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Let k be a nonnegative integer and ¢ a real number greater than or equal to 1. We present qualitative global behavior of solutions to

a rational nonlinear higher-order difference equation z
values z_j, z_j, 15+

n+1

1. Introduction

Difference equations have wide applications in biology,
computer science, digital signal processing, and economics.
A general solution structure exists for linear difference
equations [1]. However, in various situations of nonlinear
higher-order difference equations, solution properties can
only be observed by numerical simulation, and it is often
exceedingly difficult to give a full mathematical proof for the
properties predicted by numerical simulation and the con-
clusions formed on the basis of guesswork [2]. It is, therefore,
important to make qualitative analysis on nonlinear higher-
order difference equations, which is the topic of the current
study. There have been some related studies on rational
nonlinear difference equations in the literature (see, e.g., [3-
8]). Global asymptotic properties of spectral functions are
also crucial in determining algebro-geometric solutions of
soliton equations (see, e.g., [9, 10]) and scattering data in
matrix spectral problems (see, e.g., [11]).

An iterative algorithm to approximate a zero of a given
function f reads

xn—lf(xn) _xnf (xn—l)

I I

X1 =

= (c(z, + z,4) + (c = 1)z,2,)/ (2,2, + ¢), n=> 0, with positive initial
, 2> and show the global asymptotic stability of its positive equilibrium solution.

and an application of this to a quadratic function f(x) = x* -
a, a > 0, gives

n>0. )

Let k be a nonnegative integer and c a real number greater
than or equal to 1. We would like to consider a more general
rational nonlinear higher-order difference equation

ozt z, ) (- 1) z,2,

i 2,2,k +C ’

n>0, (3)

with positive initial values z_j, z_;,;,- - , 2y, which engender
positive solutions. We take a transformation

c
zZ, = —, nz _k: 4
"=y (4)
and then obtain another difference equation
ktcC
Py = ——ndnck n>0, 5)

Y+ Yok te=1

Obviously, the equilibrium solution of the rational nonlinear
difference equation (3), z = ¢, becomes the equilibrium
solution of the transformed difference equation (5), ¥ = 1.
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If we further take ¢ = 1, then we obtain the nonlinear
difference equation discussed in [6, 7]:

_ YuVn-k + 1

Vps1 = , n=0. (6)
H Yn Yn-k

Introducing x,, = v/ay, into (6) yields

X, Xyt a

X n=0, (7)

n+l X, + %X, 1 >
where a > 0. When k = 1, this gives the nonlinear difference
equation in (2). The equation (7) in the case of k = 2 was
studied in [5] and its closed-form solution was presented in
[6]. In the general case of k, the asymptotic stability of the
positive equilibrium solution X = 1 of the equation (7) was
proved in [7].

It is direct to see that the rational nonlinear higher-order
difference equation, defined by (3), possesses three equilibria:
z = —1,0,c. In this article, we would like to explore global
behavior of solutions to the rational nonlinear higher-order
difference equation (3), show the global asymptotic stability
of its positive equilibrium solution z = ¢, and present two
illustrative examples of positive solutions.

2. Global Behavior

2.1. Classification of Solutions. First of all, based on the
rational difference equation (3), one can have

(C B zn—k) (zn B C)

z,,—cC=——————= n>0, 8
s 2,2, +C ®
z, .z, +1)(c—z
Zp -2, = nk(n )( n)’ n=0, (9)
ZnZn_k+C
z(z,_+1)(c—2z,_
Zyel = Zpok = n (it 1) ”"), n>0.  (10)

an‘rl—k +C

Further from (9) and (10), we can easily derive the
following solution properties.

Theorem 1. If {z,}.° , is a solution to the rational nonlinear
difference equation (3), then one has

Zn+1 < Zn lfzn > 6

(11)
zn+1 > zn ifzn <6
Zpr1 < Zpk lfzn—k > 6

(12)
Zp1 > Zn-k lfzn—k <6

wheren > 0.

If k = 0, the rational difference equation (3) becomes a
first-order difference equation

2cz, +(c—1) zi
Zpel = T 5

, n>0. (13)
Z2+c
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Then for nn > 0, one has z,,,, < ¢, because —z” +2cz,, < c*. For
n>1,onehasz,,, >z, since (c-1)z,+c > z2,duetoz, < c.
Therefore, every solution z,, decays to ¢, when n — co.

Generally, there are three types of solutions to the rational
nonlinear higher-order difference equation (3).

Theorem 2. Let k > 1. If {z,}> _, is a solution to the rational
nonlinear higher-order difference equation (3), and then

(a) it is eventually equal to c, more precisely z,, = ¢c,n > m,
which occurs when z,, = c for some m > 0;

(b) it is eventually less than c, more precisely z,, < z,,,, < ¢,
n > m+k, which occurs when z,,,, 2, 1> > Zpei < Cfor some
m = —k; or

(c) it oscillates about c, possessing at most k consecutive
increasing terms less than ¢ and at most k + 1 consecutive
decreasing terms greater than c.

Proof. Equality (8) and property (11) directly tell that we have
three types of solutions to the rational nonlinear higher-order
difference equation (3).

The decreasing and increasing characteristics of oscilla-
tory solutions in the third solution situation (c) can be proved
as follows.

Suppose thatn;,#n, > 0 are two integers satisfyingn, < n,.
We express

Zn, = Zn = (an - Z”z_l) * (an_l - Z”z—z) T

(14)
+ (zn1+1 - an) =D,
where D can be written as
moly (c—z;)(z;+1
D= j k( 1) ( j )’ (15)
& Zizjtc

by (9).

If z, > ¢ for n; < n < n,, then each term in D is less than
zero, and so z,, < z,,dueto (14). If z, < cforn; <n < n,,
then each term in D is greater than zero,and so z,, > z,, , due
to (14). This completes the proof.

Note that based on (8), we can see that there is no solution
situation that a solution of (3) is eventually greater than c.

2.2. Global Asymptotic Stability. When k = 0, the equilibrium
solution z = ¢ of the first-order rational difference equation
(13) is globally asymptotically stable, since it is a globally
attractive equilibrium solution of a first-order difference
equation (see [12] for a general theory).

For a general k > 1, we can show the same global
asymptotic stability of the positive equilibrium solution
z = c of the rational nonlinear difference equation (3),
by establishing the local asymptotic stability and the global
attractivity, which imply the global asymptotic stability [2].
Instead, we establish a strong negative feedback property [13]
to guarantee the global asymptotic stability of z = ¢ (see [14]
for details on the strong negative feedback property).
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Theorem 3. The positive equilibrium solution z = ¢ of
the rational nonlinear higher-order difference equation (3) is
globally asymptotically stable.

Proof. Based on the rational nonlinear difference equation
(3), one can have

a = Zntl
_ (C - Zn—k) [(C - 1) ZpZy-k T CZp i T CZ] (16)

- >

Zn-k (ann—k + C)

n=0.

From this equality and the equality in (10), we can obtain

2
C
(Zn—k - zn+1) (Z B - Zn+l>
-

Zy (Zn—k + 1) (C - Zn—k)2 [(C - 1) ZpZp o T CZp g + Cz] (17)

2
Zn—k (ann—k + C)

n=0,

which leads to a strong negative feedback property:

62

O

- z,,ﬂ) <0, n>0, (18)
n-k

with equality for all » > 0 if and only if z, = ¢,n > —k.
It, therefore, follows from a stability theorem (Corollary 3
of [14]) that the equilibrium solution z = c¢ of the rational
nonlinear difference equation (3) is globally asymptotically
stable. Thus, the proof is finished. O

The above theorems with ¢ = 1 gives the results in [4]
(k = 1), [5] (k = 2) and [7] (a general k). There have also been
similar studies on polynomial difference equations (see, for
example, [15]) and other studies on positive rational function
solutions, called lumps, to partial differential equations (see,
e.g., [16]).

2.3. lllustrative Examples and an Open Question. To illustrate
the global properties stated in Theorems 2 and 3, here we
present two illustrative examples associated with two special
cases:

3
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(19)

in Figure 1. From the plot pictures, we see that the conver-
gence is achieved very fast in both cases.

Finally, let k > 1. For an oscillatory solution {z,},”_, of
the rational nonlinear difference equation (3), we define

N, ={nlz,>cand n>0},
(20)

N, ={nlz,<cand n>0}.

Since {z,},-_ is oscillatory, Theorem 2 guarantees that both
N, and N; have infinitely many numbers. A basic open
question that we are very interested in is if z, is decreasing
on N, and increasing on N;. We point out that through the
above two examples, we failed to find any counterexample to
this statement, but found that two cases could occur: either
Z, 1,244 < Cbutz, >corz, ;,z,,, >cbutz, <cforsome
n>1.

Data Availability

The data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This study was in part supported by NNSFC under Grants
11371326, 11371086, and 11571079, NSF under Grant DMS-
1664561, and the distinguished professorships of King Abdu-
laziz University, Saudi Arabia and North-West University,
South Africa.



1.7

1.6

N
g

1.4 -

1.3 4

1.1 -

Complexity

2.2 4

2.0

1.8

1.6

FIGURE 1: Profiles of {z,}°_, with ¢ = 3/2, k = 3 (left) and ¢ = 2, k = 5 (right).
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