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Abstract: We analyze N-soliton solutions and explore the Hirota N-soliton conditions for scalar (1 + 1)-
dimensional equations, within the Hirota bilinear formulation. An algorithm to verify the Hirota conditions
is proposed by factoring out common factors out of the Hirota function in N wave vectors and comparing
degrees of the involved polynomials containing the common factors. Applications to a class of generalized
KdV equations and a class of generalized higher-order KdV equations are made, together with all proofs of
the existence of N-soliton solutions to all equations in two classes.
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1 Introduction
Soliton solutions are a class of self-reinforcing wave packets which maintain the balance between dispersive
and nonlinear effects, and they possess important applications in physical and engineering sciences [1–3].
Breather, lump and rogue wave solutions, which have been extensively studied in recent years, are all special
reductions of soliton solutions. TheHirota bilinear formulation is apowerful approach for constructing soliton
solutions [4]. The concept of bilinear derivatives is the key tool in the method, and Hirota bilinear forms are
crucial in presenting soliton solutions.

Hirota bilinear derivatives are defined by [5]:

Dx f ⋅ g = fxg − f gx, D2
x f ⋅ g = fxxg − 2 fxgx + f gxx,… ,

Dm
x f ⋅ g =

m∑
i=0

(−1)m−i
(
m
i

)
(𝜕ix f )(𝜕

m−i
x g), m ≥ 1,

and more generally, bilinear partial derivatives with multiple variables are similarly defined as follows:

(Dm
x D

n
t f ⋅ g)(x, t) = (𝜕x − 𝜕x′ )m(𝜕t − 𝜕t′ )n f (x, t)g(x′, t′)|x′=x,t′=t, m, n ≥ 1. (1.1)

When f = g, we get Hirota bilinear expressions:

Dx f ⋅ f = 0, D2
x f ⋅ f = 2( fxx f − f 2x ),… ,

D2m−1
x f ⋅ f = 0, D2m

x f ⋅ f =
2m∑
i=0

(−1)2m−i
(
2m
i

)
(𝜕ix f )(𝜕

2m−i
x f ), m ≥ 1,
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and similarly, bilinear partial derivative expressions:

Dm
x D

n
t f ⋅ f =

m∑
i=0

n∑
j=0

(−1)m+n−i− j

(
m
i

)(
n
j

)
(𝜕ix𝜕

j
t f )(𝜕

m−i
x 𝜕

n− j
t f ), m, n ≥ 1. (1.2)

In terms of Hirota bilinear expressions, we can define Hirota bilinear equations. Take an even polynomial
P(x1, x2,… , xM) in M variables with no constant term i.e., P(0) = P(0,0,… ,0) = 0. The associated Hirota
bilinear equation is defined by

P(Dx1 ,Dx2 ,… ,DxM ) f ⋅ f = 0, (1.3)

where each term of which is a Hirota bilinear expression. If a partial differential equation (PDE) can be
transformed into a Hirota bilinear equation, then we say that it possesses a Hirota bilinear form. The basic
questionofwhenandhowbilinear forms couldbeobtained for PDEs is closely connectedwithBell polynomial
theories [6, 7].

The KdV equation
N(u) := ut + 6uux + uxxx = 0 (1.4)

possesses the Hirota bilinear form:

B( f ) := (D4
x + DxDt) f ⋅ f = 2( f4x f − 4 f3x fx + 3 f 2xx + fxt f − fx ft) = 0, (1.5)

associated with P(x, t) = x4 + xt, under the logarithmic derivative transformation u = 2(ln f )xx. The link is
N(u) = (B( f )∕ f 2)x [4]. The Boussinesq equations

N(u) := utt + (u2)xx ± u4x = 0 (1.6)

possess the Hirota bilinear forms:

B( f ) := (D2
t ± D4

x) f ⋅ f = 2[ ftt f − f 2t ± ( f4x f − 4 f3x fx + 3 f 2xx)] = 0, (1.7)

associated with P(x, t) = t2 ± x4, under the same logarithmic derivative transformation u = ±6(ln f )xx, and
the links are N(u) = ±3(B( f )∕ f 2)xx [8].

We would like to analyze N-soliton solutions and derive the corresponding Hirota N-soliton conditions
for scalar (1 + 1)-dimensional equations. An algorithm will be proposed for verifying the Hirota conditions
by figuring out common factors out of the Hirota function in N wave vectors and comparing degrees of the
involved polynomials containing common factors. Applications will be made to a class of generalized KdV
equations associated with

P(x, t) = ax4 + bx3t + cx2 + dxt, (1.8)

where a, b, c, d are arbitrary constants satisfying b2 + d2 ≠ 0, and a class of generalized higher-order KdV
equations associated with

P(x, t) = ax6 + bx4 + cx2 + xt, (1.9)

where a, b, c are arbitrary constants. Our analysis implies that all equations in the two classes possess N-
soliton solutions, which contain the KdV equation associated with P = x4 + xt, and the Sawada–Kotera
equation [11] or the Caudrey–Dodd–Gibbon equation [12] associated with P = x6 + xt.

2 The Hirota N-soliton conditions
Let us denote N wave vectors by

ki = (k1,i, k2,i,… , kM,i), 1 ≤ i ≤ N, (2.1)
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where k1,i, k2,i,… , kM,i, 1 ≤ i ≤ N, are constants. An N-soliton solution to a Hirota bilinear Eq. (1.3) is given by
[9]:

f =
∑
𝜇=0,1

exp
( N∑

i=1
𝜇i𝜂i +

∑
i< j

ai j𝜇i𝜇 j

)
, (2.2)

where 𝜇 = (𝜇1, 𝜇2,… , 𝜇N), 𝜇 = 0, 1 means that each 𝜇i takes 0 or 1, and

𝜂i = k1,ix1 + k2,ix2 + · · · + kM,ixM + 𝜂i,0, 1 ≤ i ≤ N, (2.3)

eai j = Ai j := − P(ki − k j)
P(ki + k j)

, 1 ≤ i < j ≤ N, (2.4)

𝜂i,0’s being arbitrary constant phase shifts. We will show that a Hirota bilinear Eq. (1.3) has an N-soliton
solution (2.2) if and only if

H(ki1 ,… ,kin ) :=
∑
𝜎=±1

P
( n∑

r=1
𝜎rkir

) ∏
1≤r<s≤n

P(𝜎rkir − 𝜎skis )𝜎r𝜎s = 0, 1 ≤ n ≤ N, (2.5)

where 1 ≤ i1 < · · · < in ≤ N,𝜎 = (𝜎1, 𝜎2,… , 𝜎n) and𝜎 = ±1means that each𝜎i takes 1 or−1. This is called the
Hirota condition for anN-soliton solution, or simply, theN-soliton condition [10].Wealso call allH(ki1 ,… ,kin )
the Hirota functions. There are very few studies on this Hirota N-soliton condition, due to its complexity
[10, 13].

The Hirota condition in the case of n = 1 leads to the dispersion relations

P(ki) = 0, 1 ≤ i ≤ N, (2.6)

because of the even property of P. The one-soliton condition is just the dispersion relation P(k1) = 0, which
means that f = 1+ e𝜂1 is a solution. Besides the dispersion relations, the two-soliton condition requires

2(P(k1 + k2)P(k1 − k2)− P(k1 − k2)P(k1 + k2)) = 0, (2.7)

which is an identity. Therefore, there always exists a two-soliton solution:

f = 1+ e𝜂1 + e𝜂2 + A12 e𝜂1+𝜂2 , (2.8)

to a Hirota bilinear equation. Furthermore, taking N = 3, we see that the three-soliton condition requires:∑
𝜎1,𝜎2,𝜎3=±1

P(𝜎1k1 + 𝜎2k2 + 𝜎3k3)P(𝜎1k1 − 𝜎2k2)

× P(𝜎2k2 − 𝜎3k3)P(𝜎1k1 − 𝜎3k3) = 0,

in addition to the dispersion relations. Again due to the even property of P, this is equivalent to∑
(𝜎1,𝜎2,𝜎3)∈S

P(𝜎1k1 + 𝜎2k2 + 𝜎3k3)P(𝜎1k1 − 𝜎2k2)

× P(𝜎2k2 − 𝜎3k3)P(𝜎1k1 − 𝜎3k3) = 0, (2.9)

where S = {(1, 1, 1), (1, 1,−1), (1,−1, 1), (−1, 1, 1)}. The three-soliton solution is given by

f = 1+ e𝜂1 + e𝜂2 + e𝜂3 + A12 e𝜂1+𝜂2 + A13 e𝜂1+𝜂3

+ A23 e𝜂2+𝜂3 + A123 e𝜂1+𝜂2+𝜂3 , A123 = A12A13A23. (2.10)

If condition (2.9) is satisfied, we say that an equation passes the three-soliton test [15, 16].
It is now a direct computation, particularly by symbolic computation (see, e.g., [17, 18]), that both the

KdV equation and the Boussinesq equations pass the three-soliton test. It is commonly believed that the
three-soliton condition implies the N-soliton condition, and no counterexample is found, indeed.
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If we require a sufficient Hirota N-soliton condition [19]:

P(ki − k j) = 0, 1 ≤ i < j ≤ N, (2.11)

we obtain a resonant N-soliton solution

f = 1+ c1 e𝜂1 + c2 e𝜂2 + · · · + cN e𝜂N , (2.12)

where ci’s are arbitrary constants. All wave vectors ki’s associated with resonant solutions form an affine
space in ℝM [20].

Note that we have
P(Dx1 ,… ,DxM )e

𝜂i ⋅ e𝜂 j = P(ki − k j)e𝜂i+𝜂 j , (2.13)

and
P(Dx1 ,… ,DxM )e

𝜂n f ⋅ e𝜂n g = e2𝜂nP(Dx1 ,… ,DxM ) f ⋅ g, (2.14)

where 𝜂i, 𝜂 j and 𝜂n are arbitrary linear functions but do not need to satisfy the dispersion relations. The first
formula tells how to compute Hirota bilinear expressions of exponential functions, and the second formula
tells how to take out a common factor from Hirota bilinear expressions. Based on these two rules, we can
derive the following expression.

Theorem 2.1. Let f be defined by (2.2), and 𝜉 mean that no 𝜉 is involved. Then we have

P(Dx1 ,… ,DxM ) f ⋅ f

= (−1)
1
2N(N−1) H(k1,k2,… ,kN)∏

1≤i< j≤NP(ki + k j)
e𝜂1+𝜂2+···+𝜂N

+
N−1∑
n=1

(−1)
1
2 (N−n)(N−n−1)

∑
1≤i1<···<in≤N

H(k1,… , k̂i1 ,… , k̂in ,… ,kN)∏
1≤i< j≤N
i, j∉{i1,…,in}

P(ki + k j)
e𝜂1+···+𝜂i1+···+𝜂in+···+𝜂N

+
N−1∑
n=1

∑
1≤i1<···<in≤N

e
2
(
𝜂i1+···+𝜂in+

∑
1≤r<s≤n

air is

)
P(Dx1 ,… ,DxM )f̃i1…in ⋅ f̃i1…in

(2.15)

with

f̃i1…in =
∑

𝜇̃i1…in=0,1
exp

⎛⎜⎜⎜⎝
∑
1≤i≤N

i∉{i1,…,in}

𝜇i𝜂̃i +
∑

1≤i< j≤N
i, j∉{i1,…,in}

ai j𝜇i𝜇 j

⎞⎟⎟⎟⎠
, 𝜂̃i = 𝜂i +

n∑
r=1

aiir ,

where 𝜇̃i1…in = (𝜇1,… , 𝜇̂i1 … , 𝜇̂in ,… , 𝜇N) and 𝜇̃i1…in = 0, 1means that each 𝜇i in 𝜇̃i1…in takes 0 or 1.

Proof. Note that we have the computational rules (2.13) and (2.14), and so, we can expand all terms in
P(Dx1 ,… ,DxM ) f ⋅ f .

Let us first consider the case, in which there is no common factor. We compute the terms which involve
e𝜂1+𝜂2+···+𝜂N . For example, we have the following term of such a type:

P(Dx1 ,… ,DxM )(A12…(N−1)e𝜂1+𝜂2+···+𝜂N−1 ⋅ e𝜂N )

= A12…(N−1)P(Dx1 ,… ,DxM )(e
𝜂1+𝜂2+···+𝜂N−1 ⋅ e𝜂N )

= A12…(N−1)P(k1 + · · · + kN−1 − kN)e𝜂1+𝜂2+···+𝜂N

= (−1)
1
2 (N−1)(N−2)

∏
1≤i< j≤N−1

P(ki − k j)
P(ki + k j)

P(k1 + · · · + kN−1 − kN)e𝜂1+𝜂2+···+𝜂N

= (−1)
1
2N(N−1)

P(𝜎1k1 + · · · + 𝜎NkN)
∏

1≤i< j≤N
P(𝜎iki − 𝜎 jk j)𝜎i𝜎 j∏

1≤i< j≤N
P(ki + k j)

e𝜂1+𝜂2+···+𝜂N ,
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where 𝜎 = (𝜎1,… , 𝜎N−1, 𝜎N) = (1,… , 1,−1) and A12…(N−1) =
∏

1≤i<j≤N−1 Aij. Taking all possibilities of 𝜎i
= ±1, 1 ≤ i ≤ N, we obtain the first sum determined by H(k1,… ,kN) in (2.15). The other sums determined by

H(k1,… , k̂i1 ,… , k̂in ,… ,kN), where 1 ≤ i1 < · · · < in ≤ N,

can be similarly obtained.
If we have a common factor e𝜂i1+···+𝜂in+

∑
1≤r<s≤nair is , where 1 ≤ i1 < · · · < in ≤ N and 1 ≤ n ≤ N − 1, then we

can use (2.14) to take out this factor to get the terms in the last sum in (2.15). If we have a common factor
e𝜂1+···+𝜂N+

∑
1≤i< j≤Nai j , then the resulting term in P(Dx1 ,… ,DxM ) f ⋅ f is zero. Therefore, the formula (2.15) holds.

The proof is finished. □

Based on this theorem, by a recursive procedure, we can see that the Hirota condition is a necessary and
sufficient condition for a Hirota bilinear equation to have an N-soliton solution, which is summarized in the
following theorem.

Theorem 2.2. A Hirota bilinear Eq. (1.3) possesses an N-soliton solution (2.2) if and only if the Hirota condition
in (2.5) is satisfied.

In order to figure out as more common factors out of the Hirota function H(k1,… ,kN) as possi-
ble, we will use the following result, which is an automatic consequence of the definition of the Hirota
functions.

Proposition 2.1. The Hirota functions defined in (2.5) are symmetric and even functions in the involved wave
vectors.

Taking kN−1 = ±kN , we have

P(𝜎iki − kN−1)P(𝜎iki ± kN) = P(ki − kN)P(ki + kN) (2.16)

in any case of 𝜎i = ±1, due to the even property of the polynomial P. Based on the properties in (2.16), we can
show the following result.

Theorem 2.3. If kN−1 = ±kN, then we have

H(k1,… ,kN) = 2H(k1,… ,kN−2)P(2kN)
N−2∏
i=1

P(ki − kN)P(ki + kN). (2.17)

Proof. When kN−1 = ±kN , we can compute that

H(k1,… ,kN) =
∑
𝜎=±1

P(𝜎1k1 + · · · + 𝜎NkN)
∏

1≤i< j≤N
P(𝜎iki − 𝜎 jk j)𝜎i𝜎 j

=
∑
𝜎=±1

P(𝜎1k1 + · · · + 𝜎NkN)
∏

1≤i< j≤N−2
P(𝜎iki − 𝜎 jk j)𝜎i𝜎 j

×
N−2∏
i=1

P(𝜎iki − 𝜎N−1kN−1)𝜎i𝜎N−1
N−1∏
i=1

P(𝜎iki − 𝜎NkN)𝜎i𝜎N

= 2
∑
𝜎=±1

P(𝜎1k1 + · · · + 𝜎NkN−2)
∏

1≤i< j≤N−2
P(𝜎iki − 𝜎 jk j)𝜎i𝜎 j

×
N−2∏
i=1

P(𝜎iki − kN−1)
N−2∏
i=1

P(𝜎iki ± kN)P(2kN)

= 2H(k1,… ,kN−2)P(2kN)
N−2∏
i=1

P(ki − kN)P(ki + kN),
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where the last step is due to (2.16), and the last but one step follows from the fact that the two cases (1,∓1)
and (−1,±1) of (𝜎N−1, 𝜎N) are left and the other two cases lead to a zero factor owing to P(0) = 0. Therefore,
the proof of the theorem is finished. □

This theorem will be used to factor out common factors out of the Hirota function H(k1,… ,kN), while
verifying the Hirota N-soliton condition.

3 Applications to (1+ 1)-dimensional equations

3.1 A general algorithm
In the (1 + 1)-dimensional case, the wave vectors can be expressed as

ki = (ki,−𝜔i), 1 ≤ i ≤ N. (3.1)

We assume that the dispersion relations (2.6) determine all frequencies 𝜔i = 𝜔(ki), 1 ≤ i ≤ N. Therefore,
P(𝜎iki − 𝜎 jkj) are functions of ki and kj only.

On one hand, we further assume that P(𝜎iki − 𝜎 jkj) and P(𝜎1k1 + · · · + 𝜎NkN) can be simplified into
rational functions as follows:

P(𝜎iki − 𝜎 jk j) =
𝜎i𝜎 jkik jQ1(ki, k j, 𝜎i, 𝜎 j)

Q2(ki, k j)
, (3.2)

where Q1 and Q2 are polynomial functions, and

P(𝜎1k1 + · · · + 𝜎NkN) =
Q3(k1,… , kN , 𝜎1,… , 𝜎N)

Q4(k1,… , kN)
, (3.3)

where Q3 and Q4 are polynomial functions. Let us define a new polynomial

H̃ = H(k1,… ,kN)Q4(k1,… , kN)
∏

1≤i< j≤N
Q2(ki, k j), (3.4)

for convenience of discussion. The stated assumption in (3.2) exhibits a characteristic of multivariate
polynomials.

On the other hand, Theorem 2.3 tells that under the induction assumption, the Hirota function
H(k1,… ,kN) will be zero, if two of the wave vectors satisfy ki = ±kj(1 ≤ i < j ≤ N). Based on the even
property of H and P, we know that H(k1,… ,kN) is still even with respect to the wave numbers ki, 1 ≤ i ≤ N.
Therefore, from the symmetric property in Proposition 2.1, we can factor out a factor (k2i − k2j)

2 out of the
polynomial H̃:

H̃ = (k2i − k2j)
2gi j, for any pair 1 ≤ i < j ≤ N, (3.5)

where gij is a polynomial of kn, 1 ≤ n ≤ N.
Finally, it follows from the characteristic property of P in (3.2) that the Hirota function H(k1,… ,kN) can

be written as

H(k1,… ,kN) =

∏
1≤i< j≤N

k2i k
2
j

∏
1≤i< j≤N

(k2i − k2j)
2g

Q4(k1,… , kN)
∏

1≤i< j≤N
Q2(ki, k j)

(3.6)

where g is another polynomial of kn, 1 ≤ n ≤ N. Then, we can see that based on

H̃ =
∏

1≤i< j≤N
k2i k

2
j

∏
1≤i< j≤N

(k2i − k2j)
2g, (3.7)

the degree of the polynomial H̃ is at least 2N(N − 1)+ 2N(N − 1) = 4N(N − 1), if H(k1,… ,kN) ≠ 0, implying
g ≠ 0.
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Now if H(k1,… ,kN) ≠ 0, the degree of the polynomial H̃ defined by (3.4), which also equals

H̃ =
∑
𝜎=±1

Q3(k1,… , kN , 𝜎1,… , 𝜎N)
∏

1≤i< j≤N
kik jQ1(ki, k j, 𝜎i, 𝜎 j), (3.8)

should then not be less than 4N(N − 1). Otherwise, we will have H(k1,… ,kN) = 0, which is what we need to
prove for the existence of N-soliton solutions. Thus, the problem for verifying the Hirota condition becomes
quite simple, and one basically just needs to compute the degree of the polynomial in (3.8) and determine if
it is less than 4N(N − 1).

3.2 Applications
3.2.1 Generalized KdV equations

Let us consider a class of generalized KdV equations, which are associated with

P(x, t) = ax4 + bx3t + cx2 + dxt (3.9)

where a, b, c, d are arbitrary constants satisfying b2 + d2 ≠ 0, which guarantees we will have a PDE. The
corresponding bilinear generalized KdV equations read

B( f ) := (aD4
x + bD3

xDt + cD2
x + dDxDt) f ⋅ f

= 2
[
a( f4x f − 4 f3x fx + 3 f 2xx)+ b( f3x,t f − 3 fxxt fx + 3 fxt fxx − ft f3x)

+ c( fxx f − f 2x )+ d( fyt f − fy ft)
]
= 0. (3.10)

They are equivalent to the following generalized KdV equations:

N(u) := a(6uxuxx + u4x)+ b[3(uxut)x + u3x,t] + cuxx + duxt = 0, (3.11)

under the logarithmic derivative transformation u = 2(ln f )x. The link is N(u) = (B( f )∕ f 2)x. If b = 0, then we
get the KdV equation, and if a = 0, we get the Hirota–Satsuma equation [21].

In what follows, we would like to show that each equation in (3.10) possesses an N-soliton solution. Let
us set

Δ = ad− bc. (3.12)

It is direct to compute that

𝜔i = 𝜔i(ki) =
ak3i + cki
bk2i + d , 1 ≤ i ≤ N, (3.13)

and

P(𝜎iki − 𝜎 jk j) = −
𝜎i𝜎 jkik jΔ(𝜎iki − 𝜎 jk j)2[b(k2i − 𝜎i𝜎 jkik j + k2j)+ 3d]

(bk2i + d)(bk2j + d) , 1 ≤ i < j ≤ N. (3.14)

Case 1.Δ = 0:
In this case, we have P(ki ± kj) = 0, 1 ≤ i < j ≤ N, and thus, the Hirota N-soliton condition is automati-

cally satisfied. This implies that we have a set of resonant solutions:

f = 1+ c1 e𝜂1 + · · · + cN e𝜂N , 𝜂i = kix −𝜔i(ki)t, 1 ≤ i ≤ N, (3.15)

where ci’s and ki’s are arbitrary constants.
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Case 2.Δ ≠ 0:
Sub-case 2.1. d = 0:
In this subcase, we have c ≠ 0 and directly obtain

⎧⎪⎪⎨⎪⎪⎩

P(𝜎iki − 𝜎 jk j) =
R1
R2

, R1 = c𝜎i𝜎 j(𝜎iki − 𝜎 jk j)2(k2i − 𝜎i𝜎 jkik j + k2j), R2 = kik j,

P(𝜎1k1 + · · · + 𝜎NkN) =
R3
R4

, deg R3 = N + 2, R4 =
N∏
i=1

ki.
(3.16)

Now if H(k1,… ,kN) ≠ 0, let us check the degree of the polynomial

H(k1,… ,kN)R4(k1,… , kN)
∏

1≤i< j≤N
R2(ki, k j)

= R3(k1,… , kN , 𝜎1,… , 𝜎N)
∏

1≤i< j≤N
R1(ki, k j, 𝜎i, 𝜎 j)𝜎i𝜎 j.

We apply the same idea as in the general algorithm. On one hand, based on the expression on the right hand
side, the degree is (N + 2)+ 2N(N − 1) = 2N2 − N + 2. But on the other hand, since HR4

∑
i<j R2 can have

a factor ∑i< j(k2i − k2j)
2 as explained before, based on the expression on the left hand side, the degree is at

least 2N(N − 1)+ N + N(N − 1) = 3N2 − 2N. Those two numbers could not be equal, and actually, we have
3N2 − 2N > 2N2 − N + 2, when N ≥ 3. Therefore, H(k1,… ,kN) = 0,N ≥ 1.

Sub-case 2.2. d ≠ 0:
Sub-subcase 2.2.1. b = 0: this is the KdV case. It is easy to work out

Q1 = −3a(𝜎iki − 𝜎 jk j)2, deg Q3 = 4, Q2 = 1, Q4 = 1. (3.17)

Now if H(k1,… ,kN) ≠ 0, then the degree of the polynomial H(k1,… ,kN) (= H̃) is 2N(N − 1)+ 4 = 2N2 − 2N
+ 4, which could not be greater than 4N(N − 1) whenN ≥ 3. Therefore,H(k1,… ,kN) = 0,N ≥ 1, and the KdV
equation has N-soliton solutions, as shown in [9].

Sub-case 2.2.2. b ≠ 0:
It is direct to get

⎧⎪⎨⎪⎩
Q1 = Δ[b(k2i − 𝜎i𝜎 jkik j + k2j)+ 3d](𝜎iki − 𝜎 jk j)2,

deg Q3 = 2(N + 1), Q2 = (bk2i + d)(bk2j + d), Q4 =
N∏
i=1

(bk2i + d).
(3.18)

Now if H(k1,… ,kN) ≠ 0, then the degree of the polynomial

H̃ = H(k1,… ,kN)Q4(k1,… , kN)
∏

1≤i< j≤N
Q2(ki, k j)

= Q3(k1,… , kN , 𝜎1,… , 𝜎N)
∏

1≤i< j≤N
kik jQ1(ki, k j, 𝜎i, 𝜎 j).

is 2(N + 1)+ 3N(N − 1) = 3N2 − N + 2 (from the second expression of H̃), which could not be greater than
4N(N − 1)+ 2N + 2N(N − 1) = 6N2 − 4N (from the first expression of H̃ and (3.6)) when N ≥ 2. Therefore,
H(k1,… ,kN) = 0,N ≥ 1.

We remark that the three-soliton condition is also satisfied for all bilinear equations associated with

P = ax4 + bx3t + cx2 + dxt + et2, e ≠ 0, (3.19)

where a, b, c, d, e are arbitrary constants. This leads to a class of generalized Boussinesq equations, and the
case of b = c = d = 0 corresponds to the Boussinesq equations. But we need a more general argument to
verify the Hirota N-soliton condition, since the frequency functions involve square roots.
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3.2.2 Generalized higher-order KdV equations

Let us consider a class of higher-order generalized higher-order KdV equations associated with

P(x, t) = ax6 + bx4 + cx2 + xt, (3.20)

where a, b, c are arbitrary constants. This class of polynomials generates the following bilinear generalized
higher-order KdV equations:

B( f ) := (aD6
x + bD4

x + cD2
x + DxDt) f ⋅ f

= 2
[
a( f6x f − 6 f5x fx + 15 f4x fxx − 10 f 33x)

+ b( f4x f − 4 f3x fx + 3 f 2x )+ c( fxx f − f 2x )+ fxt f − fx ft
]
= 0. (3.21)

The corresponding generalized higher-order KdV equations read as follows:

N(u) := a(15u3x + 15uxu3x + u5x)x + b(6uxuxx + u4x)+ cuxx + duxt = 0. (3.22)

The transformation is u = 2(ln f )x and the link is N(u) = (B( f )∕ f 2)x. The case of b = c = 0 leads to the
Sawada–Kotera equation [11] or the Caudrey–Dodd–Gibbon equation [12].

Using the dispersion relations, we can directly obtain

𝜔i = 𝜔i(ki) = ak5i + bk3i + cki, 1 ≤ i ≤ N, (3.23)

and
P(𝜎iki − 𝜎 jk j) = −𝜎i𝜎 jkik j(𝜎iki − 𝜎 jk j)2[5a(k2i − 𝜎i𝜎 jkik j + k2j)+ 3b], 1 ≤ i < j ≤ N. (3.24)

Therefore, it is easy to find that

Q1 = −(𝜎iki − 𝜎 jk j)2[5a(k2i − 𝜎i𝜎 jkik j + k2j)+ 3b], deg Q3 = 6, Q2 = 1, Q4 = 1. (3.25)

Now ifH(k1,… ,kN) ≠ 0, then the degree of the polynomial H̃ (= H) is atmost 3N(N − 1)+ 6 = 3N2 − 3N + 6,
which could not be greater than 4N(N − 1) when N ≥ 4. Another direct computation can show that the three-
soliton condition holds for all generalized higher-order KdV equations in (3.21). Therefore, H(k1,… ,kN)
= 0,N ≥ 1, and each of the generalized higher-order KdV equations in (3.21) possesses N-soliton solutions.

This class is different from the fifth-order KdV equations studied in the literature [22]. It has also been
proved [14] that the higher-order KdV equations associated with

P1(x, t) = x2n + xt, n ≥ 4, (3.26)

does not pass the three-soliton test. A direct computation can show that all generalized higher-order KdV
equations associated with

P2(x, t) = x6 + ax4 + bx2 + cxt + dt2, d ≠ 0, (3.27)

do not possess three-soliton solutions, either, but all generalized higher-order KdV equations associated with

P3(x, t) = x6 + ax4 + 5x3t + bx2 + cxt − 5t2, (3.28)

pass the three-soliton test. In the above polynomials by (3.27) and (3.28), a, b and c are three arbitrary
constants. The class (3.28) with a = b = c = 0 gives the Ramani equation [23], which is also a dimensional
reduction of the BKP equation. Similarly, because square roots are involved in the frequency functions in the
case of (3.28), a more careful algorithm is needed for verifying the Hirota N-soliton condition.
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4 Concluding remarks
We have analyzed the Hirota N-soliton conditions for bilinear differential equations and shown the existence
of N-soliton solutions to two classes of generalized KdV equations. Our examples are all supplements to the
list of bilinear equations which pass the three-soliton test in [15], and they generalizemany existing examples
in the literature since they can yield a linear combination of different nonlinear terms. For example, the
multivariate polynomial in (3.9) contains two monomials x4 and x3t, which lead to two kinds of nonlinear
terms in (3.11). This presents a novel class of bilinear equations and their corresponding nonlinear equations,
which possess N-soliton solutions. Definitely, there should be more bilinear equations, which could possess
N-soliton solutions. In the case of even higher-order differential equations and systems of coupled bilinear
equations, the involved computations will be much more complicated. New ideas are needed to prove the
existence of N-soliton solutions.

There are generalized bilinear derivatives, and particularly, we have the Dp,x-operators [24]:

Dm
p,xD

n
p,t f ⋅ g =

m∑
i=0

n∑
j=0

(
m
i

)(
n
j

)
𝛼
i+ j
p (𝜕m−ix 𝜕

n− j
t f )(𝜕ix𝜕

j
t g), m, n ≥ 0, m+ n ≥ 1, (4.1)

where the powers of 𝛼p are determined by

𝛼ip = (−1)r(i), i = r(i) mod p, i ≥ 0, (4.2)

with 0 ≤ r(i) < p. The patterns of those powers for i = 1, 2, 3,… read

p = 3: −,+,+,−,+,+,…;

p = 5: −,+,−,+,+,−,+,−,+,+,…;
p = 7: −,+,−,+,−,+,+,−,+,−,+,−,+,+,… .

Particularly, we have D3,x and D5,x associated with the two odd prime numbers: p = 3, 5. There exist new
characteristic properties of the corresponding generalized bilinear derivatives. For example, we have

D3
3,x f ⋅ f = 2 fxxx f , D4

3,x f ⋅ f = 6 f 2xx, (4.3)

which is different from the Hirota case (corresponding to p = 2). Of course, we can have other generalized
bilinear derivatives: D6,x,D9,x,….

The corresponding generalized bilinear equations [6, 7] or trilinear equations [25] can possess resonant
N-solitons. A generalized bilinear equation in (1+ 1)-dimensions:

P(Dp,x,Dp,t) f ⋅ f = 0 (4.4)

possesses a resonant N-soliton [6, 7]:

f = 1+ c1 e𝜂1 + c2 e𝜂2 + · · · + cN e𝜂N (4.5)

where ci’s are arbitrary constants and 𝜂i = kix −𝜔it, 1 ≤ i ≤ N, iff

P(ki + 𝛼pk j)+ P(k j + 𝛼pki) = 0, 1 ≤ i ≤ j ≤ N, (4.6)

where ki = (ki,−𝜔i), 1 ≤ i ≤ N. However, we do not have any example of generalized bilinear equations
which have general N-soliton solutions. There are many interesting questions that we need to answer first.
For example, what is the generalizedN-soliton condition, i.e., theN-soliton condition for generalized bilinear
equations? How to formulate generalized bilinear equations, for example,

P(D3,x,D3,t) = 0,

in (1+ 1)-dimensions, which possess general N-soliton solutions?
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