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Abstract. We propose a kind of reduced Ablowitz-Kaup-Newell-Segur matrix spectral
problems under two local group reductions by similarity transformations. Associated in-
tegrable hierarchies of matrix mKdV type integrable models are presented, which amend
the complex matrix mKdV integrable hierarchies. Zero curvature equations are key ob-
jects in generating integrable models.
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1. Introduction

The zero curvature formulation provides a systematical scheme to generate integrable
models [6]. The key is to choose a matrix spectral problem and then an associated hierarchy
of integrable models can be computed via zero curvature equations. The inverse scattering
transform exactly uses the matrix spectral problem to solve Cauchy problems of integrable
models, the evolution of the scattering data being determined by the associated temporal
matrix spectral problems [4].

Matrix spectral problems with free potentials are standard and natural. But reduced
matrix spectral problems are more restrictive and harder to apply. A idea of using simi-
larity transformations is adopted for formulating reduced matrix spectral problems, which
lead to integrable hierarchies (see, e.g., [14]). The aim of using similarity transformations
is to make it easier to achieve to keep the corresponding zero curvature equations invariant
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and so generate integrable models. Two such typical kinds of integrable models are the non-
linear Schrédinger equations and the modified Korteweg-de Vries equation. Both of them
are generated from the Ablowitz-Kaup-Newell-Segur (AKNS) matrix spectral problems by
taking one similarity transformation. Moreover, taking a pair of similarity transformations
can engender more diverse integrable models. Some difficulty might be involved, since two
reductions on potentials, corresponding to the pair of similarity transformations, bring new
requirements on balancing associated zero curvature equations.

Very recently, the idea of taking similarity transformations has also been applied to con-
struction of nonlocal integrable models [3]. Three kinds of reduced integrable nonlinear
Schrodinger type equations, and two kinds of reduced integrable modified Kortweweg-de
Vries type equations have been proposed and classified [16]. The inverse scattering trans-
form has also been developed to solve nonlocal integrable models (see, e.g., [2,10,15,22]).
There are other efficient approaches which attempt nonlocal integrable models, and par-
ticularly, construct soliton solutions. The Hirota bilinear method, Darboux transformation,
Baclund transforms and the Riemann-Hilbert technique have been proved to be powerful
and many theories have been proposed for different reduced integrable models, both local
and non-local (see, for example, [7-9,14,26,33]).

In this paper, we would like to propose a pair of local group reductions by similarity
transformations for the AKNS matrix spectral problems to generate reduced integrable mod-
els. The rest of the paper is organized as follows. In Section 2, we recall the AKNS matrix
spectral problems and their associated hierarchies of matrix integrable models to prepare
the subsequent analyses. In Section 3, we consider two local group reductions by similarity
transformations for the AKNS matrix spectral problems simultaneously and generate re-
duced local hierarchies of real matrix mKdV integrable models. In Section 4, we illustrate
the presented formulation with concrete examples, which present abundant reduced AKNS
matrix spectral problems and reduced corresponding matrix integrable models, including
novel mKdV type integrable models. In the last section, we summarize the results and give
some concluding remarks.

2. The Standard AKNS Matrix Integrable Hierarchies

Let m,n > 1 be two arbitrarily given natural numbers. For each pair of m,n > 1, we
state the AKNS matrix spectral problems and the associated AKNS hierarchies of matrix
integrable models, to facilitate the subsequent analyses.

First, we denote the spectral parameter by A, and assume that p and g are two submatrix
potentials

p=p0t)=Pjdmxns  4=90x,t) = (qijdnxm- 2.1

The standard matrix AKNS spectral problems reads
—i¢p,=U¢p, U=U(u,A)=(AA+P), (2.2)

and
—ip, =vlilg, vil=vlig 1 =(1a+qQ"), rxo, 2.3)
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where u = u(p, q) is the potential consisting of the two submatrix potentials p and q. In the
above Lax pair of matrix spectral problems, the (m + n)-th order square matrices, A and €2,
are defined by

A= diag(allm) aZIn): Q= diag(ﬁllm) /3’2111)’

where I, is the identity matrix of size k, and a;, @, and f3;, 3, are two pairs of arbitrarily
given distinct real constants, which will show the diversity of matrix spectral problems but
do not have a serious effect on associated integrable models. The other two (m + n)-th
order square matrices, P and Q!"J, are given by

P=P(u)=[2 g]

which is called the potential matrix, and

=1 [r=s]  plr—s]
[r] = Z a
QY = A |: clr=s1 gqlr—s] ]’ 2.4)
s=0

with ab*1, b ¢s1 and d*] being determined recursively via

=0, =0, d=p1,, d%=p,I, (2.5)
and 1
pls+1] = - (—ibl) —pdl) + allp),
1
[s+1] — 2 (;.[s] [s] _ 4ls]
c =—(ict*! +qa d ,
) 5 e+ ) 520, (2.6)

a[s+1] =i (pc[s+1] _ b[s+1]q)’

d£s+1] =i (qb[s+1] _ C[s+1]p) ,

where a = a; — a, and zero constants of integration are taken in computing a*! and dl1.
Obviously, we can work out

Q[l]: Ep’ Q[ZJZEAP_%Imn(PZ—FiPX)’
a a a ’

QB = B iep_ ﬁ)tlm 2 (P2+iP,)— L3 (i[RP,]+P,, +2P%),
a az " a3

where 8 = 3, —f, and I, , = diag(I,,,—I,,). We can readily see from the recursive relations
in (2.6) with (2.5) that

5] pls]
w=> 2 whl=>"a [ e ZM ] (2.7)

s=0 s=0

provides a Laurent series solution to the stationary zero curvature equation

W, =i[U,W],
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where U is the spectral matrix in (2.2). Such a formal series solution is a crucial object to
generate integrable hierarchies (see, e.g., [24,31,37] for examples).

Now, it directly follows that for each pair of m,n > 1, the compatibility conditions of the
two matrix spectral problems in (2.2) and (2.3), which are the zero curvature equations

U —viil+i[u, vl =0, rx>o,
determine one matrix AKNS integrable hierarchy

r+1]
5

p, =iabl g, =—iact™1 r>o. (2.8)

The case of m = n = 1 gives rise to the typical AKNS integrable hierarchy with two scalar
potentials [1]. By applying the trace identity [30] as in [17], each system in this AKNS ma-
trix integrable hierarchy can be showed to possess a bi-Hamiltonian structure and infinitely
many symmetries and conserved quantities (see, e.g., [12,32,38] for more examples).

It is easy to see that the first and second nonlinear (corresponding to r = 2, 3) integrable
models in (2.8) are the AKNS matrix nonlinear Schrodinger equations

B . B .
P = —;l(pxx +2pqp), q,= ;l(qxx +2qpq),

and the AKNS matrix modified Korteweg-de Vries equations

B
pr = —g(pxxx +3pqpy +3p.qp),

B
q. = —5(qm +3¢,pq +39pq,),

where p and g are the two submatrix potentials given by (2.1). More examples of matrix
AKNS integrable models could be found in [21].

3. Real Reduced Matrix mKdV Integrable Hierarchies

3.1. Reduced AKNS matrix spectral problems

Let X; and X, constant invertible symmetric matrices of orders m and n, respectively,
and A, and A,, constant invertible matrices of orders m and n, respectively. We make the
two bigger invertible constant matrices of order m + n of the form

|1 X 0 1A O
S F RS
For a given AKNS spectral matrix U in (2.2), we consider a pair of group reductions by
similarity transformations

SUWE =—UT(-1) =—(U(=1))", 3.1)
AUMATL=U). (3.2)
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In (3.1), T denotes the matrix transpose. These two reductions show the two simultaneous
invariance properties (see also [18]).

Noting the specific form of the spectral matrix U, we can show that these two group
reductions equivalently generate

»pul=—pT, APA'=P

respectively. Obviously, these require the following corresponding constraints for the two
submatrix potentials p and q:

p=-27'q¢'Z, or q=-%;'p'%, (3.3)

and
p= AlpAgl, qg= AquIl. 3.4

Consequently, from (3.3) and (3.4), the first submatrix potential p is required to satisfy
Ap=pA,, IT'A[Tp=p AT, (3.5)
or the second submatrix potential q is required to satisfy
qA; =D0nq, qX'AIE =371ATTq. (3.6)

Therefore, under both group reductions in (3.1) and (3.2), we have a class of reduced
AKNS matrix spectral problems

a; Al p
o ] (3.7)

—ip,=U¢p, U=
x [—zglpTzl ayAl,

where the submatrix potential p is required to satisfy the constraints in (3.5), or equiva-
lently,

aAl, —I7q'%, ] 5.8

—ip,=U¢p, U=
¢ =Ud [ . WAl

where the submatrix potential q is required to satisfy the constraints in (3.6).

3.2. Real reduced matrix mKdV integrable hierarchies
Under the two group reductions in (3.1) and (3.2), we can prove that
SW)E =wT(=2) = (W(=1),
AW)AT =W (Q),

where W is determined by (2.7). It follows from these invariance properties that for each
r = 0, we have the following one pair of invariance properties:

ZIV[ZSH](A)Z_l — —V[zs“]T(—A) — _(V[%+1](_A))T’
AVEETI()AT = vIEHIQ),
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which are equivalent to

ZQ[Q'H_I](A)Z_I —Q[28+1]T(—A) — _(Q[ZS_H](—A))T’
AQ25+1](A,)A_1 — Q[ZS‘Fl](A),

where s > 0 and VI®*1] and QI**! are defined in (2.3) and (2.4), respectively. Then,
consequently, we see that under the potential constraints (3.3) and (3.4),

(U, —v=H 4, vEHI) ()

- _ (UtT + Vx[2s+1]T + i[UT, V[25+1]T]) (—l),
A (U, — v iy, v )A™

= (U, — v 4 i[u, vI=T) (),

where s > 0, and thus the matrix AKNS integrable models in (2.8) with r =2s+ 1,5 > 0,
become a hierarchy of real reduced AKNS matrix mKdV integrable models

pe=iab®*| o, 520, (3.9)

where the submatrix potential p is a reduced m x n matrix potential being subject to (3.5),
or equivalently,

g =—iac®| sy, s20, (3.10)

where the submatrix potential q is a reduced n x m matrix potential being subject to (3.6).
Moreover, every member in the reduced hierarchy (3.9) or (3.10) possesses a Lax pair
consisting of the reduced matrix spectral problems in (2.2) and (2.3) with r =2s+1,5> 0,
and has a hierarchy of commuting symmetries and conserved densities, which are reduced
from those for the matrix integrable AKNS equations in (2.8) with r = 2s+ 1, s > 0. The
matrix spectral problems (3.7) and

_l¢t — V[25+1]|q=—251pT21¢, s> 0, (311)

constitute a Lax pair for the reduced hierarchy (3.9), or equivalently, the matrix spectral
problems (3.8) and
_l¢t — V[25+1]|p:_2;1q-r22¢, S Z 0, (312)

constitute a Lax pair for the reduced hierarchy (3.10).

Noting that ¥; and X, are arbitrary invertible constant symmetric matrices of orders
m and n, respectively, and A; and A, are arbitrary invertible constant matrices of orders
m and n, respectively, we can present abundant reduced hierarchies of matrix mKdV inte-
grable models.

4. Illustrative Examples

In this section, we would like to compute a few examples to illustrate the preceding
analyses. We will focus on two simple cases.
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4.1. Caseof m=1and n=2

In the case of m = 1 and n = 2, we would like to present two examples. First, let us

choose
o 0 0 o
21:1) 22=|:O O'i|, Alzla A2:|:5 O:|’

where 6 and o take on values of either 1 or —1. Then we obtain

p=(p1,6p1), q=—o0p' =—0(py,5p1)", 4.1)

and the reduced matrix spectral problem becomes

A p1 6p;
—ip, = U|q:—z;1pTzl¢ =| —opr aA 0 é.
—o6p; 0  axA

Upon taking those choices for p and q in (4.1), we see that the 3rd-order reduced integrable
model presents exactly the mKdV equation

B
D1t = _5 (pl,xxx - 120—p%p1,x) .

Second, let us choose

0 o 0 o
21:1) 22=|:O' 0]) Alzla A2:|:5 O:|’

where § and o take on values of either 1 or —1. Then, we arrive at

p=(p1,6p1), q=—06p' =—0(5p1,p1)’, (4.2)

and the reduced matrix spectral problem becomes

a; A p1 6p;
—ip, = Ulq:_zglprzlqb =| —odp; ayA O ¢.
—0p; 0 ayA

Now taking those choices for p and q in (4.2), we see that the 3rd-order reduced integrable
model is precisely the mKdV equation

B
P11, = _5 (pl,xxx - 120-5p%p1,x) .

To sum up, we have shown that the mKdV equation possesses different 3 x 3 matrix Lax
pairs, which provides supplements to the 2 x 2 matrix Lax pairs in the existing literature [4].
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4.2. Caseof m=2andn=2

In the case of m = n = 2, we would like to present several examples below.
Let us choose a general set of

_ 0 (on] _ 0 O3 _ 0 51 _ 0 53
2:1_|:O_2 0 :|s 22_|:O'4 0 ]5 A1_|:62 0 ) AZ_ 54 0 >
where each of o; and §; takes on values of either 1 or —1 and their products are assumed

to be 1
61526364:1, 0'10'20'30'4:1,

which comes from the two group reductions. Then, we get
:|: P1 P2 ] qz—[ 620402041 0104D2 ]
8285p2 6284p1 | 55850503ps 0103p1 |

and so the reduced matrix spectral problem takes the form

A 0 P1 P2
i, = 0 A 6263py 6204p1 b
—62040,04p1 —0104py Az 0
—62030203py —0103P; 0 asA

Particularly, if we firstly choose

51=_52=53=_54=1,

O-1=O-2, 03=04, 0'10'3=:|:1,

then we have

—P2 P1 —P2 P1
The two reduced coupled mKdV integrable models read

p=|: P1 P2 :|, q=:Fp=¥|: P1 P2 ]

Pic= —% [P1.xxx F6 (P2 —P2)P1x £12P1PoPoy |

B
P2 ==~ [Paxx F12P1P2P1,c £ 6 (P —P7) P ]
If we secondly choose

51:—52:53:—54:1,

01 =09, 03 =04, O']_O'gz:l:l,

then we have

P1 P2 T P1 —P2
= , =F =F .
P [ —P2 D1 ] 1 P |: P2 P ]
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Such a reduction on p has also been discussed in [28,29]. The two reduced coupled mKdV
integrable models read

pi:= —% [Prxx F6(P2+DP2)P1x ],

Do = —% [Pasxxx F6(P2+DP2) P2y ]

Finally, let us choose
51 = 52 :—53 :—54 =—1,

_| P1 P2
P |:—P2 —DP1 ]

01=03, 03=04, 0103=%1,

and then we obtain

Further, let us choose

01 =09, 03 =04, O']_O'gz:l:l,
and so we get
P2 —P1 —P2 —P1

respectively. The two pairs of corresponding real reduced coupled mKdV integrable models
read

q=:|:|:p1 —pz] q::l:p=:|:|: P1 P2 ]

Pic= —% [P1xxx £6(p? +P2)p1x £12p1Popoy |

Doy = —% [P2.xxx £12P1P2P1 £6(p? +p2) oy |
and P
PLe=—r3 [Proxx £6(P?—P2)P1x ]

Pa: = —% [Poxxx F6(P2—Dp?)pax]-

5. Conclusion and Remarks

Two local group reductions by similarity transformations have been introduced and
analyzed, which reduce the AKNS matrix spectral problems, and associated real reduced
matrix mKdV integrable hierarchies have been constructed, which consist of commuting
flows. Illustrative examples of reduced AKNS matrix spectral problems and real reduced
mKdV integrable models have been presented. One of the two group reductions leads to
a constraint on the two submatrix potentials in the original AKNS matrix spectral problems,
and the other engenders a constraint on one of the two submatrix potentials. The paper
provides a novel kind of pairs of group reductions from the ones discussed in the literature
[19,20], which consist of one local and one nonlocal group reductions.
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Soliton type solutions could be generated through various approaches, such as the Dar-
boux transformation, the Hirota bilinear tool, Backlund transforms and the Wronskian de-
terminant technique. Rational solutions (see, e.g., [5]), lump wave solutions (see, e.g.,
[13, 23, 27]), breather wave and rogue wave solutions (see, e.g., [25, 35, 36]) and in-
teraction solutions (see, e.g., [11]) are among interesting solutions. On the other hand,
Riemann-Hilbert problems are applied to construction of soliton type solutions to integrable
models with multiple poles of the scattering coefficients [34]. We point out that reduced
integrable models correspond to balancing different potentials in the original equations,
and thus, they need to satisfy constraint conditions and are more difficult to get and solve.
It is expected that our analysis could help classify integrable models as well as enrich the
field of integrable models from a reduction point of view.
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