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Abstract. This study aims to propose a specific eigenvalue problem involving
a 4 × 4 matrix and construct a hierarchy of related commuting integrable

models endowed with a bi-Hamiltonian structure. The Lax pair compatibility

condition ensures the Liouville integrability, while the trace identity provides
the Hamiltonian structure. Specific integrable equations of second- and third-

order are explicitly derived, demonstrating the integrable hierarchy.

1. Introduction. In soliton theory, Lax pairs play an essential role in exploring
integrable models. The concept of a Lax pair [13] involves formulating a pair of
eigenvalue problems, that correspond to a given nonlinear model. By constructing
a suitable Lax pair, we can derive a compatible set of model equations endowed
with significant integrability features, including infinitely many conservation laws
and symmetries. These equations exhibit soliton solutions, facilitating their analysis
through analytical techniques and offering profound insights into their dynamics [2].

To construct integrable models using Lax pairs, we typically begin with a column
potential vector u and introduce an eigenvalue parameter k. The process involves
defining a pair of linear differential equations, known as the Lax pair, which are
interconnected through a compatibility condition crucial for ensuring the integra-
bility of the corresponding nonlinear equations. Specifically, the Lax pair comprises
two eigenvalue equations:

φx = U(u, k)φ, φt = V(u, k)φ, (1)

where φ represents the eigenfunction, U(u, k) denotes the spatial spectral matrix,
and V(u, k) signifies the temporal spectral matrix. These matrices are dependent
on both the potential vector u and the eigenvalue parameter k. The zero curvature
condition, or compatibility condition, is expressed as:

Ut − Vx + [U ,V] = 0, (2)
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where [U ,V] = UV − VU denotes the commutator of U and V. This condition en-
sures that the eigenfunction φ evolves consistently in both the spatial and temporal
directions, thereby leading to an integrable system.

To illustrate, let’s consider the AKNS (Ablowitz-Kaup-Newell-Segur) system,
which serves as a prominent framework for generating integrable equations. The
AKNS system, introduced by Ablowitz, Kaup, Newell, and Segur [1], defines the
matrices U and V as follows:

U(u, k) =

[
−k p
q k

]
, V(u, k) =

[
−A B
C A

]
, (3)

where p and q are components of the potential vector u, and A,B, and C are
functions of u and k. The specific forms of A,B, and C depend on the particular
integrable model under consideration. The zero curvature condition (2) derived
from these matrices leads to a set of nonlinear partial differential equations for p
and q. For example, in the case of the nonlinear Schrödinger (NLS) equation, the
condition results in: {

pt = −pxx + 2p2q,
qt = qxx − 2pq2.

(4)

Solving these equations reveals the integrable structure of the system, characterized
by soliton solutions, infinite symmetries, and conserved quantities. This approach
highlights how the AKNS system, through its Lax pair formulation and the zero cur-
vature condition, facilitates the exploration and understanding of integrable models
in nonlinear physics and mathematics.

By choosing suitable forms for U and V, various integrable models can be derived,
each possessing distinctive properties and being amenable to powerful analytical
techniques such as the inverse scattering transform. Examples include: the sine-
Gordon equation, the Korteweg-de Vries (KdV) equation, and other well-known
integrable models. These models exhibit remarkable integrable properties, allowing
for the study of soliton solutions, infinite symmetries, and conserved quantities.

Hamiltonian structures play a fundamental role in the study of integrable sys-
tems, offering a framework to investigate their integrability. One effective method
to generate Hamiltonian structures involves utilizing the trace identity [39, 14] or
the variational identity [31]. Among these, the trace identity stands out as a robust
technique in this context.

The trace identity, as detailed in references [39, 14], is formulated as:

δ

δu

∫
tr
(
W ∂U
∂k

)
dx = k−τ

∂

∂k
kτ tr

(
W ∂U
∂u

)
, (5)

where δ
δu denotes the variational derivative with respect to u and tr represents the

trace of a matrix, and τ is a constant independent of the eigenvalue parameter k.
Here, W satisfies the stationary zero curvature equation

Wx = [U ,W], (6)

where U is the spectral matrix. The trace identity establishes a connection between
the variational derivative of an integral involving the eigenvalue parameter k and
the trace of a matrix expression. This connection is pivotal in linking the eigenvalue
problem with the Hamiltonian structure of the system, providing insights into its
integrable properties.

A wide array of Liouville integrable hierarchies of soliton Hamiltonian equations
can be constructed using the Lax pair formulation mentioned earlier, utilizing loop
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algebras derived from both special linear algebras (as discussed in works such as [1])
and special orthogonal algebras (as illustrated in references like [15, 16, 17]). These
hierarchies play a crucial role in the field of integrable models, offering a structured
framework to investigate the solutions and properties of soliton equations.

This paper introduces a novel spectral matrix and employs the Lax pair formu-
lation to construct a Liouville integrable hierarchy consisting of four-component
bi-Hamiltonian equations. The resulting soliton equations feature bi-Hamiltonian
structures, which are substantiated using the trace identity. Several illustrative ex-
amples are presented, including four-component coupled integrable NLS equations
and modified Korteweg-de Vries (mKdV) equations. These examples showcase the
versatility and applicability of the proposed framework in generating integrable
models. In the concluding section, the paper summarizes its findings and provides
summary remarks that highlight the potential for future research directions.

2. Commuting integrable models with Hamiltonian structures. Building
upon research into non-perturbation integrable couplings within the AKNS hier-
archy using the Lax pair formulation [45], we explore a newly proposed matrix
eigenvalue problem formulated as follows:

φx = Uφ = U(u, k)φ, U =


γ1k u1 −δ1k −u3
u2 γ2k −u4 −δ2k
δ1k u3 γ1k u1
u4 δ2k u2 γ2k

 , (7)

where k designates once more the eigenvalue parameter and u stands for the depen-
dent variable consisting of four components:

u = u(x, t) = (u1, u2, u3, u4)T . (8)

If the bottom-left 2× 2 block is set to zero, this spectral problem, with parameters
γ1 = −γ2 = −1 and δ1 = −δ2 = 1, aligns with the one discussed in the afore-
mentioned reference. To ensure the generation of an integrable hierarchy via the
Lax pair formulation from this new spectral problem, a necessary and sufficient
condition must be imposed:

γ2 + δ2 6= 0, γ = γ1 − γ2, δ = δ1 − δ2. (9)

When δ1 = δ2 = 0 and u3 = u4 = 0, the spectral problem transforms into two
identical forms of the standard AKNS eigenvalue problem [1], thereby introducing
a generalized variant of the AKNS eigenvalue problem.

To construct a corresponding four-component Liouville integrable hierarchy, we
begin by solving the associated stationary zero curvature equation (6) through the
determination of a targeted Laurent series solution:

W =


a b −e −f
c −a −g e
e f a b
g −e c −a

 =
∑
n≥0

k−nW{n}, (10)

with six fundamental components assumed to be expanded in Laurent series of the
eigenvalue parameter k:

a =
∑
n≥0 k

−na{n}, b =
∑
n≥0 k

−nb{n}, c =
∑
n≥0 k

−nc{n},

e =
∑
n≥0 k

−ne{n}, f =
∑
n≥0 k

−nf{n}, g =
∑
n≥0 k

−ng{n}.
(11)
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It is apparent that the corresponding associated stationary zero curvature equation
(6) results in the following relationships:

ax = u1c− u2b− u3g + u4f,
bx = γkb− δkf − 2u1a+ 2u3e,
cx = −γkc+ δkg + 2u2a− 2u4e,
ex = u1g − u2f + u3c− u4b,
fx = δkb+ γkf − 2u1e− 2u3a,
gx = −δkc− γkg + 2u2e+ 2u4a.

(12)

This provides

k

[
γ −δ
δ γ

] [
b
f

]
=

[
bx + 2u1a− 2u3e
fx + 2u1e+ 2u3a

]
(13)

and

k

[
γ −δ
δ γ

] [
c
g

]
=

[
−cx + 2u2a− 2u4e
−gx + 2u2e+ 2u4a

]
. (14)

Therefore, the condition (9), ensuring the invertibility of the coefficient matrix in
the aforementioned systems, is both necessary and sufficient to ensure the recursive
determination of a Laurent series solution W. Based on (13) and (14), it is evident
that the system (12) yields the initial requirements:

a{0}x = e{0}x = 0, b{0} = c{0} = f{0} = g{0} = 0, (15)

and the iterative relationships employed to define the Laurent series solution:
b{n+1} = γ

γ2+δ2 (b
{n}
x + 2u1a

{n} − 2u3e
{n}) + δ

γ2+δ2 (f
{n}
x + 2u1e

{n} + 2u3a
{n}),

f{n+1} = − δ
γ2+δ2 (b

{n}
x + 2u1a

{n} − 2u3e
{n}) + γ

γ2+δ2 (f
{n}
x

+2u1e
{n} + 2u3a

{n}),
(16)

c{n+1} = γ
γ2+δ2 (−c{n}x + 2u2a

{n} − 2u4e
{n})

+ δ
γ2+δ2 (−g{n}x + 2u2e

{n} + 2u4a
{n}),

g{n+1} = − δ
γ2+δ2 (−c{n}x + 2u2a

{n} − 2u4e
{n})

+ γ
γ2+δ2 (−g{n}x + 2u2e

{n} + 2u4a
{n}),

(17)

{
a
{n+1}
x = u1c

{n+1} − u2b{n+1} − u3g{n+1} + u4f
{n+1},

e
{n+1}
x = u1g

{n+1} − u2f{n+1} + u3c
{n+1} − u4b{n+1},

(18)

where n ≥ 0. As customary, to determine a particular Laurent series solution, we
introduce arbitrary constant initial data:

a{0} =
1

2
µ, e{0} =

1

2
ν, (19)

and assume the integration constants are set to zero:

a{n}|u=0 = 0, e{n}|u=0 = 0, n ≥ 1. (20)

Under these conditions, one can deduce all sequences of {a{n}, b{n}, c{n}, e{n}, f{n},
g{n}} for n ≥ 1. The initial sequence reads

b{1} = 1
γ2+δ2 [γ(µu1 − νu3) + δ(νu1 + µu3)],

f{1} = 1
γ2+δ2 [γ(νu1 + µu3)− δ(µu1 − νu3)],

c{1} = 1
γ2+δ2 [γ(µu2 − νu4) + δ(νu2 + µu4)],

g{1} = 1
γ2+δ2 [γ(νu2 + µu4)− δ(µu2 − νu4)],

a{1} = e{1} = 0.
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The subsequent sequence reads
b{2} = 1

(γ2+δ2)2 (p2,1u1,x + p2,2u3,x),

f{2} = 1
(γ2+δ2)2 (−p2,2u1,x + p2,1u3,x),

c{2} = 1
(γ2+δ2)2 (−p2,1u2,x − p2,2u4,x),

g{2} = 1
(γ2+δ2)2 (p2,2u2,x − p2,1u4,x),{

a{2} = − 1
(γ2+δ2)2 [(p2,1u2 + p2,2u4)u1 + (p2,2u2 − p2,1u4)u3],

e{2} = − 1
(γ2+δ2)2 [(−p2,2u2 + p2,1u4)u1 + (p2,1u2 + p2,2u4)u3],

where p2,1 and p2,2 are two special polynomials of second-order in terms of γ and
δ:

p2,1 = γ2µ+ 2γδν − δ2µ, p2,2 = −γ2ν + 2γδµ+ δ2ν. (21)

The following sequence reads
b{3} = 1

(γ2+δ2)3 [p3,1u1,xx + p3,2u3,xx − 2(p3,1u2 + p3,2u4)u21
−4(p3,2u2 − p3,1u4)u1u3 + 2(p3,1u2 + p3,2u4)u23],

f{3} = 1
(γ2+δ2)3 [−p3,2u1,xx + p3,1u3,xx + 2(p3,2u2 − p3,1u4)u21
−4(p3,1u2 + p3,2u4)u1u3 − 2(p3,2u2 − p3,1u4)u23],

c{3} = 1
(γ2+δ2)3 [p3,1u2,xx + p3,2u4,xx − 2(p3,1u1 + p3,2u3)u22
−4(p3,2u1 − p3,1u3)u2u4 + 2(p3,1u1 + p3,2u3)u24],

g{3} = 1
(γ2+δ2)3 [−p3,2u2,xx + p3,1u4,xx + 2(p3,2u1 − p3,1u3)u22
−4(p3,1u1 − p3,2u3)u2u4 − 2(p3,2u1 − p3,1u3)u24],

a{3} = 1
(γ2+δ2)3 [(−p3,1u2 − p3,2u4)u1,x + (p3,1u1 + p3,2u3)u2,x
−(p3,2u2 − p3,1u4)u3,x + (p3,2u1 − p3,1u3)u4,x],

e{3} = 1
(γ2+δ2)3 [(p3,2u2 − p3,1u4)u1,x − (p3,2u1 − p3,1u3)u2,x
−(p3,1u2 + p3,2u4)u3,x + (p3,1u1 + p3,2u3)u4,x],

where p3,1 and p3,2 are two special polynomials of third-order in terms of γ and δ:

p3,1 = γ3µ+ 3γ2δν − 3γδ2µ− δ3ν, p3,2 = −γ3ν + 3γ2δµ+ 3γδ2ν − δ3µ. (22)

The ensuing sequence reads

b{4} = 1
(γ2+δ2)4 [p4,1u1,xxx + p4,2u3,xxx
−6(p4,1u1u2 + p4,2u1u4 + p4,2u2u3 − p4,1u3u4)u1,x
−6(p4,2u1u2 − p4,1u1u4 − p4,1u2u3 − p4,2u3u4)u3,x],

f{4} = 1
(γ2+δ2)4 [−p4,2u1,xxx + p4,1u3,xxx

+6(p4,2u1u2 − p4,1u1u4 − p4,1u2u3 − p4,2u3u4)u1,x
−6(p4,1u1u2 + p4,2u1u4 + p4,2u2u3 − p4,1u3u4)u3,x],

c{4} = 1
(γ2+δ2)4 [−p4,1u2,xxx − p4,2u4,xxx

+6(p4,1u1u2 + p4,2u1u4 + p4,2u2u3 − p4,1u3u4)u2,x
+6(p4,2u1u2 − p4,1u1u4 − p4,1u2u3 − p4,2u3u4)u4,x],

g{4} = 1
(γ2+δ2)4 [p4,2u2,xxx − p4,1u4,xxx
−6(p4,2u1u2 − p4,1u1u4 − p4,1u2u3 − p4,2u3u4)u2,x
+6(p4,1u1u2 + p4,2u1u4 + p4,2u2u3 − p4,1u3u4)u4,x],
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a{4} = 1
(γ2+δ2)4 [−(p4,1u2 + p4,2u4)u1,xx − (p4,1u1 + p4,2u3)u2,xx
−(p4,2u2 − p4,1u4)u3,xx − (p4,2u1 − p4,1u3)u4,xx
+p4,1u1,xu2,x + p4,2u1,xu4,x + p4,2u2,xu3,x − p4,1u3,xu4,x
+3(p4,1u

2
2 + 2p4,2u2u4 − p4,1u24)u21

+6(p4,2u
2
2 − 2p4,1u2u4 − p4,2u24)u1u3

−3(p4,1u
2
2 + 2p4,2u2u4 − p4,1u24)u23],

e{4} = 1
(γ2+δ2)4 [(p4,2u2 − p4,1u4)u1,xx + (p4,2u1 − p4,1u3)u2,xx
−(p4,1u2 + p4,2u4)u3,xx − (p4,1u1 + p4,2u3)u4,xx
−p4,2u1,xu2,x + p4,1u1,xu4,x + p4,1u2,xu3,x + p4,2u3,xu4,x
−3(p4,2u

2
2 − 2p4,1u2u4 − p4,2u24)u21

+6(p4,1u
2
2 + 2p4,2u2u4 − p4,1u24)u1u3

+3(p4,2u
2
2 − 2p4,1u2u4 − p4,2u24)u23],

where p4,1 and p4,2 are two special polynomials of fourth-order in terms of γ and δ:{
p4,1 = γ4µ+ 4γ3δν − 6γ2δ2µ− 4γδ3ν + δ4µ,
p4,2 = −γ4ν + 4γ3δµ+ 6γ2δ2ν − 4γδ3µ− δ4ν. (23)

Based on these computations, we can set ∆m = 0 for all m ≥ 0, thereby defining
the temporal matrix eigenvalue problems:

φtm = V{m}φ = V{m}(u, k)φ, V{m} = (kmW)+ =

m∑
n=0

knW{m−n}, m ≥ 0. (24)

These equations form the temporal matrix eigenvalue problems within the Lax pair
formulation. The conditions ensuring solvability of the spatial and temporal matrix
eigenvalue problems in (7) and (24) are represented by the following zero curvature
equations:

Utm − V{m}x + [U ,V{m}] = 0, m ≥ 0. (25)

These compatibility equations establish a hierarchy of integrable models with four
dependent variables:

utm = K{m} = (γb{m+1} − δf{m+1},−γc{m+1} + δg{m+1},

δb{m+1} + γf{m+1},−δc{m+1} − γg{m+1})T , (26)

or more specifically, 
u1,tm = γb{m+1} − δf{m+1},
u2,tm = −γc{m+1} + δg{m+1},
u3,tm = δb{m+1} + γf{m+1},
u4,tm = −δc{m+1} − γg{m+1},

(27)

in which m ≥ 0.
For instance, this soliton hierarchy includes various coupled systems of integrable

NLS equations and coupled systems of integrable mKdV equations. If we set

γ = 1, δ = 0, µ = 1, ν = 0, (28)

we obtain a coupled system of integrable NLS equations:
u1,t2 = u1,xx − 2u21u2 + 4u1u3u4 + 2u2u

2
3,

u2,t2 = −u2,xx + 2u1u
2
2 − 2u1u

2
4 − 4u2u3u4,

u3,t2 = u3,xx − 2u21u4 − 4u1u2u3 + 2u23u4,
u4,t2 = −u4,xx + 4u1u2u4 + 2u22u3 − 2u3u

2
4,

(29)
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and a coupled system of integrable mKdV equations:
u1,t3 = u1,xxx − 6(u1u2 − u3u4)u1,x + 6(u1u4 + u2u3)u3,x,
u2,t3 = u2,xxx − 6(u1u2 − u3u4)u2,x + 6(u1u4 + u2u3)u4,x,
u3,t3 = u3,xxx − 6(u1u4 + u2u3)u1,x − 6(u1u2 − u3u4)u3,x,
u4,t3 = u4,xxx − 6(u1u4 + u2u3)u2,x − 6(u1u2 − u3u4)u4,x.

(30)

If we set

γ = 1, δ = 0, µ = 1, ν = 1, (31)

we obtain a coupled system of combined integrable NLS equations:
u1,t2 = u1,xx − u3,xx − 2(u2 − u4)u21 + 4(u2 + u4)u1u3 + 2(u2 − u4)u23,
u2,t2 = −u2,xx + u4,xx + 2(u1 − u3)u22 − 4(u1 + u3)u2u4 − 2(u1 − u3)u24,
u3,t2 = u1,xx + u3,xx − 2(u2 + u4)u21 − 4(u2 − u4)u1u3 + 2(u2 + u4)u23,
u4,t2 = −u2,xx − u4,xx + 2(u1 + u3)u22 + 4(u1 − u3)u2u4 − 2(u1 + u3)u24,

(32)
and a coupled system of combined integrable mKdV equations:

u1,t3 = u1,xxx − u3,xxx − 6[u1(u2 − u4)− u3(u2 + u4)]u1,x
+6[u1(u2 + u4) + u3(u2 − u4)]u3,x,

u2,t3 = u2,xxx − u4,xxx − 6[u1(u2 − u4)− u3(u2 + u4)]u2,x
+6[u1(u2 + u4) + u3(u2 − u4)]u4,x,

u3,t3 = u1,xxx + u3,xxx − 6[u1(u2 + u4) + u3(u2 − u4)]u1,x
−6[u1(u2 − u4)− u3(u2 + u4)]u3,x,

u4,t3 = u2,xxx + u4,xxx − 6[u1(u2 + u4) + u3(u2 − u4)]u2,x
−6[u1(u2 − u4)− u3(u2 + u4)]u4,x.

(33)

These four systems exemplify typical coupled integrable models, thereby broadening
the scope of coupled integrable NLS equations and mKdV equations (see, e,g.,
[18, 19, 20]).

3. Recursion operator and bi-Hamiltonian structures. Introducing bi-
Hamiltonian structures into the soliton hierarchy (27) can be accomplished by ap-
plying the classical trace identity (5) to the spatial matrix eigenvalue problem (7).

The trace identity utilizes the solution W defined by (10). This approach allows
for the straightforward determination of Hamiltonian structures within the hierar-
chy of soliton models. By applying the classical trace identity to the spatial matrix
eigenvalue problem, one can systematically derive the Hamiltonian densities and
associated flows. Concretely, we have

tr
(
W ∂U
∂k

)
= 2γa− 2δe, tr

(
W ∂U
∂u

)
= (2c, 2b,−2g,−2f)T , (34)

and consequently, the classical trace identity gives

δ

δu

∫
k−(n+1)(γa{n+1} − δe{n+1}) dx

= k−τ
∂

∂k
kτ−n(c{n}, b{n},−g{n},−f{n})T , n ≥ 0.

(35)

A check with n = 2 results in τ = 0, and as a consequence, one obtains

δ

δu
H{n} = (c{n+1}, b{n+1},−g{n+1},−f{n+1})T , n ≥ 0, (36)
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in which the required Hamiltonian quantities are evaluated as follows:

H{n} = −
∫
γa{n+2} − δe{n+2}

n+ 1
dx, n ≥ 0. (37)

This enables us to establish the Hamiltonian structures for the soliton hierarchy
(27):

utm = K{m} = J1
δH{m}

δu
, J1 =


0 γ 0 δ
−γ 0 −δ 0
0 δ 0 −γ
−δ 0 γ 0

 , m ≥ 0, (38)

where J1 is evidently Hamiltonian, and H[m] are the functionals defined by (37). It
is important to emphasize that Hamiltonian structures manifest a crucial property:
the interrelation S = J1

δH
δu between a conserved quantity H and a symmetry S

within the same nonlinear model.
The standard soliton theory asserts that the vector fields Kn commute:

[[K{n1},K{n2}]] = K{n1}′(u)[K{n2}]−K{n2}′(u)[K{n1}] = 0, n1, n2 ≥ 0. (39)

This commutativity arises from the algebra of temporal spectral matrices:

[[V{n1},V{n2}]]

= V{n1}′(u)[K{n2}]− V{n2}′(u)[K{n1}] + [V{n1},V{n2}] = 0, n1, n2 ≥ 0.
(40)

This property can be verified directly by examining the relationship between the
isospectral zero curvature equations (see [21] for details).

Furthermore, employing the recursion relation Km+1 = ΦKm involves a straight-
forward albeit lengthy computation, yielding a recursion operator Φ = (Φjk)4×4,
which can be proven to be hereditary [8], in the context of the soliton hierarchy
(27). This hereditary recursion operator Φ reads:

Φ11 = 1
γ2+δ2 (γ∂ − 2γu1∂

−1u2 + 2γu3∂
−1u4 − 2δu1∂

−1u4 − 2δu3∂
−1u2),

Φ12 = 1
γ2+δ2 (−2γu1∂

−1u1 + 2γu3∂
−1u3 − 2δu1∂

−1u3 − 2δu3∂
−1u1),

Φ13 = 1
γ2+δ2 (δ∂ + 2γu1∂

−1u4 + 2γu3∂
−1u2 − 2δu1∂

−1u2 + 2δu3∂
−1u4),

Φ14 = 1
γ2+δ2 (2γu1∂

−1u3 + 2γu3∂
−1u1 − 2δu1∂

−1u1 + 2δu3∂
−1u3);

(41)
Φ21 = 1

γ2+δ2 (2γu2∂
−1u2 − 2γu4∂

−1u4 + 2δu2∂
−1u4 + 2δu4∂

−1u2),

Φ22 = 1
γ2+δ2 (−γ∂ + 2γu2∂

−1u1 − 2γu4∂
−1u3 + 2δu2∂

−1u3 + 2δu4∂
−1u1),

Φ23 = 1
γ2+δ2 (−2γu2∂

−1u4 − 2γu4∂
−1u2 + 2δu2∂

−1u2 − 2δu4∂
−1u4),

Φ24 = 1
γ2+δ2 (−δ∂ − 2γu2∂

−1u3 − 2γu4∂
−1u1 + 2δu2∂

−1u1 − 2δu4∂
−1u3);

(42)
Φ31 = 1

γ2+δ2 (−δ∂ − 2γu1∂
−1u4 − 2γu3∂

−1u2 + 2δu1∂
−1u2 − 2δu3∂

−1u4),

Φ32 = 1
γ2+δ2 (−2γu1∂

−1u3 − 2γu3∂
−1u1 + 2δu1∂

−1u1 − 2δu3∂
−1u3),

Φ33 = 1
γ2+δ2 (γ∂ − 2γu1∂

−1u2 + 2γu3∂
−1u4 − 2δu1∂

−1u4 − 2δu3∂
−1u2),

Φ34 = 1
γ2+δ2 (−2γu1∂

−1u1 + 2γu3∂
−1u3 − 2δu1∂

−1u3 − 2δu3∂
−1u1);

(43)
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and
Φ41 = 1

γ2+δ2 (2γu2∂
−1u4 + 2γu4∂

−1u2 − 2δu2∂
−1u2 + 2δu4∂

−1u4),

Φ42 = 1
γ2+δ2 (δ∂ + 2γu2∂

−1u3 + 2γu4∂
−1u1 − 2δu2∂

−1u1 + 2δu4∂
−1u3),

Φ43 = 1
γ2+δ2 (2γu2∂

−1u2 − 2γu4∂
−1u4 + 2δu2∂

−1u4 + 2δu4∂
−1u2),

Φ44 = 1
γ2+δ2 (−γ∂ + 2γu2∂

−1u1 − 2γu4∂
−1u3 + 2δu2∂

−1u3 + 2δu4∂
−1u1).

(44)
Let’s outline the process of computing this recursion operator using the recur-

sion relations given in (16), (17) and (18). Assuming K{m} = (K{m}1 ,K{m}2 ,K{m}3 ,

K{m}4 )T , m ≥ 0, we will specifically focus on the computation of the third compo-
nent of Km+1:

K{m+1}
3 = δb{m+2} + γf{m+2}

= 1
γ2+δ2 [γδ(b

{m+1}
x + 2u1a

{m+1} − 2u3e
{m+1}) + δ2(f

{m+1}
x + 2u1e

{m+1}

+2u3a
{m+1})− γδ(b{m+1}

x + 2u1a
{m+1} − 2u3e

{m+1}) + γ2(f
{m+1}
x

+2u1e
{m+1} + 2u3a

{m+1})]

= 1
γ2+δ2 [γK{m}3,x − δK

{m}
1,x + 2(γu1 + δu3)(δa{m+1} + γe{m+1})

+2(γu3 − δu1)(−δe{m+1} + γa{m+1})].

On the other hand, we can have

δa{m+1} + γe{m+1} = −∂−1(u1K{m}4 + u2K{m}3 + u3K{m}2 + u4K{m}1 ),

−δe{m+1} + γa{m+1} = −∂−1(u1K{m}2 + u2K{m}1 − u3K{m}4 − u4K{m}3 ).

This results in the third row of the recursion operator Φ, as defined by (43). The
remaining rows can be obtained using a similar approach.

The recursion operator, defined by (41), (42), (43) and (44), incorporates two
constant parameters, γ and δ, which are not simultaneously zero, highlighting the
diverse nature of the recursion structure within the integrable hierarchy. Despite
the nonlocal nature of the recursion operator, the locality of the isospectral flows
(ktm = 0) is preserved. This preservation ensures that each flow within the hierarchy
maintains the integrable structure, thereby guaranteeing that the resulting soliton
equations remain solvable using inverse scattering techniques and other methods
applicable to local equations.

Moreover, through detailed analysis, it becomes evident that J1 and J2 = ΦJ1
constitute a Hamiltonian pair. Consequently, the soliton hierarchy (27) manifests
the following bi-Hamiltonian structures [33]:

utm = K{m} = J1
δH{m}

δu
= J2

δH{m−1}

δu
, m ≥ 1. (45)

It can then be observed that the resulting Hamiltonian quantities commute under
their respective Poisson brackets:

{H{n1},H{n2}}Ji = 0, n1, n2 ≥ 0, i = 1, 2, (46)

where

{H, I}Ji =

∫ (δH
δu

)T
Ji
δI
δu

dx, i = 1, 2. (47)

The relationships expressed in (39) and either (46) or (47) imply that all isospec-
tral flows inherently possess infinitely many conserved quantities and symmetries.
Moreover, leveraging the recursion and bi-Hamiltonian structures allows for effec-
tive computation and utilization of these conserved quantities and symmetries. This
property is pivotal for the practical application and analysis of integrable models,
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ensuring that their solutions exhibit well-defined physical behavior and can be sys-
tematically studied.

In summary, the soliton hierarchy (27) demonstrates distinct bi-Hamiltonian
structures, affirming Liouville integrability. Each model within this hierarchy pos-
sesses infinitely many commuting conserved quantities H{n}∞n=0 and symmetries

K{n}∞n=0. The specific examples presented in (29), (30), (32), and (33) illustrate
unique nonlinear coupled Liouville integrable models with bi-Hamiltonian struc-
tures, contributing significantly to current literature discussions (see, for instance,
[42, 22, 23]).

4. Conclusion and discussions. This research investigates integrable hierarchies
and their connection to matrix eigenvalue problems formulated using zero curvature
equations. The primary focus is on generating integrable models that exhibit bi-
Hamiltonian structures, which are crucial for understanding the inherent dynamics
of these systems.

Employing Laurent series solutions to solve the stationary zero curvature equa-
tion has proven to be a robust method, facilitating the exploration of integrability
characteristics in the models under study. Additionally, applying the trace iden-
tity to the matrix isospectral eigenvalue problem offers deeper insights into the
bi-Hamiltonian structures inherent in these systems.

The concrete examples presented in this research illustrate specific coupled sys-
tems of nonlinear integrable models, both uncoupled and combined. These examples
not only showcase the practical application of the theoretical framework discussed
earlier but also underscore the integrability and complex structure of the resulting
equations.

Exploring the structures of explicit soliton solutions within resulting integrable
models is a focal point, employing advanced methodologies in soliton theory such
as the Zakharov-Shabat dressing method [6], Riemann-Hilbert technique [37], de-
terminant approach [3], and Darboux transformation [36, 11, 24, 32]. Additionally,
significant solutions such as breather, kink, anti-kink, lump, rogue wave solutions,
and mixed solutions can be derived through specific reductions of solitons (see, e.g.,
[5, 38, 35, 46, 43]). Novel reduced integrable equations involving reflection points
can also arise from nonlocal reduced matrix eigenvalue problems under similarity
transformations (see, for example, [25, 26, 27]).

Increasing the number of dependent variables in the spatial spectral matrix
can indeed lead to the generation of larger integrable models (see, for instance,
[44, 12, 10]). These expansions result in systems with richer dynamics and more
complex interactions between variables (see, for example, [28, 29]). Incorporating
additional variables can lead to new phenomena such as the emergence of hereditary
recursion operators and higher-order matrix eigenvalue problems [30]. However, it is
important to note that as the number of dependent variables increases, the complex-
ity of the resulting equations also intensifies, posing challenges in their analysis and
comprehension. Nonetheless, the exploration of larger integrable models remains a
productive area of research, offering profound insights into the fundamental princi-
ples governing nonlinear dynamics and integrability in mathematical physics.
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