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Abstract
Based on a special Lie subalgebra of the general linear algebra, a higher-order matrix spectral
problem is proposed. An associated matrix integrable hierarchy, each of which consists of
four submatrix equations, is constructed from the associated zero curvature equations. The
corresponding Hamiltonian formulation is furnished by utilizing the trace identity, and two
integrable reductions over the real and complex fields are presented by means of similarity
transformations.
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Introduction

Matrix spectral problems overmatrix Lie algebras are the staring points to generate integrable
equations, and provide the basis for the inverse scattering transform [1–3]. There are various
examples of applying the special linear algebra [4–6]. Very recently, special orthogonal alge-
bras have also been used to construct counterparts ofmatrix spectral problems associatedwith
the special linear algebra, which yield integrable hierarchies with Hamiltonian formulations
(see, e.g., [7]).

It is a key to select a pseudoregular element e0 in the corresponding loop algebra of a
matrix Lie algebra in determining a matrix spectral problem of the form

iφx = Uφ = U (u, λ)φ, U = e0(λ) + u1e1(λ) + · · · + ulel(λ),
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where e0, e1, . . . , el are linearly independent matrices in the loop algebra and u =
(u1, . . . , ul)T is the potential vector. Once a proper matrix spectral problem is determined,
associated zero curvature equationswill engender integrable equations, which represent com-
muting flows, and their Hamiltonian formulations could be furnished via the trace identity
if the underlying Lie algebra is semisimple [8], and the variational identity if the underlying
Lie algebra is non-seimsimple [9].

Similarity transformations keep matrix spectral problems invariant and so engender
reduced integrable equations. The resulting invariance requires local and nonlocal poten-
tial reductions, producing reduced integrable equations. Various local and nonlocal reduced
integrable equations have been presented from matrix spectral problems associated with the
Ablowitz–Kaup–Newell–Segur (AKNS) spectral problems, indeed (see, e.g., [10–12] and
[13, 14] for local and nonlocal reductions, respectively). Taking pairs of local and nonlocal
reductions, we can construct specific nonlocal reduced integrable equations, and their soli-
ton solutions can be formulated by the reflectionless Riemann–Hilbert problems, in which
eigenvalues could be equal to adjoint eigenvalues [15].

The aim of this paper is to provide an application of the zero curvature formulation in
generating local integrable equations. In Sect. 2, we propose a special matrix Lie sub-algebra
of the general linear algebra, and construct a higher-order matrix spectral problem with four
submatrix potentials. Based on the zero curvature formulation, we work out an associated
matrix integrable hierarchy, and by applying the trace identity, we present a Hamiltonian
formulation for the resulting integrable hierarchy. In Sect. 3, we present and discuss two
local reductions of the adopted matrix spectral problem, and compute two reduced matrix
integrable hierarchies, over the real and complex fields. In the last section, we give rise to a
conclusion and a few concluding remarks.

AMatrix Spectral Problem and Associated Integrable Equations

A Lie Sub-algebra of Matrices

Let m, n be two given natural numbers, T stand for the matrix transpose, and Ik denote the
identity matrix of order k.

We consider a set of square matrices of the form

A =
⎡
⎣

−a b e
c d −bT

f −cT aT

⎤
⎦ , (1)

where a, e, f arem×m matrices, b and cT arem×n matrices, and d is an n×n matrix, and
e, f , d are assumed to be skew-symmetric. It is direct to show that such matrices constitute
a matrix Lie algebra, under the matrix commutator: [A, B] = AB − BA. Actually, we can
determine all matrices in (1) by the property:

(SA)T = −SA, S =
⎡
⎣

0 0 Im
0 In 0
Im 0 0

⎤
⎦ . (2)

Such a characteristic feature determines amatrix Lie structure indeed, because due to ST = S,
we can compute

(S[A, B])T = (SAB)T − (SBA)T
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= BT (SA)T − AT (SB)T

= BT (−SA) − AT (−SB)

= −(SB)T A + (SA)T B

= SBA − SAB = −S[A, B],
where SA and SB are assumed to be skew-symmetric.

A Spectral Problem and Its Integrable Equations

Let λ stand for the spectral parameter. We introduce a spatial higher-order spectral problem
of the form

− iφx = Uφ = U (u, λ)φ, U =
⎡
⎣

−λIm p v

q 0 −pT

w −qT λIm

⎤
⎦ , (3)

where the potential u = u(p, q, v, w) consists of four potential submatrices:
{
p = p(x, t) = (pi j )m×n, q = q(x, t) = (qi j )n×m,

v = v(x, t) = (vi j )m×m, w = w(x, t) = (wi j )m×m .
(4)

This tells a counterpart spectral problem of the AKNS spectral problem [1, 4].
To construct an integrable hierarchy, we usually first solve the stationary zero curvature

equation

Wx = i[U ,W ], (5)

by searching for a Laurent series solution with the same partitioned form as U :

W =
⎡
⎣

−a b e
c d −bT

f −cT aT

⎤
⎦ =

∑
s≥0

λ−sW [s], (6)

where the coefficient matrix W [s] is similarly partitioned into

W [s] =
⎡
⎣

−a[s] b[s] e[s]
c[s] d[s] −b[s]T
f [s] −c[s]T a[s]

⎤
⎦ . (7)

Assuming that

[U ,W ] = ([U ,W ]i j
)
3×3,

we can work out those matrix blocks:

[U ,W ]11 = pc − bq + v f − ew,

[U ,W ]12 = −λb + pd + ap + eqT − vcT ,

[U ,W ]13 = −2λe − pbT + bpT + vaT + av,

[U ,W ]21 = λc − qa − dq − pT f + bTw,

[U ,W ]22 = qb − cp + pT cT − bT qT ,

[U ,W ]23 = λbT + dpT + qe − pT aT + cv,

[U ,W ]31 = 2λ f − qT c + cT q − wa − aTw,

[U ,W ]32 = −λcT − qT d − f p + aT qT + wb,
[U ,W ]33 = qT bT − cT pT + we − f v.
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Thus, the corresponding stationary zero curvature equation determines the initial values

a[0]
x = 0, b[0] = 0, c[0] = 0, d[0]

x = 0, e[0] = 0, f [0] = 0, (8)

and the recursion relation:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b[s+1] = ib[s]
x + pd[s] + a[s] p + e[s]qT − vc[s]T ,

c[s+1] = −ic[s]
x + qa[s] + d[s]q + pT f [s] − b[s]Tw,

e[s+1] = 1
2

(
ie[s]

x − pb[s]T + b[s] pT + va[s]T + a[s]v
)
,

f [s+1] = 1
2

(− i f [s]
x + qT c[s] − c[s]T q + wa[s]T + a[s]Tw

)
,

a[s+1]
x = i

(
b[s+1]q − pc[s+1] + e[s+1]w − v f [s+1]) ,

d[s+1]
x = i

(
qb[s+1] − c[s+1] p + pT c[s+1]T − b[s+1]T qT

)
,

(9)

where s ≥ 0.
To determine a unique sequence of W [s], s ≥ 0, we take

a[0] = Im, d[0] = 0, (10)

and select the constant of integration as zero,

a[s]|u=0 = 0, d[s]|u=0 = 0, s ≥ 1. (11)

In this way, we can work out that
{
b[1] = p, c[1] = q, e[1] = v,

f [1] = w, a[1] = 0, d[1] = 0; (12)

{
b[2] = i px , c[2] = −iqx , e[2] = 1

2 ivx , f [2] = − 1
2 iwx ,

a[2] = −pq − 1
2vw, d[2] = −qp + pT qT ; (13)

and
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b[3] = −pxx − 2pqp + ppT qT − 1
2vwp + 1

2 ivxq
T + ivqTx ,

c[3] = −qxx − 2qpq + pT qT q − 1
2qvw − 1

2 i p
Twx − i pTx w,

e[3] = − 1
2

( 1
2vxx + i ppTx − i px pT + vqT pT + pqv + 1

2vwT vT + 1
2vwv

)
,

f [3] = − 1
2

( 1
2wxx + iqT qx − iqTx q + wpq + qT pTw + 1

2wvw + 1
2w

T vTw
)
,

a[3] = i
[
(pqx − pxq) + 1

4 (vwxx − vxw) + 1
2 ivq

T q + 1
2 i pp

Tw
]
,

d[3] = i
[
(qx p − qpx ) + (

pTx q
T − pT qTx

) + iqvqT + i pTwp
]
.

(14)

At this moment, we can easily see that if we take the temporal matrix spectral problems
as

− iφt = V [r ]φ = V [r ](u, λ)φ, V [r ] = (λrW )+ =
r∑

s=0

λsW [r−s], r ≥ 0, (15)

then the compatibility conditions of the two matrix spectral problems in (3) and (15), i.e.,
the associated zero curvature equations:

Utr − V [r ]
x + i[U , V [r ]] = 0, r ≥ 0, (16)
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generate a hierarchy of matrix integrable equations:

utr = K [r ], r ≥ 0, (17)

each of which consists of four submatrix equations:

ptr = ib[r+1], qtr = −ic[r+1], vtr = 2ie[r+1], wtr = −2i f [r+1]. (18)

The first nonlinear example in this matrix integrable hierarchy presents the following gener-
alized nonlinear Schrödinger equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

i pt2 = pxx + 2pqp − ppT qT + 1

2
vwp − 1

2
ivxq

T − ivqTx ,

iqt2 = −qxx − 2qpq + pT qT q − 1

2
qvw − 1

2
i pTwx − i pTx w,

ivt2 = 1

2
vxx + i ppTx − i px p

T + vqT pT + pqv + 1

2
vwT vT + 1

2
vwv,

iwt2 = −1

2
wxx − iqT qx + iqTx q − wpq − qT pTw − 1

2
wvw − 1

2
wT vTw.

(19)

Hamiltonian Formulation

To present a Hamiltonian formulation for the matrix integrable hierarchy (18), we usually
take advantage of the trace indenty

δ

δu

∫
tr
(
W ∂U

∂λ

)
dx = λ−γ ∂

∂λ
λγ tr

(
W ∂U

∂u

)
, (20)

where γ is a constant related to W . In our situation, it is easy to observe that

⎧⎪⎪⎨
⎪⎪⎩

tr
(
W ∂U

∂λ

) = 2 tr a,

tr
(
W ∂U

∂ p

) = 2cT , tr
(
W ∂U

∂q

) = 2bT ,

tr
(
W ∂U

∂v

) = f T , tr
(
W ∂U

∂w

) = eT ,

(21)

and thus, we arrive at

{ δ
δ p

∫
a[s+1] dx = λ−γ ∂

∂λ
λγ c[s]T , δ

δq

∫
a[s+1] dx = λ−γ ∂

∂λ
λγ b[s]T ,

δ
δv

∫
a[s+1] dx = 1

2λ
−γ ∂

∂λ
λγ f [s]T , δ

δw

∫
a[s+1] dx = 1

2λ
−γ ∂

∂λ
λγ e[s]T ,

s ≥ 0.

(22)

Considering a special case of s = 2, we can find γ = 0, and thus, we obtain

{ δ
δ p

∫
H [s] dx = c[s]T , δ

δq

∫
H [s] dx = b[s]T ,

δ
δv

∫
H [s] dx = 1

2 f [s]T , δ
δw

∫
H [s] dx = 1

2e
[s]T ,

s ≥ 1, (23)

where the Hamiltonian functions are given by

H[s] = − ∫ a[s+1]
s dx, s ≥ 1. (24)
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This allows us to present the Hamiltonian formulation for the matrix integrable hierarchy
(18):

⎧⎪⎪⎨
⎪⎪⎩

ptr = i
δH[r ]

δqT
, qtr = −i δH[r]

δ pT
,

vtr = 4i
δH[r ]

δwT
, wtr = −4i δH[r]

δvT
,

r ≥ 0, (25)

where the Hamiltonian functional H[r ] is defined by (24).
The established Hamiltonian formulation provides a relation between symmetries and

conserved quantities. We can directly explore the associated Lax operator algebra:

[[V [r ], V [s]]] = V [r ]′(u)[K [s]] − V [s]′(u)[K [r ]] + [V [r ], V [s]] = 0, r , s ≥ 0, (26)

and it further follows that infinitely many symmetries {K [s]}∞s=0 commute [16]:

[[K [r ], K [s]]] = K [r ]′(u)[K [s]] − K [s]′(u)[K [r ]] = 0, r , s ≥ 0. (27)

A bi-Hamiltonian formulation can also be established by combing J with a recursion relation
for K [s] generated from (9) [17].

Reduced Local Integrable Hierarchies

Integrable Reduction Over the Real FieldR

First, let us consider a reduction for the spectral matrix U over the real field R:

CU (λ)C−1 = U (−λ), C =
⎡
⎣

0 0 Im
0 In 0
Im 0 0

⎤
⎦ , (28)

Noting that

CU (λ)C−1 =
⎡
⎣

λIm −qT w

− pT 0 q
v p −λIm

⎤
⎦ , (29)

the above reduction equivalently requires

q = −pT , w = v or p = −qT , v = w. (30)

Obviously, we can see that this matrix still belongs to the previously proposed matrix Lie
sub-algebra. It is direct to check that

CW (λ)C−1 = −W (−λ), (31)

since both Laurent series CW (λ)C−1 and W (−λ) of λ solve the stationary zero cuvature
Eq. (5) but they possess the opposite initial values at λ = ∞. Thus, by the definition of
V [r ] = (λrW )+, we know

CV [r ](λ)C−1 = (−1)r+1V [r ](−λ), r ≥ 0. (32)

Further, it follows that

C
(
Ut2s+1(λ) − V [2s+1]

x (λ) + i[U (λ), V [2s+1](λ)])C−1

= Ut2s+1(−λ) − V [2s+1]
x (−λ) + i[U (−λ), V [2s+1](−λ)], s ≥ 0.

(33)
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This engenders a reduced matrix integrable hierarchy

pt2s+1 = ib[2s+2]|q=−pT , w=v, vt2s+1 = 2ie[2s+2]|q=−pT , w=v, s ≥ 0, (34)

each of which also has infinitely many symmetries and conserved densities inherited from
the original ones under the potential reductions in (30).

Integrable Reduction Over the Complex FieldC

Let us second consider a reduction for the spectral matrix U over the complex field C:

CU (λ)C−1 = U †(λ∗), C =
⎡
⎣
Im 0 0
0 In 0
0 0 Im

⎤
⎦ , (35)

where † stands for the Hermitian transpose and ∗ denotes the complex conjugate.
Upon noticing that

CU (λ)C−1 =
⎡
⎣

−λIm p v

q 0 −pT

w −qT λIm

⎤
⎦ , (36)

the above reduction on the spectral matrix exactly requires

q† = p, w† = v or p† = q, v† = w. (37)

Note that this keepsU †(λ∗) to be in the chosen matrix Lie sub-algebra, Now taking (37) into
consideration, we can verify that

CW (λ)C−1 = W †(λ∗), (38)

which yields

CV [r ](λ)C−1 = V [r ]†(λ∗), r ≥ 0. (39)

This ensures that

C
(
Utr (λ) − V [r ]

x (λ) + i[U (λ), V [r ](λ)])C−1

= U †
tr (λ

∗) − V [r ]†
x (λ∗) + i[U †(λ∗), V [r ]†(λ∗)], r ≥ 0,

(40)

and consequently, we obtain a reduced matrix integrable hieierachy

ptr = ib[r+1]|q=p†, w=v† , vtr = 2ie[r+1]|q=p†, w=v† , r ≥ 0, (41)

whose infinitely many symmetries and conservation laws are similarly inherited from the
original ones under the set of potential reductions in (37). The first nonlinear reduced inte-
grable system presents the following generalized nonlonear Schrödinger equations:

⎧⎪⎨
⎪⎩
i pt2 = pxx + 2pp† p − ppT p∗ + 1

2
vv† p − 1

2
ivx p

∗ − ivp∗
x ,

ivt2 = 1

2
vxx + i ppTx − i px p

T + vp∗ pT + pp†v + 1

2
vv∗vT + 1

2
vv†v,

(42)

where † and ∗ again stand for the Hermitian transpose and the complex conjugate, respec-
tively.
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Concluding Remarks

Based on a special Lie sub-algebra of the general linear algebra, a higher-ordermatrix spectral
problem has been proposed. An associated matrix integrable hierarchy has been constructed
from the corresponding zero curvature equations, and its Hamiltonian formulation has been
furnished by utilizing the trace identity. Two integrable reductions over the real and complex
fields were made, which yield two reduced matrix integrable hierarchies. Two generalized
nonlinear Schrödinger integrable systems were presented explicitly.

Recently, reduced nonlocal integrable equations have attracted much attention and such
equations exhibit diverse nonlinear wave phenomena different from the ones in the local
case. It would be interesting to take the newly introduced matrix spectral problem as an
example to construct nonlocal integrable equations (see, e.g., [18] for the case so(3, R)). it
should be significantly important to look for special function solutions [19, 20] and soliton
type solutions, including lump solutions [21, 22], rogue wave solutions [23, 24], multi-pole
soliton solutions [25, 26], and interaction solutions [27, 28], in both cases of local and
nonlocal integrable equations associated with our new matrix spectral problems. Moreover,
we can combine two different group reductions, particularly local and nonlocal ones, and
new resultant integrable equations can carry interesting soliton structures with complicated
characteristics of soliton interactions.
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