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Abstract. We aim to study a Kaup-Newell type matrix eigenvalue problem

with four potentials, generated from a specific matrix Lie algebra, and com-

pute an associated soliton hierarchy and its hereditary recursion operator and
bi-Hamiltonian structure. The Liouville integrability of the resulting soliton

hierarchy is a consequence of the bi-Hamiltonian structure. An illustrative ex-
ample is explicitly worked out, providing a novel integrable model consisting of

combined derivative nonlinear Schrödinger equations involving two arbitrary

constants.

1. Introduction. Integrable models comes in hierarchies which possess hereditary
recursion operators [1, 2] and they are associated with Lax pairs of matrix eigenvalue
problems [3]. Matrix eigenvalue problems are the key objects, which are primarily
used to solve Cauchy problems by establishing inverse scattering transforms. From
an intergrabiliy pespective, Hamiltonian structures, which connect symmetries with
conserved quantities, are important and can also be generated from Lax pairs.
Integrable models have diverse applications in physical sciences and engineering,
such as water waves, nonlinear optics and quantum mechanics.

Among typical examples of integrable hierarchies are the Ablowitz-Kaup-Newell-
Segur hierarchy [4] and its diverse hierarchies of integrable couplings [6]. Matrix
Lie algebras provide a strong basis for studying integrable models within the zero
curvature formulation [5, 6, 7]. The first and most important is to find spectral
matrices while constructing integrable models. In this paper, we would like to
propose a novel Kaup-Newell type 4 × 4 matrix eigenvalue problem and compute
an associated integrable hierarchy.

The zero curvature formulation can be stated as follows (see [7, 8] for details). We
denote a column potential vector by u = (u1, · · · , uq)T and the spectral parameter
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by λ. Let g̃ be a given loop matrix algebra with the loop parameter λ. A matrix
F0 in g̃ is called to be pseudo-regular, if it satisfies

Im adF0
⊕Ker adF0

= g̃, [Ker adF0
,Ker adF0

] = 0, (1.1)

where adF0 denotes the adjoint action of F0 on g̃. We always take one pseudo-
regular matrix F0 and q linear independent matrices F1, · · · , Fq in g̃ to formulate a
spatial spectral matrix:

M =M(u, λ) = F0(λ) + u1F1(λ) + · · ·+ uqFq(λ). (1.2)

Then try to solve the stationary zero curvature equation

Yx = [M, Y ], (1.3)

by assuming a solution Y of a Laurent series form Y =
∑
n≥0 λ

−nY [n].
To determine the other parts of Lax pairs, we take an infinite sequence of tem-

poral spectral matrices

N [m] = (λmY )+ + ∆m =

m∑
n=0

λm−nY [n] + ∆m, m ≥ 0, (1.4)

where ∆m ∈ g̃, m ≥ 0, such that the zero curvature equations:

Mtm −N [m]
x + [M,N [m]] = 0, m ≥ 0, (1.5)

produce a hierarchy of integrable models:

utm = X [m] = X [m](u), m ≥ 0. (1.6)

The equations in (1.5) are the compatibility conditions of the spatial and temporal
matrix eigenvalue problems:

ϕx =Mϕ, ϕtm = N [m]ϕ, m ≥ 0. (1.7)

During the process of finding a solution, one goes with a trial and error strategy.
The last step is to find a bi-Hamiltonian formulation for the resulting hierarchy

(1.6), via computing a recursion operator and applying the so-called trace identity:

δ

δu

∫
tr
(
Y
∂M
∂λ

)
dx = λ−κ

∂

∂λ
λκtr

(
Y
∂M
∂u

)
, (1.8)

where δ
δu is the variational derivative with respect to u, and κ is a constant, which

can be computed from the solution Y . It finally follows that every member in the
hierarchy has a bi-Hamiltonian formulation with a hereditary recursion operator
and thus Liouville integrability (see, e.g., [7, 8, 9]).

Abundant hierarchies of Liouville integrable models are available in the liter-
ature [4]-[20]. One-component integrable hierarchies contain the Korteg-de Vries
hierarchy, the nonlinear Schrödinger hierarchy and the modified Korteweg-de Vries
hierarchy [1, 2]. The case of two components is most popular and the well-known
examples are the Ablowitz-Kaup-Newell-Segur integrable hierarchy [4], the Heisen-
berg integrable hierarchy [21], the Kaup-Newell integrable hierarchy [22] and the
Wadati-Konno-Ichikawa integrable hierarchy [23]. All those hierarchies are gen-
erated from 2 × 2 matrix eigenvalue problems. The case of higher-order spectral
matrices create a high degree of difficulty.

In this paper, we aim to propose a specific 4× 4 spectral matrix and generate a
hierarchy of four-component Liouville integrable models within the zero curvature
formulation. A hereditary recursion operator and a bi-Hamiltonian formulation are
determined to show the Liouville integrability for the resulting soliton hierarchy.
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An illustrative example, consisting of generalized combined integrable derivative
nonlinear Schrödinger equations, is presented. A conclusion and concluding remarks
are given in the last section.

2. A four-component integrable hierarchy. A special matrix Lie algebra is
our basis. Let δ be an arbitrary real number, and T be a square matrix of order
r ∈ N such that

T−1 = T. (2.1)

We define a set g̃ of block matrices as

g̃ =

{
A =

[
A1 A2

A3 A4

]
2r×2r

∣∣∣∣∣A4 = TA1T
−1, A3 = δTA2T

−1

}
. (2.2)

It is easy to see that this forms a matrix Lie algebra under the matrix commutator
[A,B] = AB −BA. We will use this Lie algebra with r = 2, δ = 1 and

T =

[
0 1
−1 0

]
or

[
0 −1
1 0

]
(2.3)

to formulate a specific 4× 4 spectral matrix in our discussion.
We consider the case of four components. Let α1 and α2 be two arbitrary real

numbers, and Let u = u(x, t) = (u1, u2, u3, u4)T be a column vector with four
potentials. α1 and α2, two arbitrary real numbers, which satisfies

α = α1 − α2 6= 0. (2.4)

Based on recent studies on matrix eigenvalue problems involving four potentials
(see, e.g., [24, 25, 26] and [27, 28] for examples of matrix eigenvalue problems of
arbitrary-order and fourth-order, respectively), we would like to introduce a matrix
eigenvalue problem of the form:

ϕx =Mϕ =M(u, λ)ϕ, M =


α1λ

2 λu1 λu2 0
λu3 α2λ

2 0 λu4

λu4 0 α2λ
2 −λu3

0 λu2 −λu1 α1λ
2

 , (2.5)

where λ, as always, denotes the spectral parameter. This spectral matrix M is
built from the above matrix Lie algebra g̃, and it is a kind of generalization of the
2 × 2 matrix Kaup-Newell eigenvalue problem [22]. Importantly, associated with
this eigenvalue problem, an integrable hierarchy of bi-Hamiltonian equations can
be generated. All equations in the hierarchy involve two arbitrary constants and
possess particular combined structures.

To construct an associated integrable hierarchy, the first step is to solve the
corresponding stationary zero curvature equation (1.3). We begin with

Y =


a b e f
c −a f g
g −f −a −c
−f e −b a

 =
∑
n≥0

λ−nY [n]. (2.6)

The reason to take this form is that with the spectral matrix M, an arbitrary
matrix in g̃ will generate a commutator matrix of the above form. Now based on
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(2.5), we see that the corresponding stationary zero curvature equation (1.3) leads
equivalently to 

ax = λcu1 + λgu2 − λbu3 − λeu4,

bx = αλ2b− 2λau1 − 2λfu2,

cx = −αλ2c+ 2λau3 − 2λfu4,

(2.7)


ex = αλ2e+ 2λfu1 − 2λau2,

gx = −αλ2g + 2λfu3 + 2λau4,

fx = λgu1 − λcu2 + λeu3 − λbu4.

(2.8)

In order to compute a solution Y recursively, we assume that the basic objects of
Y are taken as follows:{

a =
∑
n≥0 λ

−2na[n], b =
∑
n≥0 λ

−2n−1b[n], c =
∑
n≥0 λ

−2n−1c[n],

e =
∑
n≥0 λ

−2n−1e[n], f =
∑
n≥0 λ

−2nf [n], g =
∑
n≥0 λ

−2n−1g[n].
(2.9)

Obviously, we can have two crucial relations:{
−αλax = u3bx + u1cx + u4ex + u2gx,

−αλfx = u4bx − u2cx − u3ex + u1gx,
(2.10)

which enable us to get the recursion relations successfully. In this way, we can see
that the above equations in (2.7) and (2.8) yield the two initial conditions: a

[0]
x = u1c

[0] + u2g
[0] − u3b

[0] − u4e
[0],

f
[0]
x = u1g

[0] − u2c
[0] + u3e

[0] − u4b
[0],

(2.11)

and the recursion relations which determine the Laurent series solution: a
[n+1]
x = − 1

α (u3b
[n]
x + u1c

[n]
x + u4e

[n]
x + u2g

[n]
x ),

f
[n+1]
x = − 1

α (u4b
[n]
x − u2c

[n]
x − u3e

[n]
x + u1g

[n]
x ),

(2.12)

 b[n+1] = 1
α (b

[n]
x + 2u1a

[n+1] + 2u2f
[n+1]),

c[n+1] = 1
α (−c[n]

x + 2u3a
[n+1] − 2u4f

[n+1]),
(2.13)

 e[n+1] = 1
α (e

[n]
x − 2u1f

[n+1] + 2u2a
[n+1]),

g[n+1] = 1
α (−g[n]

x + 2u3f
[n+1] + 2u4a

[n+1]),
(2.14)

where n ≥ 0. Further solving (2.11), we obtain the initial data,
b[0] = βu1 + γu2, c

[0] = βu3 − γu4,

e[0] = βu2 − γu1, g
[0] = βu4 + γu3,

a[0] = const., f [0] = const.,

(2.15)

where β and γ are two arbitrary constants. In our computation, we choose the zero
constants of integration:

a[n]|u=0 = 0, f [n]|u=0 = 0, n ≥ 1, (2.16)
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for the sake of brevity. The initial values for a[0] and f [0] don’t affect all other
coefficients in a Laurent series solution, but the two constants β and γ create the
diversity of associated integrable models. Now, a direct computation tells that{

a[1] = − 1
α [(βu3 − γu4)u1 + (γu3 + βu4)u2],

f [1] = − 1
α [(γu3 + βu4)u1 − (βu3 − γu4)u2],

b[1] = 1
α{βu1,x + γu2,x − 2

α [(βu3 − γu4)u1 + (γu3 + βu4)u2]u1

− 2
α [(γu3 + βu4)u1 − (βu3 − γu4)u2]u2},

c[1] = 1
α{−βu3,x + γu4,x − 2

α [(βu3 − γu4)u1 + (γu3 + βu4)u2]u3

+ 2
α [(γu3 + βu4)u1 − (βu3 − γu4)u2]u4},

e[1] = 1
α{−γu1,x + βu2,x + 2

α [(γu3 + βu4)u1 − (βu3 − γu4)u2]u1

− 2
α [(βu3 − γu4)u1 + (γu3 + βu4)u2]u2},

g[1] = 1
α{−γu3,x − βu4,x − 2

α [(γu3 + βu4)u1 − (βu3 − γu4)u2]u3

− 2
α [(βu3 − γu4)u1 + (γu3 + βu4)u2]u4}.

Observing the above recursion relations carefully, one can make the following
choice for the temporal matrix eigenvalue problems:

ϕtm = N [m]ϕ = N [m](u, λ)ϕ, N [m] = λ(λ2m+1Y )+, m ≥ 0, (2.17)

where, as usual, the subscript + denotes the polynomial part of λ. This will success-
fully transform the zero curvature equations in (1.5) into a hierarchy of integrable
models with four potentials:

utm = X [m] = X [m](u) = (b[m]
x , e[m]

x , c[m]
x , g[m]

x )T , m ≥ 0, (2.18)

or more concretely,

u1,tm = b[m]
x , u2,tm = e[m]

x , u3,tm = c[m]
x , u4,tm = g[m]

x , m ≥ 0. (2.19)

The first nonlinear example in this hierarchy is the model of combined integrable
derivative nonlinear Schrödinger equations:

u1,t1 = 1
α (βu1,xx + γu2,xx)− 2

α2 {[(βu3 + γu4)u1 + (γu3 + βu4)u2]u1}x
− 2
α2 {(γu3 + βu4)u1 + (βu3 + γu4)u2]u2}x,

u2,t1 = 1
α (γu1,xx + βu2,xx)− 2

α2 {[(γu3 + βu4)u1 + (βu3 + γu4)u2]u1}x
− 2
α2 {(βu3 + γu4)u1 + (γu3 + βu4)u2]u2}x,

u3,t1 = − 1
α (βu3,xx + γu4,xx)− 2

α2 {[(βu3 + γu4)u1 + (γu3 + βu4)u2]u3}x
− 2
α2 {(γu3 + βu4)u1 + (βu3 + γu4)u2]u4}x,

u4,t2 = − 1
α (γu3,xx + βu4,xx)− 2

α2 {[(γu3 + βu4)u1 + (βu3 + γu4)u2]u3}x
− 2
α2 {(βu3 + γu4)u1 + (γu3 + βu4)u2]u4}x.

(2.20)
This system provides a coupled integrable model with four components, which en-
larges the category of coupled integrable models of nonlinear Schrödinger type equa-
tions (see, e.g., [25, 29, 30]). One interesting phenomenon is that each equation
contains a linear combination of two derivative terms of the second order, and thus,
we call such a model a combined model.
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Two special cases, β = 0 and γ = 0, in the resulting hierarchy are interesting.
They produce reduced hierarchies of uncombined integrable models.

Let us first take α = β = 1 and γ = 0 in the model (2.20), we get a coupled
integrable derivative nonlinear Schrödinger model:

u1,t1 = u1,xx − 2[(u1u3 + u2u4)u1 + (u1u4 + u2u3)u2]x,
u2,t1 = u2,xx − 2[(u1u4 + u2u3)u1 + (u1u3 + u2u4)u2]x,
u3,t1 = −u3,xx − 2[(u1u3 + u2u4)u3 + (u1u4 + u2u3)u4]x,
u4,t1 = −u4,xx − 2[(u1u4 + u2u3)u3 + (u1u3 + u2u4)u4]x.

(2.21)

Let us second take α = γ = 1 and β = 0 in the model (2.20), we obtain another
coupled integrable derivative nonlinear Schrödinger model:

u1,t1 = u2,xx − 2[(u1u4 + u2u3)u1 + (u1u3 + u2u4)u2]x,
u2,t1 = u1,xx − 2[(u1u3 + u2u4)u1 + (u1u4 + u2u3)u2]x,
u3,t1 = −u4,xx − 2[(u1u4 + u2u3)u3 + (u1u3 + u2u4)u4]x,
u4,t1 = −u3,xx − 2[(u1u3 + u2u4)u3 + (u1u4 + u2u3)u4]x.

(2.22)

It is worth pointing out that the resulting two models just exchange the first
component with the second component and the third component with the fourth
component in the vector fields on the right hand sides. Interestingly, those two
models still commute with each other, i.e., one is a symmetry of the other.

3. Recursion operator and bi-Hamiltonian formulation. Let us show the Li-
ouville integrability of the soliton hierarchy (2.19). To this end, we try to determine
a hereditary recursion operator and furnish a Hamiltonian formulation by using the
trace identity (1.8) in the case of the spatial matrix eigenvalue problem (2.5).

Noting the expression of the Laurent series solution Y by (2.6), we can easily
compute that 

tr
(
Y
∂M
∂λ

)
= 2(2αλa+ bu3 + cu1 + eu4 + gu2),

tr
(
Y
∂M
∂u

)
= 2(λc, λg, λb, λe)T ,

(3.1)

and then an application of the trace identity tells

δ

δu

∫
λ−2n−1(2αa[n+1] + u3b

[n] + u4e
[n] + u1c

[n] + u2g
[n]) dx

= λ−κ
∂

∂λ
λκ−2n(c[n], g[n], b[n], e[n])T , n ≥ 0. (3.2)

Checking with n = 1 leads to κ = 0, and accordingly, one gets

δ

δu
H[n] = (c[n], g[n], b[n], e[n])T , n ≥ 0, (3.3)

where the Hamiltonian functionals are determined by
H[0]

=
∫

1
2 [u1(βu3 − γu4) + u2(βu4 + γu3) + u3(βu1 + γu2) + u4(βu2 − γu1)] dx,

H[n] = −
∫

1

2n
(2αa[n+1] + u3b

[n] + u1c
[n] + u4e

[n] + u2g
[n]) dx, n ≥ 1.

(3.4)
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This enables us to produce a Hamiltonian formulation for the soliton hierarchy
(2.19):

utm = X [m] = J1
δH[m]

δu
, m ≥ 0, (3.5)

where the Hamiltonian operator J1 is given by

J1 =

 0
∂ 0
0 ∂

∂ 0
0 ∂

0

 , (3.6)

and the functionals H[m] are defined by (3.4). A direct consequence of such a
Hamiltonian is an interrelation Z = J1

δH
δu between a symmetry Z and a conserved

functional H of each model in the hierarchy.
As always, the characteristic commutative property for the vector fields X [n]

[[X [n1], X [n2]]] = X [n1]′(u)[X [n2]]−X [n2]′(u)[X [n1]] = 0, n1, n2 ≥ 0, (3.7)

follows from an algebra of Lax operators:

[[N [n1],N [n2]]] = N [n1]′(u)[X [n2]]−N [n2]′(u)[X [n1]] + [N [n1],N [n2]] = 0, n1, n2 ≥ 0.
(3.8)

This can directly be derived from the relation between the isospectral zero curvature
equations (see [35] for details).

Furthermore, from the recursion relation X [m+1] = ΦX [m], we can work out a
hereditary recursion operator Φ = (Φjk)4×4 [31] for the soliton hierarchy (2.19),
which reads as follows:{

Φ11 = 1
α∂x −

2
α2 (∂u1∂

−1u3 + ∂u2∂
−1u4), Φ12 = − 2

α2 (∂u1∂
−1u4 − ∂u2∂

−1u3),

Φ13 = − 2
α2 (∂u1∂

−1u1 − ∂u2∂
−1u2), Φ14 = − 2

α2 (∂u1∂
−1u2 + ∂u2∂

−1u1);
(3.9){

Φ21 = 2
α2 (∂u1∂

−1u4 − ∂u2∂
−1u3), Φ22 = 1

α∂x −
2
α2 (∂u1∂

−1u3 + ∂u2∂
−1u4),

Φ23 = − 2
α2 (∂u1∂

−1u2 + ∂u2∂
−1u1), Φ24 = 2

α2 (∂u1∂
−1u1 − ∂u2∂

−1u2);
(3.10){

Φ31 = − 2
α2 (∂u3∂

−1u3 − ∂u4∂
−1u4), Φ32 = − 2

α2 (∂u3∂
−1u4 + ∂u4∂

−1u3),

Φ33 = − 1
α∂x −

2
α2 (∂u3∂

−1u1 + ∂u4∂
−1u2), Φ34 = − 2

α2 (∂u3∂
−1u2 − ∂u4∂

−1u1);
(3.11){

Φ41 = − 2
α2 (∂u3∂

−1u4 + ∂u4∂
−1u3), Φ42 = 2

α2 (∂u3∂
−1u3 − ∂u4∂

−1u4),

Φ43 = 2
α2 (∂u3∂

−1u2 − ∂u4∂
−1u1), Φ44 = − 1

α∂x −
2
α2 (∂u3∂

−1u1 + ∂u4∂
−1u2).

(3.12)

The hereditary property of Φ means [32] that it needs to satisfy

LΦXΦ = ΦLXΦ, (3.13)

where X is an arbitrary vector field and the Lie derivative LXΦ is defined by

(LXΦ)S = Φ[[X,S]]− [[X,ΦS]]. (3.14)

Note that an operator Ψ = Ψ(x, t, u, ux, · · · ) is a recursion operator of a given
evolution equation ut = X(u) if and only if Ψ satisfies

∂Ψ

∂t
+ LXΨ = 0. (3.15)
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It is easy to check that LX[0]Φ = 0, and based on this, we can compute that

LX[m]Φ = LΦX[m−1]Φ = ΦLX[m−1]Φ = · · · = ΦmLX[0]Φ = 0, m ≥ 1. (3.16)

Consequently, Φ is a common recursion operator for all models in the hierarchy
(2.19). There are also symbolic algorithms for computing recursion operators of
nonlinear partial differential equations directly (see, e.g., [33]).

With some direct analysis, we can further observe that J1 and J2 = ΦJ1 consti-
tute a Hamiltonian pair. Namely, an arbitrary linear combination J of J1 and J2

is again Hamiltonian, since it satisfies∫
(Z [1])TJ ′(u)[JZ [2]]Z [3] dx+ cycle(Z [1], Z [2], Z [3]) = 0, (3.17)

where Z [i]’s are arbitrary vector fields. Accordingly, the hierarchy (2.19) possesses
a bi-Hamiltonian structure [34]:

utm = X [m] = J1
δH[m]

δu
= J2

δH[m−1]

δu
, m ≥ 1. (3.18)

It then follows that the associated Hamiltonian functionals commute with each
other under the corresponding two Poisson brackets [7]:

{H[n1],H[n2]}J1 =

∫ (δH[n1]

δu

)T
J1
δH[n2]

δu
dx = 0, n1, n2 ≥ 0, (3.19)

and

{H[n1],H[n2]}J2 =

∫ (δH[n1]

δu

)T
J2
δH[n2]

δu
dx = 0, n1, n2 ≥ 0. (3.20)

The bi-Hamiltonian formulation also implies the hereditariness of the recursion
operator Φ.

To conclude, each model in the hierarchy (2.19) is Liouville integrable and pos-
sesses infinitely many commuting symmetries {X [n]}∞n=0 and conserved functionals
{H[n]}∞n=0. One particular illustrative integrable model is the system in (2.20),
which adds to the existing category of nonlinear combined Liouville integrable
Hamiltonian models with four components.

4. Concluding remarks. From a specific 4 × 4 matrix eigenvalue problem, we
have generated a hierarchy of four-component Liouville integrable models within
the zero curvature formulation. The success lies at defining a particular Laurent
series solution of the corresponding stationary zero curvature equation recursively.
The resulting integrable hierarchy possesses a hereditary recursion operator and a
bi-Hamiltonian structure, and thus it is Liouville integrable.

It would be very interesting to find what kind of mathematical structures of soli-
ton solutions there could exist in the obtained integrable models. Various powerful
and effective approaches are available for use, which include the Riemann-Hilbert
technique [36], the Darboux transformation [37, 38, 39], the Zakharov-Shabat dress-
ing method [40], and the determinant approach [41]. In addition to solitons, lump,
kink, breather and rogue wave solutions, particularly their interaction solutions
(see, e.g., [42]-[49]), are of much interest, and it is possible to compute them from
soliton solutions by conducting wave number reductions. Nonlocal reduced inte-
grable models have become another hot topic in the study of integrable models.
The key is to conduct nonlocal group reductions or similarity transformations for
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matrix eigenvalue problems (see, e.g., [50, 51, 52]). Solitons in the nonlocal case are
significantly important in mathematics as well as physics.

Integrable models are of great interest, and they appear in various areas of math-
ematical physics, including classical mechanics, quantum mechanics and statistical
mechanics. The mathematical solvability of those models provides a unique win-
dow into the underlying principles that govern the dynamics of complex nonlinear
physical systems.
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[36] S. Novikov, S. V. Manakov, L. P. Pitaevskǐi and V. E. Zakharov, Theory of Solitons: The

Inverse Scattering Method, Consultantn Bureau, New York, 1984.
[37] V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer-Verlag,

Berlin, 1991.
[38] X. Geng, R. Li and B. Xue, A vector general nonlinear Schrödinger equation with (m + n)

components, J. Nonlinear Sci., 30 (2020), 991-1013.

[39] W. X. Ma, Binary Darboux transformation of vector nonlocal reverse-time integrable NLS
equations, Chaos Solitons Fractals, 180 (2024), 114539.

[40] E. V. Doktorov and S. B. Leble, A Dressing Method in Mathematical Physics, Springer,
Dordrecht, 2007.

[41] T. Aktosun, T. Busse, F. Demontis and C. van der Mee, Symmetries for exact solutions to

the nonlinear Schrödinger equation, J. Phys. A: Math. Theoret., 43 (2010), 025202.

[42] L. Cheng, Y. Zhang and M.-J. Lin, Lax pair and lump solutions for the (2+1)-dimensional
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