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Abstract: Taking advantage of the Hirota bilinear
form, four classes of lump-type solutions to the (3+1)-
dimensional Jimbo-Miwa equation are presented through
symbolic computation with Maple. Special choices of
the involved parameters guaranteeing analyticity of the
fourth solution are given, together with two particular
lump-type solutions.
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1 Introduction
Nonlinear integrable equations can be transformed into
Hirota bilinear equations, and such examples of equa-
tions include the Korteweg-de Vries (KdV) equation, the
Boussinesq equation, the Kadomtsev–Petviashvili (KP)
equation and the Toda lattice equation [1]. All these
integrable equations possess exponentially localized solu-
tions – soliton solutions [2]. Hirota bilinear forms play a
crucial role in generating soliton solutions, though some
intelligent guesswork is often needed [3].

Recently, there has been a renewed and growing
interest in rational solutions to nonlinear partial differ-
ential equations (see, e.g., [4, 5]). Particularly important
are rationally localized solutions, called lump solutions,
and examples of lump solutions are found for many integ-
rable equations such as the KP equation I [6], the three-
dimensional three-wave resonant interaction [7], the B-KP
equation [8], the Davey–Stewartson equation II [9] and the
Ishimori-I equation [10]. The KP equation I of the form
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(ut + 6uux + uxxx)x – 3uyy = 0 (1)

possesses the following lump solution [6]:

u = 4
–[x + ay + 3(a2 – b2)t]2 + b2(y + 6at)2 + 1/b2
{[x + ay + 3(a2 – b2)t]2 + b2(y + 6at)2 + 1/b2}2 , (2)

where a and b are real free parameters. Rogue wave solu-
tions, which draw a big attention of mathematicians and
physicists worldwide, are a particularly interesting kind
of lump or lump-type solutions, and such solutions, usu-
ally with rational function amplitudes, could be used to
describe significant nonlinear wave phenomena in both
oceanography [11] and nonlinear optics [12]. It is natural
and interesting to search for lump or lump-type solutions
to nonlinear partial differential equations, on the basis of
Hirota bilinear forms.

General rational solutions to nonlinear integrable
equations have been considered within the Wronskian
formulation, the Casoratian formulation and the Pfaf-
fian formulation (see [1, 2]). The KdV equation and the
Boussinesq equation in (1+1)-dimensions, the KP equa-
tion in (2+1)-dimensions and the Toda lattice equation in
(0+1)-dimensions are such typical examples (see, e.g., [13–
16]). Several attempts have also been made to search for
rational solutions to the non-integrable (3+1)-dimensional
KP I [17, 18] and KP II [19] by direct approaches such as the
tanh-function method and the G′

G -expansion method (see,
e.g., [20, 21]). Rational solutions to the (3+1)-dimensional
KP II are linked to the good Boussinesq equation by
a transformation of dependent variables [19]. Moreover,
bilinear Bäcklund transformations are used to construct
rational solutions to (3+1)-dimensional generalized KP
equations (see, e.g., [22]), and there is some direct search
for rational solutions to generalized bilinear equations
(see, e.g., [23]), formulated in terms of generalized bilinear
derivatives [24].

In this paper, we would like to focus on the
(3+1)-dimensional Jimbo-Miwa equation and present four
classes of its lump-type solutions by symbolic computa-
tion with Maple. The (3+1)-dimensional Jimbo-Miwa equa-
tion has a Hirota bilinear form, and so, we will do a search
for positive quadratic function solutions to the corres-
ponding (3+1)-dimensional bilinear Jimbo-Miwa equation.
The obtained quadratic function solutions contain a set
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of free parameters, and taking special choices of para-
meters involved, particular lump-type solutions will be
generated from the fourth quadratic function solution. A
few concluding remarks are given finally at the end of the
paper.

2 Lump-type solutions to the
Jimbo-Miwa equation

2.1 The Jimbo-Miwa equation

The (3+1)-dimensional Jimbo-Miwa equation reads [25]

PJM(u) := uxxxy + 3uyuxx + 3uxuxy + 2uyt – 3uxz = 0, (3)

called the Jimbo-Miwa equation in [26]. The equation is
the second member in the entire KP hierarchy [25], origin-
ally defined by a Hirota bilinear equation

BJM(f ) := (D3
xDy + 2DtDy – 3DxDz)f ⋅ f

= 2(fxxxyf – fyfxxx – 3fxfxxy + 3fxxfxy
+2fytf – 2fyft – 3fxzf + 3fxfz) = 0, (4)

under the link from f to u:

u = 2(ln f )x. (5)

This link is also a characteristic transformation used in
Bell polynomial theories of soliton equations [27, 28] and
it actually presents

PJM(u) =
f (BJM(f ))x – 2fxBJM(f )

f 3 . (6)

Therefore, if f solves the bilinear Jimbo-Miwa equation (4),
then u = 2(ln f )x will engender a solution to the Jimbo-
Miwa equation (3).

It is recognized that the Jimbo-Miwa equation (3)
passes the Painlevé test only for a subclass of solutions
[26] and does not possess a Kac–Moody–Virasoro sym-
metry algebra [29]. Nevertheless, different types of exact
solutions to the Jimbo-Miwa equation (3) are found (see,
e.g., [30]–[32]). The Hirota perturbation technique gen-
erates one- and two-soliton solutions [26] and dromion-
type solutions [32], and the transformed rational function
algorithm yields various traveling wave solutions [33].
It is obvious that the Jimbo-Miwa equation (3) has the
following y- or x-independent solutions:

u = F(x, t) + H(z, t), u = G(y, z) + +H(z, t), (7)

where F,G and H are arbitrary functions in the
indicated variables. These solutions contain more
special solutions: u = F(x, t), u = G(y, z) and u = H(z, t),
which are independent of two variables of x, y, z, t. Begin-
ning with such solutions, various variable separated
solutions are presented by performing Painlevé analysis
and abundant nonlinear coherent structures are explored
[34]. Moreover, among polynomial functions with indi-
vidual degrees of the independent variables less than 2,
the Jimbo-Miwa equation (3) has the following polynomial
solutions:

u = a0 + a1x + a2y + a3z + a4t + a5xz

+ a6xt + a7yz +
3
2
a5yt + a8zt, (8)

where ai, 0 ≤ i ≤ 8, are arbitrary parameters.
In what follows, we concentrate on presenting lump-

type solutions to the (3+1)-dimensional Jimbo-Miwa equa-
tion (3) by formulating a problem of searching for positive
quadratic function solutions to the bilinear Jimbo-Miwa
equation (4).

2.2 Lump-type solutions

We apply the computer algebra system Maple to search
for quadratic function solutions to the (3+1)-dimensional
bilinear Jimbo-Miwa equation (4). A direct Maple symbolic
computation with

f = g2 + h2 + a11, g = a1x + a2y + a3z + a4t + a5,
h = a6x + a7y + a8z + a9t + a10, (9)

generates the following four sets of solutions for the
parameters ai, 1 ≤ i ≤ 11:
{
a1 = a1, a2 = –

a6a7
a1

, a3 = –
2 a4a6a7
3 a12

, a4 = a4, a5 = a5,

a6 = a6, a7 = a7, a8 =
2 a4a7
3 a1

, a9 =
a4a6
a1

,

a10 = a10, a11 = a11
}
,

{
a1 = a1, a2 = a7, a3 = a8, a4 =

3 a1a8
2 a7

, a5 = a5,

a6 = –a1, a7 = a7, a8 = a8, a9 = –
3 a1a8
2 a7

,

a10 = a10, a11 = a11
}
,

{
a1 = 0, a2 = a2, a3 = –

2 a2(–3 a63a9 + 2 a42a11)
9 a64

,

a4 = a4, a5 = a5, a6 = a6,
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a7 = –
2 a2a4a11
3 a63

, a8 = –
2 a2a4(a63 + 2 a9a11)

9 a64
,

a9 = a9, a10 = a10, a11 = a11
}
,

⎧⎪⎪⎨
⎪⎪⎩
a1 = a1, a2 = a2, a3 =

2
3
a1a2a4– a1a7a9 + a2a6a9 + a4a6a7

a12 + a62
,

a4 = a4, a5 = a5, a6 = a6, a7 = a7,

a8 =
2
3
a1a2a9 + a1a4a7 – a2a4a6 + a6a7a9

a12 + a62
,

a9 = a9, a10 = a10,

a11 = –
3
2

(a15a2 + a14a6a7 + 2 a13a2a62
+2 a12a63a7 + a1a2a64 + a65a7)
(a1a9 – a4a6) (a1a7 – a2a6)

⎫⎪⎪⎬
⎪⎪⎭
.

They lead to four classes of quadratic function solutions
to the bilinear Jimbo-Miwa equation (4), and the resulting
quadratic function solutions, in turn, yield four classes of
lump-type solutions to the (3+1)-dimensional Jimbo-Miwa
equation (3) through the transformation (5). We list these
classes of lump-type solutions as follows.

The first class of lump-type solutions to the Jimbo-
Miwa equation (3) reads

u1 =
4
f1
a4a12t + a4a62t + a13x + a1a62x + a12a5 + a1a6a10

a1
(10)

with

f1 =
(
a4t + a1x –

a6a7y
a1

–
2 a4a6a7z
3 a12

+ a5
)2

+
(a4a6t

a1
+ a6x + a7y +

2 a4a7z
3 a1

+ a10
)2

+ a11. (11)

The second class of lump-type solutions to the Jimbo-
Miwa equation (3) reads

u2 =
4
f2
a1(3 a1a8t + 2 a1a7x + a5a7 – a7a10)

a7
(12)

with

f2 =
(3 a1a8t

2 a7
+ a1x + a7y + a8z + a5

)2

+
(
–
3 a1a8t
2 a7

– a1x + a7y + a8z + a10
)2

+ a11. (13)

The third class of lump-type solutions to the Jimbo-Miwa
equation (3) reads

u3 =
4
9 f3

(9 a64a9t + 9 a65x – 6 a2a4a6a11y
–6 a2a4a63z – 4 a2a4a9a11z + 9 a64a10 9 a64a9t)

a63
(14)

with

f3 =
[
a4t + a2y –

2 a2(–3 a63a9 + 2 a42a11)
9 a64

z + a5
]2

+
[
a9t + a6x –

2 a2a4a11y
3 a63

–
2 a2a4(3 a63 + 2 a9a11)

9 a64
z + a10

]2
+ a11. (15)

The fourth class of lump-type solutions to the Jimbo-Miwa
equation (3) reads

u4 =
4

3 f4(a12 + a62)
(
3 a13a4t + 3 a12a6a9t + 3 a1a4a62t

+ 3 a63a9t + 3 a14x + 6 a12a62x + 3 a64x + 3 a13a2y
+ 3 a12a6a7y + 3 a1a2a62y + 3 a63a7y + 2 a12a2a4z
– 2 a12a7a9z + 4 a1a2a6a9z + 4 a1a4a6a7z
– 2 a2a4a62z + 2 a62a7a9z + 3 a13a5 + 3 a12a6a10
+ 3 a1a5a62 + 3 a63a10

)
(16)

with

f4 =
(
a4t + a1x + a2y

+
2
3
a1a2a4 – a1a7a9 + a2a6a9 + a4a6a7

a12 + a62
z + a5

)2

+
(
a9t + a6x + a7y

+
2
3
a1a2a9 + a1a4a7 – a2a4a6 + a6a7a9

a12 + a62
z + a10

)2

–
3
2

(a15a2 + a14a6a7 + 2 a13a2
a62 + 2 a12a63a7 + a1a2a64 + a65a7)

(a1a7 – a2a6)(a1a9 – a4a6)
. (17)

In the above solutions, all parameters ai involved are arbit-
rary provided that the solutions are well defined. The third
lump-type solution (14) is similar to the lump solution (2)
to the KP equation I, but the other three solutions aremore
general since the two linear waves involved contain all
independent variables x, y, z, t.

The analyticity of the first three solutions is guaran-
teed if a11 > 0. In the fourth solution in (16), assume that
all parameters ai involved are positive, i.e., ai > 0 for
1 ≤ i ≤ 4 and 6 ≤ i ≤ 9. Then if a2a7 ≠

a4
a9 , there are lump-type

solutions when taking

a1
a6
∈

(a2
a7
,
a4
a9

)
or

a1
a6
∈

(a4
a9

,
a2
a7

)
, (18)

which leads to a11 > 0; and if a2
a7 =

a4
a9 , which leads to a11 <

0, there are singularities in the resulting solution (noting
that in the case of a2

a7 = a4
a9 , a11 is well defined iff

a1
a6 ≠

a2
a7 ).

All the above rational function solutions ui → 0, 1 ≤ i ≤ 4,
when the corresponding sum of squares g2 + h2 → ∞. But
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they do not approach zero in all directions inR
4 due to the

character of (3+1)-dimensions in the resulting solutions,
and so we call them lump-type solutions.

For the fourth lump-type solution, let us now fix

a5 = 1, a10 = –1,

and choose two particular sets of parameters:

a1 = 3, a2 = 5, a4 = 4, a6 = 3, a7 = 6, a9 = 3,

and

a1 = 4, a2 = 3, a4 = 5, a6 = 3, a7 = 2, a9 = 6,

which satisfy the two conditions in eq. (18), respectively.
The corresponding two particular analytical lump-type
solutions of (16) are given by

u4,1 =
324 (21 t + 18 x + 33 y + 26 z)

g1
(19)

with

g1 = 2025 t2 + 3402 tx + 6156 ty + 4950 tz + 1458 x2

+5346 xy + 4212 xz + 4941 y2 + 7686 yz + 3050 z2

+ 162 t – 162 y + 72 z + 144504, (20)

and

u4,2 =
36 (950 t + 652 x + 450 y + 462 z + 25)

g2
(21)

with

g2 = 13725 t2 + 17100 tx + 12150 ty + 13176 tz
+ 5625 x2 + 8100 xy + 8316 xz + 2925 y2

+ 5928 yz + 3172 z2 – 450 t + 450 x
+450 y – 84 z + 422325, (22)

respectively.

3 Concluding remarks
Based on the Hirota formulation and by a Maple symbolic
computation, we presented four classes of lump-type solu-
tions to the (3+1)-dimensional Jimbo-Miwa equation (3),
and analyzed the positivity of the fourth quadratic func-
tion solution leading to analytical lump-type solutions, of
which two particular analytical lump-type solutions were
computed under special choices of parameters involved.

We remark that it would be very interesting to determ-
ine conditions under which there exist positive poly-
nomial solutions to a kind of generalized bilinear and
trilinear differential equations, as did for resonant solu-
tions in terms of exponential functions [35, 36]. This kind
of polynomial solutions will generate analytical lump or
lump-type solutions, particularly rogue wave solutions,
to the corresponding nonlinear equations through u =
2(ln f )x or u = 2(ln f )xx. Higher-order rogue wave solutions
will be linked to a wide variety of mathematical topics
including generalized Wronskian solutions [37] and gen-
eralized Darboux transformations [38]. Multicomponent
or higher-order generalizations of lump solutions, espe-
cially in (3+1)-dimensional cases and fully discrete cases,
would be a good topic for future research, exhibiting more
diverse soliton phenomena.
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