�1u1 � 2du2o

�1u2Þ; U14 ¼ 1
a ð�2du1o

�1u2 � 2du2o
�1u1Þ;

(

ð41Þ

U21 ¼ 1
a ð�2u1o

�1u4 � 2u2o
�1u3Þ; U22 ¼ 1

a ðox � 2u1o
�1u3 � 2du2o

�1u4Þ;
U23 ¼ 1

a ð�2u1o
�1u2 � 2u2o

�1u1Þ; U24 ¼ 1
a ð�2u1o

�1u1 � 2du2o
�1u2Þ;

(

ð42Þ

U31 ¼ 1
a ð2u3o

�1u3 þ 2du4o
�1u4Þ; U32 ¼ 1

a ð2du3o
�1u4 þ 2du4o

�1u3Þ;
U33 ¼ 1

a ð�ox þ 2u3o
�1u1 þ 2du4o

�1u2Þ; U34 ¼ 1
a ð2du3o

�1u2 þ 2du4o
�1u1Þ;

(

ð43Þ

U41 ¼ 1
a ð2u3o

�1u4 þ 2u4o
�1u3Þ; U42 ¼ 1

a ð2u3o
�1u3 þ 2du4o

�1u4Þ;
U43 ¼ 1

a ð2u3o
�1u2 þ 2u4o

�1u1Þ; U44 ¼ 1
a ð�ox þ 2u3o

�1u1 þ 2du4o
�1u2Þ:

(

ð44Þ

With some analysis, we can see that J1 and J2 ¼ UJ1
constitute a Hamiltonian pair. Namely, an arbitrary linear

combination of J1 and J2 is again Hamiltonian.

Accordingly, the hierarchy (26) possesses a bi-

Hamiltonian structure [35]:

utm ¼ X½m� ¼ J1
dH½m�

du
¼ J2

dH½m�1�

du
; m� 1: ð45Þ

It then follows that the associated Hamiltonian functionals

commute with each other under the corresponding two

Poisson brackets [7]:

fH½n1�;H½n2�gJ1 ¼
Z

�dH½n1�

du

�T
J1

dH½n2�

du
dx ¼ 0; n1; n2 � 0;

ð46Þ

and

fH½n1�;H½n2�gJ2 ¼
Z

�dH½n1�

dp

�T
J2

dH½n2�

du
dx ¼ 0; n1; n2 � 0:

ð47Þ

To conclude, each model in the hierarchy (26) is Liouville

integrable and possesses infinitely many commuting sym-

metries fX½n�g1n¼0 and conserved functionals fH½n�g1n¼0.

Two particular illustrative integrable models are the sys-

tems in (27) and (28), which add examples to the existing

category of nonlinear combined Liouville integrable

Hamiltonian models with four components.

4. Conclusions

From a specific special matrix eigenvalue problem, a

hierarchy of four-component Liouville integrable models

has been presented within the zero curvature formulation.

A particular Laurent series solution of the corresponding

stationary zero curvature equation plays a crucial role. The

resulting integrable models have been shown to be bi-

Hamiltonian by determining a recursion operator and

applying the trace identity in the case the underlying matrix

eigenvalue problem.

We point out that the case of d ¼ 0 corresponds to

integrable couplings and the variational identity can be

used to establish a Hamiltonian structure (see, e.g., [6] for

details). It should be particularly interesting to study

structures of soliton solutions (see, e.g., [37]) and long-time

behaviours of global solutions to Cauchy problems (see,

e.g., [38, 39]) for the presented integrable models. Pow-

erful and effective approaches could be used, which

include the Riemann-Hilbert technique [40], the Zakharov-

Shabat dressing method [41], the Darboux transformation

[42–46], and the determinant approach [47]. In addition to

solitons, lump, kink, breather and rogue wave solutions,

particularly their interaction solutions (see, e.g., [48–55]),

are interesting, and one can generate them from soliton

solutions by taking wave number reductions. On the other

hand, nonlocal group reductions or similarity transforma-

tions of matrix eigenvalue problems can yield nonlocal

reduced integrable models and their solitons are significant

in mathematics as well as physics (see, e.g., [56]). It is

known that nonlocal differential equation models exhibit

significantly different solution behaviors [57, 58].

Integrable models are of great interest and have close

connections to various areas of mathematics, including

algebraic geometry, Lie theory, and the theory of special

functions. The study of integrable models offers insights

into the dynamic behavior of physical systems and under-

pins the fundamental understanding of complex nonlinear

mathematical and physical phenomena,
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