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Abstract. We propose a kind of reduced Ablowitz-Kaup-Newell-Segur matrix spectral

problems under two local group reductions by similarity transformations. Associated in-

tegrable hierarchies of matrix mKdV type integrable models are presented, which amend

the complex matrix mKdV integrable hierarchies. Zero curvature equations are key ob-

jects in generating integrable models.
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1. Introduction

The zero curvature formulation provides a systematical scheme to generate integrable

models [6]. The key is to choose a matrix spectral problem and then an associated hierarchy

of integrable models can be computed via zero curvature equations. The inverse scattering

transform exactly uses the matrix spectral problem to solve Cauchy problems of integrable

models, the evolution of the scattering data being determined by the associated temporal

matrix spectral problems [4].

Matrix spectral problems with free potentials are standard and natural. But reduced

matrix spectral problems are more restrictive and harder to apply. A idea of using simi-

larity transformations is adopted for formulating reduced matrix spectral problems, which

lead to integrable hierarchies (see, e.g., [14]). The aim of using similarity transformations

is to make it easier to achieve to keep the corresponding zero curvature equations invariant
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and so generate integrable models. Two such typical kinds of integrable models are the non-

linear Schrödinger equations and the modified Korteweg-de Vries equation. Both of them

are generated from the Ablowitz-Kaup-Newell-Segur (AKNS) matrix spectral problems by

taking one similarity transformation. Moreover, taking a pair of similarity transformations

can engender more diverse integrable models. Some difficulty might be involved, since two

reductions on potentials, corresponding to the pair of similarity transformations, bring new

requirements on balancing associated zero curvature equations.

Very recently, the idea of taking similarity transformations has also been applied to con-

struction of nonlocal integrable models [3]. Three kinds of reduced integrable nonlinear

Schrödinger type equations, and two kinds of reduced integrable modified Kortweweg-de

Vries type equations have been proposed and classified [16]. The inverse scattering trans-

form has also been developed to solve nonlocal integrable models (see, e.g., [2,10,15,22]).

There are other efficient approaches which attempt nonlocal integrable models, and par-

ticularly, construct soliton solutions. The Hirota bilinear method, Darboux transformation,

Bäclund transforms and the Riemann-Hilbert technique have been proved to be powerful

and many theories have been proposed for different reduced integrable models, both local

and non-local (see, for example, [7–9,14,26,33]).

In this paper, we would like to propose a pair of local group reductions by similarity

transformations for the AKNS matrix spectral problems to generate reduced integrable mod-

els. The rest of the paper is organized as follows. In Section 2, we recall the AKNS matrix

spectral problems and their associated hierarchies of matrix integrable models to prepare

the subsequent analyses. In Section 3, we consider two local group reductions by similarity

transformations for the AKNS matrix spectral problems simultaneously and generate re-

duced local hierarchies of real matrix mKdV integrable models. In Section 4, we illustrate

the presented formulation with concrete examples, which present abundant reduced AKNS

matrix spectral problems and reduced corresponding matrix integrable models, including

novel mKdV type integrable models. In the last section, we summarize the results and give

some concluding remarks.

2. The Standard AKNS Matrix Integrable Hierarchies

Let m, n ≥ 1 be two arbitrarily given natural numbers. For each pair of m, n ≥ 1, we

state the AKNS matrix spectral problems and the associated AKNS hierarchies of matrix

integrable models, to facilitate the subsequent analyses.

First, we denote the spectral parameter by λ, and assume that p and q are two submatrix

potentials

p = p(x , t) = (p jk)m×n, q = q(x , t) = (qk j)n×m. (2.1)

The standard matrix AKNS spectral problems reads

−iφx = Uφ, U = U(u,λ) = (λΛ+ P), (2.2)

and

−iφt = V [r]φ, V [r] = V [r](u,λ) =
�

λr
Ω+Q[r]
�

, r ≥ 0, (2.3)
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where u = u(p,q) is the potential consisting of the two submatrix potentials p and q. In the

above Lax pair of matrix spectral problems, the (m+ n)-th order square matrices, Λ and Ω,

are defined by

Λ= diag(α1 Im,α2 In), Ω= diag(β1 Im,β2 In),

where Ik is the identity matrix of size k, and α1,α2 and β1,β2 are two pairs of arbitrarily

given distinct real constants, which will show the diversity of matrix spectral problems but

do not have a serious effect on associated integrable models. The other two (m + n)-th

order square matrices, P and Q[r], are given by

P = P(u) =

�

0 p

q 0

�

,

which is called the potential matrix, and

Q[r] =

r−1
∑

s=0

λs

�

a[r−s] b[r−s]

c[r−s] d[r−s]

�

, (2.4)

with a[s], b[s], c[s] and d[s] being determined recursively via

b[0] = 0, c[0] = 0, a[0] = β1Im, d[0] = β2In, (2.5)

and




















b[s+1] =
1

α

�

−i b[s]x − pd[s] + a[s]p
�

,

c[s+1] =
1

α

�

ic[s]x + qa[s] − d[s]q
�

,

a[s+1]
x = i
�

pc[s+1] − b[s+1]q
�

,

d[s+1]
x = i
�

qb[s+1] − c[s+1]p
�

,

s ≥ 0, (2.6)

where α = α1 −α2 and zero constants of integration are taken in computing a[s] and d[s].

Obviously, we can work out

Q[1] =
β

α
P, Q[2] =

β

α
λP −

β

α2
Im,n

�

P2 + iPx

�

,

Q[3] =
β

α
λ2P −

β

α2
λIm,n

�

P2 + iPx

�

−
β

α3

�

i[P, Px ] + Px x + 2P3
�

,

where β = β1−β2 and Im,n = diag(Im,−In). We can readily see from the recursive relations

in (2.6) with (2.5) that

W =
∑

s≥0

λ−sW [s] =
∑

s≥0

λ−s

�

a[s] b[s]

c[s] d[s]

�

(2.7)

provides a Laurent series solution to the stationary zero curvature equation

Wx = i[U ,W ],
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where U is the spectral matrix in (2.2). Such a formal series solution is a crucial object to

generate integrable hierarchies (see, e.g., [24,31,37] for examples).

Now, it directly follows that for each pair of m, n≥ 1, the compatibility conditions of the

two matrix spectral problems in (2.2) and (2.3), which are the zero curvature equations

Ut − V [r]x + i
�

U , V [r]
�

= 0, r ≥ 0,

determine one matrix AKNS integrable hierarchy

pt = iαb[r+1], qt = −iαc[r+1], r ≥ 0. (2.8)

The case of m = n = 1 gives rise to the typical AKNS integrable hierarchy with two scalar

potentials [1]. By applying the trace identity [30] as in [17], each system in this AKNS ma-

trix integrable hierarchy can be showed to possess a bi-Hamiltonian structure and infinitely

many symmetries and conserved quantities (see, e.g., [12,32,38] for more examples).

It is easy to see that the first and second nonlinear (corresponding to r = 2,3) integrable

models in (2.8) are the AKNS matrix nonlinear Schrödinger equations

pt = −
β

α2
i(px x + 2pqp), qt =

β

α2
i(qx x + 2qpq),

and the AKNS matrix modified Korteweg-de Vries equations

pt = −
β

α3
(px x x + 3pqpx + 3pxqp),

qt = −
β

α3
(qx x x + 3qx pq + 3qpqx),

where p and q are the two submatrix potentials given by (2.1). More examples of matrix

AKNS integrable models could be found in [21].

3. Real Reduced Matrix mKdV Integrable Hierarchies

3.1. Reduced AKNS matrix spectral problems

Let Σ1 and Σ2 constant invertible symmetric matrices of orders m and n, respectively,

and ∆1 and ∆2, constant invertible matrices of orders m and n, respectively. We make the

two bigger invertible constant matrices of order m+ n of the form

Σ=

�

Σ1 0

0 Σ2

�

, ∆=

�

∆1 0

0 ∆2

�

.

For a given AKNS spectral matrix U in (2.2), we consider a pair of group reductions by

similarity transformations

ΣU(λ)Σ−1 = −U⊤(−λ) = −
�

U(−λ)
�⊤

, (3.1)

∆U(λ)∆−1 = U(λ). (3.2)
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In (3.1), ⊤ denotes the matrix transpose. These two reductions show the two simultaneous

invariance properties (see also [18]).

Noting the specific form of the spectral matrix U , we can show that these two group

reductions equivalently generate

ΣPΣ−1 = −P⊤, ∆P∆−1 = P,

respectively. Obviously, these require the following corresponding constraints for the two

submatrix potentials p and q:

p = −Σ−1
1 q⊤Σ2 or q = −Σ−1

2 p⊤Σ1, (3.3)

and

p =∆1p∆−1
2

, q =∆2q∆−1
1

. (3.4)

Consequently, from (3.3) and (3.4), the first submatrix potential p is required to satisfy

∆1p = p∆2, Σ
−1
1 ∆

⊤
1Σ1p = pΣ−1

2 ∆
⊤
2Σ2, (3.5)

or the second submatrix potential q is required to satisfy

q∆1 =∆2q, qΣ−1
1 ∆

⊤
1Σ1 = Σ

−1
2 ∆

⊤
2Σ2q. (3.6)

Therefore, under both group reductions in (3.1) and (3.2), we have a class of reduced

AKNS matrix spectral problems

−iφx = Uφ, U =

�

α1λIm p

−Σ−1
2 p⊤Σ1 α2λIn

�

, (3.7)

where the submatrix potential p is required to satisfy the constraints in (3.5), or equiva-

lently,

−iφx = Uφ, U =

�

α1λIm −Σ
−1
1 q⊤Σ2

q α2λIn

�

, (3.8)

where the submatrix potential q is required to satisfy the constraints in (3.6).

3.2. Real reduced matrix mKdV integrable hierarchies

Under the two group reductions in (3.1) and (3.2), we can prove that

ΣW (λ)Σ−1 =W⊤(−λ) =
�

W (−λ)
�⊤

,

∆W (λ)∆−1 =W (λ),

where W is determined by (2.7). It follows from these invariance properties that for each

r ≥ 0, we have the following one pair of invariance properties:

ΣV [2s+1](λ)Σ−1 = −V [2s+1]⊤(−λ) = −
�

V [2s+1](−λ)
�⊤

,

∆V [2s+1](λ)∆−1 = V [2s+1](λ),
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which are equivalent to

ΣQ[2s+1](λ)Σ−1 −Q[2s+1]⊤(−λ) = −
�

Q[2s+1](−λ)
�⊤

,

∆Q2s+1](λ)∆−1 = Q[2s+1](λ),

where s ≥ 0 and V [2s+1] and Q[2s+1] are defined in (2.3) and (2.4), respectively. Then,

consequently, we see that under the potential constraints (3.3) and (3.4),

Σ

�

Ut − V [2s+1]
x

+ i[U , V [2s+1]]
�

(λ)Σ−1

= −
�

U⊤t + V [2s+1]⊤
x + i[U T , V [2s+1]⊤]

�

(−λ),

∆

�

Ut − V [2s+1]
x + i[U , V [2s+1]]

�

(λ)∆−1

=
�

Ut − V [2s+1]
x + i[U , V [2s+1]]

�

(λ),

where s ≥ 0, and thus the matrix AKNS integrable models in (2.8) with r = 2s+ 1, s ≥ 0,

become a hierarchy of real reduced AKNS matrix mKdV integrable models

pt = iαb[2s+2]|q=−Σ−1
2 p⊤Σ1

, s ≥ 0, (3.9)

where the submatrix potential p is a reduced m× n matrix potential being subject to (3.5),

or equivalently,

qt = −iαc[2s+2]|p=−Σ−1
1

q⊤Σ2
, s ≥ 0, (3.10)

where the submatrix potential q is a reduced n×m matrix potential being subject to (3.6).

Moreover, every member in the reduced hierarchy (3.9) or (3.10) possesses a Lax pair

consisting of the reduced matrix spectral problems in (2.2) and (2.3) with r = 2s+1, s ≥ 0,

and has a hierarchy of commuting symmetries and conserved densities, which are reduced

from those for the matrix integrable AKNS equations in (2.8) with r = 2s + 1, s ≥ 0. The

matrix spectral problems (3.7) and

−iφt = V [2s+1]|q=−Σ−1
2 p⊤Σ1

φ, s ≥ 0, (3.11)

constitute a Lax pair for the reduced hierarchy (3.9), or equivalently, the matrix spectral

problems (3.8) and

−iφt = V [2s+1]|p=−Σ−1
1 q⊤Σ2

φ, s ≥ 0, (3.12)

constitute a Lax pair for the reduced hierarchy (3.10).

Noting that Σ1 and Σ2 are arbitrary invertible constant symmetric matrices of orders

m and n, respectively, and ∆1 and ∆2 are arbitrary invertible constant matrices of orders

m and n, respectively, we can present abundant reduced hierarchies of matrix mKdV inte-

grable models.

4. Illustrative Examples

In this section, we would like to compute a few examples to illustrate the preceding

analyses. We will focus on two simple cases.
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4.1. Case of m = 1 and n = 2

In the case of m = 1 and n = 2, we would like to present two examples. First, let us

choose

Σ1 = 1, Σ2 =

�

σ 0

0 σ

�

, ∆1 = 1, ∆2 =

�

0 δ

δ 0

�

,

where δ and σ take on values of either 1 or −1. Then we obtain

p = (p1,δp1), q = −σp⊤ = −σ(p1,δp1)
⊤, (4.1)

and the reduced matrix spectral problem becomes

−iφx = U |q=−Σ−1
2 p⊤Σ1

φ =





α1λ p1 δp1

−σp1 α2λ 0

−σδp1 0 α2λ



φ.

Upon taking those choices for p and q in (4.1), we see that the 3rd-order reduced integrable

model presents exactly the mKdV equation

p1,t = −
β

α3

�

p1,x x x − 12σp2
1p1,x

�

.

Second, let us choose

Σ1 = 1, Σ2 =

�

0 σ

σ 0

�

, ∆1 = 1, ∆2 =

�

0 δ

δ 0

�

,

where δ and σ take on values of either 1 or −1. Then, we arrive at

p = (p1,δp1), q = −σδp⊤ = −σ(δp1, p1)
⊤, (4.2)

and the reduced matrix spectral problem becomes

−iφx = U |q=−Σ−1
2

p⊤Σ1
φ =





α1λ p1 δp1

−σδp1 α2λ 0

−σp1 0 α2λ



φ.

Now taking those choices for p and q in (4.2), we see that the 3rd-order reduced integrable

model is precisely the mKdV equation

p1,t = −
β

α3

�

p1,x x x − 12σδp2
1 p1,x

�

.

To sum up, we have shown that the mKdV equation possesses different 3×3 matrix Lax

pairs, which provides supplements to the 2×2 matrix Lax pairs in the existing literature [4].
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4.2. Case of m = 2 and n = 2

In the case of m= n= 2, we would like to present several examples below.

Let us choose a general set of

Σ1 =

�

0 σ1

σ2 0

�

, Σ2 =

�

0 σ3

σ4 0

�

, ∆1 =

�

0 δ1

δ2 0

�

, ∆2 =

�

0 δ3

δ4 0

�

,

where each of σi and δi takes on values of either 1 or −1 and their products are assumed

to be 1

δ1δ2δ3δ4 = 1, σ1σ2σ3σ4 = 1,

which comes from the two group reductions. Then, we get

p =

�

p1 p2

δ2δ3p2 δ2δ4p1

�

, q = −

�

δ2δ4σ2σ4p1 σ1σ4p2

δ2δ3σ2σ3p2 σ1σ3p1

�

,

and so the reduced matrix spectral problem takes the form

−iφx =











α1λ 0 p1 p2

0 α1λ δ2δ3p2 δ2δ4p1

−δ2δ4σ2σ4p1 −σ1σ4p2 α2λ 0

−δ2δ3σ2σ3p2 −σ1σ3p1 0 α2λ











φ.

Particularly, if we firstly choose

δ1 = −δ2 = δ3 = −δ4 = 1,

σ1 = σ2, σ3 = σ4, σ1σ3 = ±1,

then we have

p =

�

p1 p2

−p2 p1

�

, q = ∓p = ∓

�

p1 p2

−p2 p1

�

.

The two reduced coupled mKdV integrable models read









p1,t = −
β

α3

�

p1,x x x ∓ 6
�

p2
1 − p2

2

�

p1,x ± 12p1p2p2,x

�

,

p2,t = −
β

α3

�

p2,x x x ∓ 12p1p2p1,x ± 6
�

p2
2
− p2

1

�

p2,x

�

.

If we secondly choose

δ1 = −δ2 = δ3 = −δ4 = 1,

σ1 = −σ2, σ3 = −σ4, σ1σ3 = ±1,

then we have

p =

�

p1 p2

−p2 p1

�

, q = ∓pT = ∓

�

p1 −p2

p2 p1

�

.
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Such a reduction on p has also been discussed in [28,29]. The two reduced coupled mKdV

integrable models read









p1,t = −
β

α3

�

p1,x x x ∓ 6
�

p2
1
+ p2

2

�

p1,x

�

,

p2,t = −
β

α3

�

p2,x x x ∓ 6
�

p2
1 + p2

2

�

p2,x

�

.

Finally, let us choose

δ1 = δ2 = −δ3 = −δ4 = −1,

and then we obtain

p =

�

p1 p2

−p2 −p1

�

.

Further, let us choose

σ1 = σ2, σ3 = σ4, σ1σ3 = ±1,

σ1 = −σ2, σ3 = −σ4, σ1σ3 = ±1,

and so we get

q = ±

�

p1 −p2

p2 −p1

�

, q = ±p = ±

�

p1 p2

−p2 −p1

�

,

respectively. The two pairs of corresponding real reduced coupled mKdV integrable models

read








p1,t = −
β

α3

�

p1,x x x ± 6
�

p2
1 + p2

2

�

p1,x ± 12p1p2p2,x

�

,

p2,t = −
β

α3

�

p2,x x x ± 12p1p2p1,x ± 6
�

p2
1
+ p2

2

�

p2,x

�

,

and








p1,t = −
β

α3

�

p1,x x x ± 6
�

p2
1 − p2

2

�

p1,x

�

,

p2,t = −
β

α3

�

p2,x x x ∓ 6
�

p2
2 − p2

1

�

p2,x

�

.

5. Conclusion and Remarks

Two local group reductions by similarity transformations have been introduced and

analyzed, which reduce the AKNS matrix spectral problems, and associated real reduced

matrix mKdV integrable hierarchies have been constructed, which consist of commuting

flows. Illustrative examples of reduced AKNS matrix spectral problems and real reduced

mKdV integrable models have been presented. One of the two group reductions leads to

a constraint on the two submatrix potentials in the original AKNS matrix spectral problems,

and the other engenders a constraint on one of the two submatrix potentials. The paper

provides a novel kind of pairs of group reductions from the ones discussed in the literature

[19,20], which consist of one local and one nonlocal group reductions.
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Soliton type solutions could be generated through various approaches, such as the Dar-

boux transformation, the Hirota bilinear tool, Bäcklund transforms and the Wronskian de-

terminant technique. Rational solutions (see, e.g., [5]), lump wave solutions (see, e.g.,

[13, 23, 27]), breather wave and rogue wave solutions (see, e.g., [25, 35, 36]) and in-

teraction solutions (see, e.g., [11]) are among interesting solutions. On the other hand,

Riemann-Hilbert problems are applied to construction of soliton type solutions to integrable

models with multiple poles of the scattering coefficients [34]. We point out that reduced

integrable models correspond to balancing different potentials in the original equations,

and thus, they need to satisfy constraint conditions and are more difficult to get and solve.

It is expected that our analysis could help classify integrable models as well as enrich the

field of integrable models from a reduction point of view.
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