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Let 𝑘 be a nonnegative integer and 𝑐 a real number greater than or equal to 1. We present qualitative global behavior of solutions to
a rational nonlinear higher-order difference equation 𝑧𝑛+1 = (𝑐(𝑧𝑛 + 𝑧𝑛−𝑘) + (𝑐 − 1)𝑧𝑛𝑧𝑛−𝑘)/(𝑧𝑛𝑧𝑛−𝑘 + 𝑐), 𝑛 ≥ 0, with positive initial
values 𝑧−𝑘, 𝑧−𝑘+1 , ⋅ ⋅ ⋅ , 𝑧0, and show the global asymptotic stability of its positive equilibrium solution.

1. Introduction

Difference equations have wide applications in biology,
computer science, digital signal processing, and economics.
A general solution structure exists for linear difference
equations [1]. However, in various situations of nonlinear
higher-order difference equations, solution properties can
only be observed by numerical simulation, and it is o	en
exceedingly difficult to give a full mathematical proof for the
properties predicted by numerical simulation and the con-
clusions formed on the basis of guesswork [2]. It is, therefore,
important to make qualitative analysis on nonlinear higher-
order difference equations, which is the topic of the current
study. �ere have been some related studies on rational
nonlinear difference equations in the literature (see, e.g., [3–
8]). Global asymptotic properties of spectral functions are
also crucial in determining algebro-geometric solutions of
soliton equations (see, e.g., [9, 10]) and scattering data in
matrix spectral problems (see, e.g., [11]).

An iterative algorithm to approximate a zero of a given
function 𝑓 reads

𝑥𝑛+1 = 𝑥𝑛−1𝑓 (𝑥𝑛) − 𝑥𝑛𝑓 (𝑥𝑛−1)𝑓 (𝑥𝑛) − 𝑓 (𝑥𝑛−1) , 𝑛 ≥ 0, (1)

and an application of this to a quadratic function 𝑓(𝑥) = 𝑥2 −𝑎, 𝑎 > 0, gives
𝑥𝑛+1 = 𝑥𝑛𝑥𝑛−1 + 𝑎𝑥𝑛 + 𝑥𝑛−1 , 𝑛 ≥ 0. (2)

Let 𝑘 be a nonnegative integer and 𝑐 a real number greater
than or equal to 1. We would like to consider a more general
rational nonlinear higher-order difference equation

𝑧𝑛+1 = 𝑐 (𝑧𝑛 + 𝑧𝑛−𝑘) + (𝑐 − 1) 𝑧𝑛𝑧𝑛−𝑘𝑧𝑛𝑧𝑛−𝑘 + 𝑐 , 𝑛 ≥ 0, (3)

with positive initial values 𝑧−𝑘, 𝑧−𝑘+1, ⋅ ⋅ ⋅ , 𝑧0, which engender
positive solutions. We take a transformation

𝑧𝑛 = 𝑐
𝑦𝑛 , 𝑛 ≥ −𝑘, (4)

and then obtain another difference equation

𝑦𝑛+1 = 𝑦𝑛𝑦𝑛−𝑘 + 𝑐𝑦𝑛 + 𝑦𝑛−𝑘 + 𝑐 − 1 , 𝑛 ≥ 0, (5)

Obviously, the equilibrium solution of the rational nonlinear
difference equation (3), 𝑧 = 𝑐, becomes the equilibrium
solution of the transformed difference equation (5), 𝑦 = 1.
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If we further take 𝑐 = 1, then we obtain the nonlinear
difference equation discussed in [6, 7]:

𝑦𝑛+1 = 𝑦𝑛𝑦𝑛−𝑘 + 1𝑦𝑛 + 𝑦𝑛−𝑘 , 𝑛 ≥ 0. (6)

Introducing 𝑥𝑛 = √𝑎𝑦𝑛 into (6) yields
𝑥𝑛+1 = 𝑥𝑛𝑥𝑛−𝑘 + 𝑎𝑥𝑛 + 𝑥𝑛−𝑘 , 𝑛 ≥ 0, (7)

where 𝑎 > 0. When 𝑘 = 1, this gives the nonlinear difference
equation in (2). �e equation (7) in the case of 𝑘 = 2 was
studied in [5] and its closed-form solution was presented in
[6]. In the general case of 𝑘, the asymptotic stability of the
positive equilibrium solution 𝑥 = 1 of the equation (7) was
proved in [7].

It is direct to see that the rational nonlinear higher-order
difference equation, defined by (3), possesses three equilibria:𝑧 = −1, 0, 𝑐. In this article, we would like to explore global
behavior of solutions to the rational nonlinear higher-order
difference equation (3), show the global asymptotic stability
of its positive equilibrium solution 𝑧 = 𝑐, and present two
illustrative examples of positive solutions.

2. Global Behavior

2.1. Classification of Solutions. First of all, based on the
rational difference equation (3), one can have

𝑧𝑛+1 − 𝑐 = (𝑐 − 𝑧𝑛−𝑘) (𝑧𝑛 − 𝑐)𝑧𝑛𝑧𝑛−𝑘 + 𝑐 , 𝑛 ≥ 0, (8)

𝑧𝑛+1 − 𝑧𝑛 = 𝑧𝑛−𝑘 (𝑧𝑛 + 1) (𝑐 − 𝑧𝑛)𝑧𝑛𝑧𝑛−𝑘 + 𝑐 , 𝑛 ≥ 0, (9)

𝑧𝑛+1 − 𝑧𝑛−𝑘 = 𝑧𝑛 (𝑧𝑛−𝑘 + 1) (𝑐 − 𝑧𝑛−𝑘)𝑧𝑛𝑧𝑛−𝑘 + 𝑐 , 𝑛 ≥ 0. (10)

Further from (9) and (10), we can easily derive the
following solution properties.

Theorem 1. If {𝑧𝑛}∞𝑛=−𝑘 is a solution to the rational nonlinear
difference equation (3), then one has

𝑧𝑛+1 < 𝑧𝑛 if 𝑧𝑛 > 𝑐,
𝑧𝑛+1 > 𝑧𝑛 if 𝑧𝑛 < 𝑐, (11)

𝑧𝑛+1 < 𝑧𝑛−𝑘 if 𝑧𝑛−𝑘 > 𝑐,
𝑧𝑛+1 > 𝑧𝑛−𝑘 if 𝑧𝑛−𝑘 < 𝑐, (12)

where 𝑛 ≥ 0.
If 𝑘 = 0, the rational difference equation (3) becomes a

first-order difference equation

𝑧𝑛+1 = 2𝑐𝑧𝑛 + (𝑐 − 1) 𝑧2𝑛𝑧2𝑛 + 𝑐 , 𝑛 ≥ 0. (13)

�en for 𝑛 ≥ 0, one has 𝑧𝑛+1 ≤ 𝑐, because −𝑧2𝑛 +2𝑐𝑧𝑛 ≤ 𝑐2. For𝑛 ≥ 1, one has 𝑧𝑛+1 ≥ 𝑧𝑛, since (𝑐−1)𝑧𝑛+𝑐 ≥ 𝑧2𝑛, due to 𝑧𝑛 ≤ 𝑐.
�erefore, every solution 𝑧𝑛 decays to 𝑐, when 𝑛 󳨀→ ∞.

Generally, there are three types of solutions to the rational
nonlinear higher-order difference equation (3).

Theorem 2. Let 𝑘 ≥ 1. If {𝑧𝑛}∞𝑛=−𝑘 is a solution to the rational
nonlinear higher-order difference equation (3), and then

(a) it is eventually equal to 𝑐, more precisely 𝑧𝑛 = 𝑐, 𝑛 ≥ 𝑚,
which occurs when 𝑧𝑚 = 𝑐 for some 𝑚 ≥ 0;

(b) it is eventually less than 𝑐, more precisely 𝑧𝑛 < 𝑧𝑛+1 < 𝑐,𝑛 ≥ 𝑚+𝑘, which occurs when 𝑧𝑚, 𝑧𝑚+1, ⋅ ⋅ ⋅ , 𝑧𝑚+𝑘 < 𝑐 for some𝑚 ≥ −𝑘; or
(c) it oscillates about 𝑐, possessing at most 𝑘 consecutive

increasing terms less than 𝑐 and at most 𝑘 + 1 consecutive
decreasing terms greater than 𝑐.
Proof. Equality (8) and property (11) directly tell that we have
three types of solutions to the rational nonlinear higher-order
difference equation (3).

�e decreasing and increasing characteristics of oscilla-
tory solutions in the third solution situation (c) can be proved
as follows.

Suppose that 𝑛1 , 𝑛2 ≥ 0 are two integers satisfying 𝑛1 < 𝑛2.
We express

𝑧𝑛2 − 𝑧𝑛1 = (𝑧𝑛2 − 𝑧𝑛2−1) + (𝑧𝑛2−1 − 𝑧𝑛2−2) + ⋅ ⋅ ⋅
+ (𝑧𝑛1+1 − 𝑧𝑛1) = 𝐷,

(14)

where𝐷 can be written as

𝐷 = 𝑛2−1∑
𝑗=𝑛1

𝑧𝑗−𝑘 (𝑐 − 𝑧𝑗) (𝑧𝑗 + 1)
𝑧𝑗𝑧𝑗−𝑘 + 𝑐 , (15)

by (9).
If 𝑧𝑛 > 𝑐 for 𝑛1 ≤ 𝑛 ≤ 𝑛2, then each term in 𝐷 is less than

zero, and so 𝑧𝑛2 < 𝑧𝑛1 , due to (14). If 𝑧𝑛 < 𝑐 for 𝑛1 ≤ 𝑛 ≤ 𝑛2,
then each term in𝐷 is greater than zero, and so 𝑧𝑛2 > 𝑧𝑛1 , due
to (14). �is completes the proof.

Note that based on (8), we can see that there is no solution
situation that a solution of (3) is eventually greater than 𝑐.
2.2. Global Asymptotic Stability. When 𝑘 = 0, the equilibrium
solution 𝑧 = 𝑐 of the first-order rational difference equation
(13) is globally asymptotically stable, since it is a globally
attractive equilibrium solution of a first-order difference
equation (see [12] for a general theory).

For a general 𝑘 ≥ 1, we can show the same global
asymptotic stability of the positive equilibrium solution𝑧 = 𝑐 of the rational nonlinear difference equation (3),
by establishing the local asymptotic stability and the global
attractivity, which imply the global asymptotic stability [2].
Instead, we establish a strong negative feedback property [13]
to guarantee the global asymptotic stability of 𝑧 = 𝑐 (see [14]
for details on the strong negative feedback property).
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Theorem 3. 
e positive equilibrium solution 𝑧 = 𝑐 of
the rational nonlinear higher-order difference equation (3) is
globally asymptotically stable.

Proof. Based on the rational nonlinear difference equation
(3), one can have

𝑐2
𝑧𝑛−𝑘 − 𝑧𝑛+1

= (𝑐 − 𝑧𝑛−𝑘) [(𝑐 − 1) 𝑧𝑛𝑧𝑛−𝑘 + 𝑐𝑧𝑛−𝑘 + 𝑐2]
𝑧𝑛−𝑘 (𝑧𝑛𝑧𝑛−𝑘 + 𝑐) ,

𝑛 ≥ 0.

(16)

From this equality and the equality in (10), we can obtain

(𝑧𝑛−𝑘 − 𝑧𝑛+1) ( 𝑐2
𝑧𝑛−𝑘 − 𝑧𝑛+1)

= −𝑧𝑛 (𝑧𝑛−𝑘 + 1) (𝑐 − 𝑧𝑛−𝑘)
2 [(𝑐 − 1) 𝑧𝑛𝑧𝑛−𝑘 + 𝑐𝑧𝑛−𝑘 + 𝑐2]

𝑧𝑛−𝑘 (𝑧𝑛𝑧𝑛−𝑘 + 𝑐)2 ,
𝑛 ≥ 0,

(17)

which leads to a strong negative feedback property:

(𝑧𝑛−𝑘 − 𝑧𝑛+1)( 𝑐2
𝑧𝑛−𝑘 − 𝑧𝑛+1) ≤ 0, 𝑛 ≥ 0, (18)

with equality for all 𝑛 ≥ 0 if and only if 𝑧𝑛 = 𝑐, 𝑛 ≥ −𝑘.
It, therefore, follows from a stability theorem (Corollary 3
of [14]) that the equilibrium solution 𝑧 = 𝑐 of the rational
nonlinear difference equation (3) is globally asymptotically
stable. �us, the proof is finished.

�e above theorems with 𝑐 = 1 gives the results in [4]
(𝑘 = 1), [5] (𝑘 = 2) and [7] (a general 𝑘).�ere have also been
similar studies on polynomial difference equations (see, for
example, [15]) and other studies on positive rational function
solutions, called lumps, to partial differential equations (see,
e.g., [16]).

2.3. Illustrative Examples and anOpen Question. To illustrate
the global properties stated in �eorems 2 and 3, here we
present two illustrative examples associated with two special
cases:

𝑐 = 3
2 ,

𝑘 = 3,
𝑧−3 = 6

5 ,
𝑧−2 = 16

9 ,
𝑧−1 = 10

7 ,

𝑧0 = 1;
𝑐 = 2,
𝑘 = 5,

𝑧−5 = 5
4 ,

𝑧−4 = 7
3 ,

𝑧−3 = 5
3 ,

𝑧−2 = 9
4 ,

𝑧−1 = 3
2 ,

𝑧0 = 7
3 ;

(19)

in Figure 1. From the plot pictures, we see that the conver-
gence is achieved very fast in both cases.

Finally, let 𝑘 ≥ 1. For an oscillatory solution {𝑧𝑛}∞𝑛=−𝑘 of
the rational nonlinear difference equation (3), we define

𝑁𝑔 = {𝑛 | 𝑧𝑛 > 𝑐 and 𝑛 ≥ 0} ,
𝑁𝑙 = {𝑛 | 𝑧𝑛 < 𝑐 and 𝑛 ≥ 0} . (20)

Since {𝑧𝑛}∞𝑛=−𝑘 is oscillatory, �eorem 2 guarantees that both𝑁𝑔 and 𝑁𝑙 have infinitely many numbers. A basic open
question that we are very interested in is if 𝑧𝑛 is decreasing
on 𝑁𝑔 and increasing on 𝑁𝑙. We point out that through the
above two examples, we failed to find any counterexample to
this statement, but found that two cases could occur: either𝑧𝑛−1, 𝑧𝑛+1 < 𝑐 but 𝑧𝑛 > 𝑐 or 𝑧𝑛−1, 𝑧𝑛+1 > 𝑐 but 𝑧𝑛 < 𝑐 for some𝑛 > 1.
Data Availability

�e data used to support the findings of this study are
included within the article.

Conflicts of Interest

�e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

�is study was in part supported by NNSFC under Grants
11371326, 11371086, and 11571079, NSF under Grant DMS-
1664561, and the distinguished professorships of King Abdu-
laziz University, Saudi Arabia and North-West University,
South Africa.



4 Complexity

1.7

1.6

1.5

1.4

1.3

1.2

1.1

−3 −1 1 3 5 7 9 11

2.2

2.0

1.8

1.6

1.4

−3−5 −1 1 3 5 7 9 11

z

n

Figure 1: Profiles of {𝑧𝑛}∞𝑛=−𝑘 with 𝑐 = 3/2, 𝑘 = 3 (le	) and 𝑐 = 2, 𝑘 = 5 (right).
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