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Abstract. Let k ≥ 0 and l ≥ 2 be integers, c a nonnegative number and f an arbitrary
multivariate function such that f (x1, x2, x3, · · · , x l) ≥ x1 + x2 for x1, x2 ≥ 0. This work
deals with the higher-order nonlinear difference equation

zn+1 =
(c + 1)znzn−k + c[ f (zn, zn−k, w3, · · · , wl ))− zn − zn−k] + 2c2

znzn−k + f (zn, zn−k, w3, · · · , wl)) + c
, n≥ 0,

where z−k, z−k+1, · · · , z0 are positive initial values and wi , 3 ≤ i ≤ l, arbitrary functions
of variables zn−k, zn−k+1, · · · , zn. All solutions of this equation are classified into three
groups, according to their asymptotic behavior, and a decreasing and increasing charac-
teristic of oscillatory solutions is also explored. Finally, the global asymptotic stability
of the positive equilibrium solution z̄ = c is exhibited by establishing a strong negative
feedback property.
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1. Introduction

Many problems in probability, biology, computer science, digital signal processing and
economics involve difference equations. Difference equations are connected with differen-
tial equations as discrete mathematics is connected with continuous mathematics. Differ-
ential equations, even supposedly elementary ones, can often be hard and overwhelming.
By contrast, elementary difference equations are relatively easy to deal with.

Nevertheless, the solution structure is well studied only for linear difference equa-
tions [3], whereas for nonlinear ones, various properties of solutions are usually observed
and guessed only via numerical simulations but not by rigorous mathematical analysis
[4,13,15,28]. Therefore, it is fundamentally important to provide a qualitative analysis on
nonlinear difference equations, especially their global behavior. This is the main topic of
the current study. For related analytical studies on rational difference equations, the reader
may consult Refs. [1, 5, 6, 8, 9, 11, 16, 18, 26]. Asymptotic behavior of eigenfunctions also
plays a crucial role in determining scattering data in Riemann-Hilbert problems and ma-
trix spectral problems [22, 23] and representing algebro-geometric solutions of integrable
equations [19,20].

Let k ≥ 0 and l ≥ 2 be integers, c a nonnegative number and f an arbitrary multivariate
function such that

f (x1, x2, x3, · · · , x l)≥ x1 + x2, when x1, x2 ≥ 0. (1.1)

We would like to study a higher-order nonlinear difference equation involving many arbi-
trary multivariate functions, — viz.

zn+1 =
(c + 1)znzn−k + c[ f (zn, zn−k, w3, · · · , wl)− zn − zn−k] + 2c2

znzn−k + f (zn, zn−k, w3, · · · , wl) + c
, n≥ 0, (1.2)

with positive initial values z−k, z−k+1, · · · , z0 and arbitrary multivariate functions wi , 3 ≤
i ≤ l, of variables zn−k, zn−k+1, · · · , zn. The positivity of the initial values and the property
(1.1) guarantee the existence of positive solutions for the Eq. (1.2). Moreover, a direct
computation can show that the Eq. (1.2) possesses only one positive equilibrium (steady
state) solution z̄ = c.

Observe that the transformation

zn =
c

yn

, n≥ −k, (1.3)

puts (1.2) into the equivalent difference equation

yn+1 =
c(yn yn−k + c) + f (c/yn, c/yn−k)yn yn−k

c(2yn yn−k − yn − yn−k + 1) + f (c/yn, c/yn−k)yn yn−k + c2
, n≥ 0, (1.4)

where f = f (x1, x2) is assumed. Obviously, under (1.3), the positive equilibrium solution
z̄ = c of (1.2) becomes the positive equilibrium solution ȳ = 1 of the Eq. (1.4). Upon taking
a reduction with c = 1 and f (x1, x2) = x1+ x2, we obtain the rational difference equation

yn+1 =
(yn + 1)(yn−k + 1)

2(yn yn−k + 1)
, n≥ 0. (1.5)
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The difference equation (1.2) can generate many other rational difference equations, which
amend the classes of rational difference equations with globally asymptotically stable equi-
libria in [2].

In this paper, we analyse the higher-order nonlinear difference equation (1.2) and clas-
sify all its positive solutions into three groups according to their asymptotic behavior. For the
group of oscillatory solutions, a decreasing and increasing characteristic is explored. The
global asymptotic stability, implying the global attractivity of the positive equilibrium solu-
tion z̄ = c is then verified, and four illustrative examples are presented to further demon-
strate the global behavior of solutions. A few concluding remarks are given in the last
section.

2. Global Behavior

2.1. Classification of solutions

From the Eq. (1.2) itself, we can derive

zn+1 − c =
(zn − c)(zn−k − c)

znzn−k + f (zn, zn−k, w3, · · · , wl ) + c
, n≥ 0, (2.1)

zn+1 − zn =
(c − zn)[znzn−k + f (zn, zn−k, w3, · · · , wl)− zn−k + 2c]

znzn−k + f (zn, zn−k, w3, · · · , wl) + c
, n≥ 0, (2.2)

and

zn+1 − zn−k =
(c − zn−k)[znzn−k + f (zn, zn−k, w3, · · · , wl)− zn + 2c]

znzn−k + f (zn, zn−k, w3, · · · , wl) + c
, n≥ 0. (2.3)

The following results are an immediate consequence of the Eqs. (2.2) and (2.3).

Theorem 2.1 (Properties of solutions). Let {zn}
∞
n=−k

be a solution of the nonlinear difference

equation (1.2). Then
¨

zn+1 > zn, if zn < c,

zn+1 < zn, if zn > c,
(2.4)

and
¨

zn+1 > zn−k, if zn−k < c,

zn+1 < zn−k, if zn−k > c,
(2.5)

where n≥ 0.

If k = 0, the nonlinear difference equation (1.2) becomes the first-order difference
equation

zn+1 =
(c + 1)z2

n
+ c[ f (zn, zn, w3, · · · , wl)− zn − zn] + 2c2

z2
n
+ f (zn, zn, w3, · · · , wl) + c

, n≥ 0. (2.6)
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From this or due to (2.1), we obtain zn+1 ≥ c for n≥ 0. Further if n≥ 1, then zn+1 ≤ zn by
(2.2). Thus, {zn}

∞
n=1 decays to c as n→∞.

Generally, it follows directly from the Eq. (2.1) and the inequalities (2.4) that there are
three groups of solutions of (1.2) described by the following theorem.

Theorem 2.2 (Classification of solutions). Let k ≥ 1. Suppose that {zn}
∞
n=−k

is a solution of

the higher-order nonlinear difference equation (1.2). Then

(i) the solution eventually equals c, more precisely zn = c, n≥ m, which occurs when zm = c

for some m ≥ 0;

(ii) the solution is eventually greater than c, more precisely c < zn+1 < zn, n≥ m+ k, which

occurs when zm, zm+1, · · · , zm+k > c for some m≥ −k;

(iii) the solution oscillates about c with at most k + 1 consecutive and increasing terms less

than c and at most k consecutive and decreasing terms greater than c.

Note that it follows from (2.1) that another solution situation that a solution of (1.2) is
eventually less than c does not occur.

A solution {zn}
∞
n=−k

in the group (iii) in Theorem 2.2 is called an oscillatory solution.
The decreasing and increasing characteristic of the oscillatory solutions in Theorem 2.2 can
be demonstrated as follows.

Let n1, n2 ≥ 0 be integers such that n1 < n2. If n2 = n1 + 1, the monotonicity simply
follows from (2.4). Let us now assume that n2 ≥ n1 + 2. Using the Eq. (2.2), we can
compute that

zn2
− zn1

= (zn2
− zn1+1) + (zn1+1 − zn1

)

=

n2−1
∑

j=n1+1

(z j+1 − z j) + (zn1+1 − zn1
) = D+ (zn1+1 − zn1

), (2.7)

where

D =

n2−1
∑

j=n1+1

(c − z j)[z jz j−k + f (z j , z j−k)− z j−k + 2c]

z jz j−k + f (z j , z j−k) + c
. (2.8)

Considering the first case of zn > c, n1 ≤ n≤ n2, we note that the term D in (2.8) is negative,
and thus (2.7) yields zn2

< zn1
. Similarly in the second case of zn < c, n1 ≤ n ≤ n2, D in

(2.8) is positive, and thus (2.7) implies zn2
> zn1

.

2.2. Global asymptotic stability

Since a globally attractive equilibrium of the first-order difference equations cannot be
unstable [27], the equilibrium z̄ = c of the Eq. (2.6) is globally asymptotically stable.

We can verify this global asymptotic stability result in general case k ≥ 1 for the higher-
order nonlinear difference equation (1.2) by establishing an associated strong negative
feedback property [2] (for a generalization of this property, the reader can consult [14]).
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Theorem 2.3 (Global asymptotic stability). The positive equilibrium solution z̄ = c of the

higher-order nonlinear difference equation (1.2) is globally asymptotically stable.

Proof. It follows immediately from the Eq. (1.2) that

c2

zn−k

− zn+1 =
(c − zn−k)hn

zn−k(znzn−k + gn + c)
, n≥ 0,

where

gn := f (zn, zn−k, w3, · · · , wl), hn := (c + 1)znzn−k + cgn − czn−k + c2, n≥ 0.

Together with (2.3), it yields

(zn−k − zn+1)

�

c2

zn−k

− zn+1

�

= −
(c − zn−k)

2(znzn−k + gn − zn + 2c)hn

zn−k(znzn−k + gn + c)2
, n≥ 0.

This clearly tells the strong negative feedback property

(zn−k − zn+1)

�

c2

zn−k

− zn+1

�

≤ 0, n≥ 0,

where the equality holds for all n ≥ 0 if and only if zn = c, n ≥ −k, namely, {zn}
∞
n=−k

is the
positive equilibrium solution z̄ = c. Therefore, by a stability theorem in [2], the positive
equilibrium solution z̄ = c of the Eq. (1.2) is globally asymptotically stable. This completes
the proof.

2.3. Illustrative examples

To illustrate the global asymptotic stability property in Theorem 2.3, we present two
sets of specific examples associated with two special choices of c and f , — viz.

c = 5, f (x1, x2) = x3
1 + x1 x2 + x1 + x2,

and
c = 9, f (x1, x2) = x5

2 + 3x2
1 x2 + x1 + x2.

In the first choice, we take

k = 5, z−5 = 3, z−4 = 7, z−3 =
6

5
,

z−2 = 2, z−1 = 6, z0 =
7

2
,

and

k = 7, z−7 = 6, z−6 = 3, z−5 = 8, z−4 = 4,

z−3 =
11

5
, z−2 =

17

3
, z−1 =

9

2
, z0 =

28

9
.
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Figure 1: Pro�les of {zn}
∞
n=−k

with c = 5, f = x3
1 + x1 x2 + x1 + x2. Left: k = 5. Right: k = 7.

Figure 2: Pro�les of {zn}
∞
n=−k

with c = 9, f = x5
1 + 3x2

1 x2 + x1 + x2. Left: k = 4. Right: k = 6.

The corresponding plots are displayed in Fig. 1.
In the second choice, we take

k = 4, z−4 = 10, z−3 = 7,

z−2 = 11, z−1 = 8, z0 =
31

3
,

and

k = 6, z−6 = 8, z−5 = 11, z−4 = 7,

z−3 = 10, z−2 = 12, z−1 =
15

2
, z0 =

17

2
.

The corresponding plots are displayed in Fig. 2. The graphs show high rates of convergence
in all four cases.

3. Concluding Remarks

We have proved that there exist three groups of solutions to the higher-order nonlinear
difference equation (1.2) with many arbitrary multivariate functions. A decreasing and
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increasing characteristic of the oscillatory solutions was explored and the global asymptotic
stability of the unique positive equilibrium solution was shown.

In the special case of c = 1 and f = x1 + x2, from the theorems in Section 2, we can
obtain the corresponding results on global behavior of the rational difference equation

zn+1 =
2(znzn−k + 1)

znzn−k + zn + zn−k + 1
, n≥ 0,

or equivalently, the rational difference equation (1.5). There have also been similar studies
on global behavior of polynomial difference equations — cf. [17], on rational difference
equations or systems — cf. Refs. [1, 5–9, 11, 16, 18, 26] and [10, 12], and other recent
studies on positive rational function solutions, called lump solutions, to both linear and
nonlinear partial differential equations [21,24,25].

Let k ≥ 1. For an oscillatory solution {zn}
∞
n=−k

of the Eq. (1.2), we introduce the two
sets

Ng = {n | zn > c and n≥ 0}, Nl = {n | zn < c and n≥ 0}.

Since {zn}
∞
n=−k

is oscillatory, Theorem 2.2 tells that both sets, Ng and Nl , contain infinitely
many subsets of consecutive integers, on each of which the solution zn is decreasing or
increasing. An interesting question is what condition on the function f guarantees that zn

is decreasing on the whole set Ng and increasing on the whole set Nl .
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