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Abstract
This paper proposes an innovative form of group reduction or similarity transformation
involving off-diagonal block matrices. The proposed method is applied to the Ablowitz–Kaup–
Newell–Segur (AKNS) matrix spectral problem, leading to the generation of reduced matrix
AKNS integrable hierarchies. As a result, a variety of reduced multiple-component integrable
nonlinear Schrödinger and modified Korteweg–de Vries models are derived from the analysis of
the reduced AKNS matrix spectral problem.

Keywords: Lax pair, integrable model, zero-curvature equation, soliton hierarchy, group
reduction

1. Introduction

Hamiltonian hierarchies of integrable structures are con-
structed from the Lax pair formulation of matrix spectral
problems [1], with the initial step being the selection of an
appropriate matrix spatial spectral problem. The inverse
scattering transform has emerged as a powerful technique for
solving initial value problems in nonlinear equations, espe-
cially in the context of nonlinear integrable models [2, 3]. It is
well-established that key integrable models, for example, the
nonlinear Schrödinger (NLS) and modified Korteweg–de
Vries (mKdV) integrable structures, can be derived from the
Ablowitz–Kaup–Newell–Segur (AKNS) matrix spectral pro-
blem through an individual group constraint [4–6]. Further-
more, the application of multiple group constraints allows for
the generation of a broader family of integrable structures
with specific properties [7]. A significant challenge arises in
ensuring compatibility between the various reductions
imposed on the system and the resulting potentials. These
constraints introduce additional conditions that must be

satisfied while preserving the invariance of the corresponding
zero-curvature equations under the imposed reductions [8].

In recent years, group constraints have been increasingly
applied as effective tools in the study of integrable structures. In
particular, nonlocal integrable equations exhibiting reflection-
type symmetries have emerged through such methods [9, 10]. A
detailed taxonomy of integrable structures of lower order asso-
ciated with the AKNS matrix spectral problem has identified
three types of nonlocal NLS equations and two types of nonlocal
mKdV equations [11]. Alongside these developments, various
effective techniques have been established for analyzing reduced
novel integrable structures, especially in constructing soliton
solutions and formulating their associated Riemann–Hilbert
problems. A nonlinear analog of the Fourier transform, known as
the inverse scattering transform, has been developed and further
extended to address initial value problems associated with non-
local integrable structures (see, e.g. [12–14]). Additional power-
ful methods include Darboux and Bäcklund transformations, the
Riemann–Hilbert approach and the Hirota bilinear method, all of
which have been successfully employed in the study of nonlocal
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integrable models. Furthermore, the broader mathematical
framework of integrable structures has been significantly gen-
eralized to incorporate various types of nonlocal scenarios (see
[11, 15–18]).

In this paper, we introduce a novel form of group reduction,
or similarity transformation, that leads to new sorts of reduced
integrable structures. The central contribution lies in formulating
a distinct similarity transformation based on off-diagonal block
matrix structures. To establish the foundation for our analysis,
section 2 revisits the matrix AKNS spectral problems and their
corresponding hierarchies of integrable structures. We then
present a group reduction or similarity transformation that gives
rise to reduced matrix NLS and mKdV integrable hierarchies,
with particular attention to the matrix NLS and mKdV systems.
Section 3 provides four illustrative examples, each employing
specific pairs of submatrices to define the reduction. These case
studies underscore the variety of reduced spectral problems and
the nonlinear integrable structures that arise from them. Lastly,
we conclude with a summary of the main results and their
implications.

2. Deriving matrix integrable models from group
reduction

2.1. The AKNS integrable hierarchies revisited

Let m, n be two arbitrarily given natural numbers. We
introduce two matrix potentials p and q:

( ) ( ) ( ) ( ) ( )= = = =´ ´p p x t p q q x t q, , , , 2.1jk m n kj n m

and let the dependent variable vector, building from p and q,
be denoted by u. Let r� 0 be arbitrarily given. The associated
standard matrix AKNS spectral problems are described as
follows:

( )[ ]f f f f- = - =U Vi , i , 2.2x t
r

where the Lax pairs are determined by

In the above Lax pairs, λ denotes the spectral parameter, Ik is
the identity matrix of size k, α1, α2 and β1, β2 are two sets of
distinct constants, each chosen arbitrarily, Q[0] is the zero
matrix of order m+ n, and

( )[ ]
[ ] [ ]

[ ] [ ]å ål l= =- -

 
W W a b

c d
, 2.4

s

s s

s

s
s s

s s
0 0

⎡
⎣

⎤
⎦

solves the stationary zero-curvature equation

[ ] ( )+ =W W Ui , 0, 2.5x

provided with the initial selection W[0] = Ω. This formal
series solution plays a key role in generating integrable
hierarchies (see, e.g. [19, 20]).

A common key object are the zero-curvature conditions:

[ ] ( )[ ] [ ]- + = U V U V ri , 0, 0, 2.6t x
r r

which are the compatibility conditions of the two matrix
spectral problems in equation (2.2). Together, they produce a
matrix AKNS hierarchy of integrable structures:

( )[ ] [ ]a a= = -+ + p b q c ri , i , 0, 2.7t
r

t
r1 1

where α = α1 − α2. In the basic case where m and n each
equal one, the construction reduces to the integrable hierarchy
characterized by two scalar dependent variables [21]. An
integrable characteristic is that the above class of matrix
models possesses a bi-Hamiltonian formulation, along with
infinitely many symmetries and conserved quantities (see, e.g.
[22–24]).

The integrable models in equation (2.7) naturally sepa-
rate into two classes: those corresponding to even–even
values of r and those to odd values. These form the matrix
hierarchies associated with the NLS and mKdV integrable
structures, respectively. The two first nonlinear (which cor-
responds to the case when s is equal to one) integrable
structures in the resulted matrix NLS and mKdV integrable
sequences present the matrix NLS and mKdV models:

( )
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b
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i 2 ,
2.8
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3

3

⎧
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⎩

respectively, where β = β1 − β2. The corresponding Lax

matrices V[2] and V[3] are given by
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where Im,n = diag(Im, − In). Illustrative scenarios leading to
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higher-order matrix integrable structures can likewise be
developed (see, for example, [25]).

The following analysis addresses a specific sort of the
above matrix spectral problems characterized by a particular
form of the potential matrices. Assume that

( )a a b b= = - = = - =m n, 1, 2, 2.111 2 1 2

where n is an arbitrary natural number. That is, we restrict our
attention to integrable reductions of the above matrix NLS
and mKdV models under the condition m= n, which yields
two square matrix potentials p and q of the same dimension.

2.2. Integrable reductions via similarity transformations

We propose a novel sort of group constraint by considering
two constant invertible nth order matrix blocks, denoted by
Δ1 and Δ2, and define an invertible constant square matrix of
order 2n as follows:

( )D =
D

D
0

0
. 2.121

2

⎡
⎣⎢

⎤
⎦⎥

Here, Δ is a block matrix with off-diagonal elements. Noting
equation (2.11) and

( )D =
D

D
-

-

-

0

0
. 2.131 2

1

1
1

⎡

⎣
⎢

⎤

⎦
⎥

The matrix Δ is found to satisfy key similarity transformation
properties:

( )DLD + L = DWD + W =- -0, 0. 2.141 1

With these structures established, we proceed to intro-
duce the following group constraint, referred to as a group
reduction or similarity transformation:

( ) ( ( )) ( ) ( )l l lD D = - = --U U U . 2.151 T T

Here, AT denotes the transposed matrix. We will demonstrate
that this group reduction or similarity transformation will
uphold the invariance property of the original zero-curvature
equations. Given the specific structure of the spectral matrix
U, the group reduction or similarity transformation imposes
the following constraint on P:

( )D D = --P P . 2.161 T

As a result of this reduction, the matrix potentials p and q
need to satisfy:

( )= -D D = -D D- -p p q q, . 2.17T
2 1

1 T
1 2

1

In summary, the group reduction or similarity transfor-
mation given by equation (2.15) produces a sort of reduced
spectral problems:

( )f f
l

l
- = =

-
U U

I p
q I

i , , 2.18x
n

n

⎡
⎣⎢

⎤
⎦⎥

where p and q are constrained as stated in equation (2.17).

2.3. Matrix AKNS integrable hierarchies arising from group
reduction

Let us examine how the imposed group reduction or similarity
transformation in equation (2.15) affect the Laurent series
matrix W determined by equation (2.4), given the initial data

( )[ ] = W =
-

W
I

I
2 0
0 2

. 2.19n

n

0 ⎡
⎣

⎤
⎦

First, we can readily check

( ) ∣ ( ( )) ∣ ( )∣
( )

l l lD D = - = -l l l
-

=¥ =¥ =¥W W W .
2.20

1 T T

Consequently, the uniqueness of solutions to the stationary
zero-curvature equation implies that

( ) ( ( )) ( ) ( )l l lD D = - = --W W W . 2.211 T T

Furthermore, for all r� 0, we can show that

( ) ( ( )) ( ) ( )[ ] [ ] [ ]l l lD D = - = --V V V . 2.22r r r1 T T

As a consequence of the group reduction or similarity trans-
formation in equation (2.15), it is found that

( [ ])( )
( ( )) ( ( )) [ ( ) ( )]

(( [ ])( ))
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[ ] [ ]

[ ] [ ]

[ ] [ ]

l
l l l l
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D - + D
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i ,

i , ,

2.23

t x
r r

t
r

x
T r

t x
r r

1

T T T

T

and therefore, the matrix AKNS integrable models in
equation (2.7) form a reduced hierarchy of integrable models:

∣ ∣ ( )[ ]
( )

[ ]
( )= = -+ + p b q c r2i , 2i , 0. 2.24t

r
t

r1
2.17

1
2.17

The matrix spectral problems, comprising (2.18) and

∣ ( )[ ]
( )f f- = V ri , 0, 2.25t

r
2.17

present a corresponding pair of matrix spectral problems
associated with every member of the reduced hierarchy of
integrable structures given in equation (2.24).

The integrability and mutual commutativity of the
reduced models in each hierarchy stem from the underlying
algebraic composition of the pertinent Lax matrix algebras
(see, e.g. [26]). We emphasize that the two invertible square
matrices, Δ1 and Δ2, are independently and arbitrarily
selected. Once Δ1 and Δ2 are appropriately chosen, various
corresponding hierarchies of reduced integrable models can
be generated. It is also important to mention that integrable
NLS- and mKdV-type models can be derived in a similar
manner, based on symmetric spaces, which are special
reductions of the general linear algebra (see, e.g. [27, 28]).

3. Case studies

We proceed in this section to exemplify the general frame-
work through four specific cases, each yielding reduced
matrix AKNS spectral problems and associated NLS and
mKdV integrable structures. We consider eight distinct

3
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combinations of the parameters, assuming that:

( )s d g=  =  = 1, 1, 1, 3.1

which results in eight possible scenarios to explore.
Case Study 3.a: We begin our analysis with the case in which n is equal to two. We select the following specific values

for the pair of matrices:

( )
d

dD = D = -
-

0 1
0

, 0
1 0

. 3.21 2⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

Then, the group reduction or similarity transformation in equation (2.15) yields

( )

( )

l
l

l

d d

= =
-

= =

U U u
I p
q I

p
p p

p p q
q q

q q

,

with , , 3.3

2

2
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3 2

⎡
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⎤
⎦⎥

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

where ( )=u p p p q q q, , , , ,1 2 3 1 2 3
T. As a result, the corresponding reduced novel integrable models are formulated as:

( )

( )
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d

d

d
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3.5
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2
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2
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⎧
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⎧
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⎩
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respectively.
Case Study 3.b: We now examine the case with n being two and set the pair of matrices to the following specific values:

( )s
d s d

D = D = -
- -

1
0

, 1 0 . 3.81 2⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

Then, the group reduction or similarity transformation in equation (2.15) leads to
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⎤
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where u is a six-dimensional vector defined as ( )=u p p p q q q, , , , ,1 2 3 1 2 3
T. Furthermore, the corresponding reduced matrix

NLS and mKdV equations take the following form:

[ ( ) ]

[ ( ) ( )]

[ ( ) ]

( )

s d d

d d s s s

d s

= + + + +

= + + - + + +

= + - + + +

p p p q q p p q p q

p p p q p p q q p p q p p q p q

p p p q q p p q p p q p p q

i 2 2 ,

i 2 2 ,

i 2 ,

3.10

t xx

t xx

t xx

1, 1, 1
2

2 3 1 3 3 3
2

1

2, 2, 3
2

2 2 3 3 1 1 3 2 2 1 3 2 1

3, 3, 3
2

3 1 1 2 3 1 3 2 2 3 1

⎧

⎨
⎪

⎩⎪

4

Commun. Theor. Phys. 78 (2026) 015001 W-X Ma



[( ) ]

[ ( ) ( ) ]

[( ) ]

( )

s d d

s d s d s

s d

- = + - + +

- = + + + - + -

- = + + + + +

q q p p q p q q p q

q q p q p p q q p q q p q q q

q p p p q p q q p q q p q q

i 2 2 ,

i 2 2 ,

i 2 ;

3.11

t xx

t xx

t xx

1, 1, 2 3 1
2

3 1 3 1 3
2

2, 2, 1 2
2

1 3 2 3 3 1 2 2 3 1 3

3, 3, 1 3 3
2

1 2 3 2 1 3 3 1 2

⎧

⎨
⎪

⎩⎪

and

[( ) ( ) ]

[ ( ) ( )
( ) ]

[( ) ( )
( ) ]

( )

s d d

s s s d

s s d d

s d

= - - + + + +

= - - + + + - +

+ - + +

= - - + + +

+ + - +

p p p q p q p q p p q p q p

p p p q p q p p q p q p q p q p

p q p q p q p q p

p p p q p q p p q p q p

p q p q p q p q p

3 ,

2 2

2 2 ,

2 2 ,

3.12

t xxx x x

t xxx x x

x

t xxx x x

x

1,
1

2 1, 1 2 1 3 3 3 1, 1 3 3 1 3,

2,
1

2 2,
3

2 2 3 3 2 1, 1 3 2 1 3 1 3 3 2,

1 2 2 1 2 3 3 2 3,

3,
1

2 3,
3

2 2 3 3 2 1, 1 3 3 1 2,

1 2 2 1 3 1 3 3 3,

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

[( ) ( ) ]

[( ) ( )
( ) ]

[( ) ( )
( ) ]

( )

s d d

s s d s

s s d d

s d

= - - - + + +

= - - + - + - +

+ - + +

= - - + + +

+ + + +

q q p q p q p q q p q p q q

q q p q p q p q p q q p q p q q

p q p q p q p q q

q q p q p q q p q p q q

p q p q p q p q q

3 ,

2 2

2 2 ,

2 2 ;

3.13

t xxx x x

t xxx x x

x

t xxx x x

x

1,
1

2 1, 2 2 3 2 3 3 2, 1 3 3 2 3,

2,
1

2 2,
3

2 1 1 1 3 3 2 3 3 1, 2 3 3 1 2,

1 1 2 2 2 3 3 1 3,

3,
1

2 3,
3

2 1 3 3 2 1, 2 3 3 1 2,

1 1 1 3 2 2 3 3 3,

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

respectively.
Case Study 3.c: In the case n= 3, we adopt the following pair of matrix selections:
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where u is again the six-dimensional vector given by ( )=u p p p q q q, , , , ,1 2 3 1 2 3
T. The system of equations for n= 3 exhibits

interwoven interaction mechanisms between the six components of the potential matrix, encompassing nonlinear effects as well
as differential operators. These nontrivial coupling mechanisms capture the structural features of the reduced linear eigenvalue
problems under consideration, along with the corresponding NLS and mKdV integrable structures. The corresponding reduced
matrix NLS and mKdV integrable structures are determined by:

( )
( )
( )

( )
sd sg dg
sd sg dg
sd sg dg

= - + +
= - + +
= - + +

p p p p q p q p q

p p p p q p q p q

p p p p q p q p q

i 2 ,

i 2 ,

i 2 ,

3.16
t xx

t xx

t xx

1, 1, 1 1 1 2 2 3 3

2, 2, 2 1 1 2 2 3 3

3, 3, 3 1 1 2 2 3 3

⎧

⎨
⎩

( )
( )
( )

( )
sd sg dg
sd sg dg
sd sg dg

- = - + +
- = - + +
- = - + +

q q q p q p q p q

q q q p q p q p q

q p q p q p q p q

i 2 ,

i 2 ,

i 2 ;

3.17
t xx

t xx

t xx

1, 1, 1 1 1 2 2 3 3

2, 2, 2 1 1 2 2 3 3

3, 3, 3 1 1 2 2 3 3

⎧

⎨
⎩
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and

[( ) ]

[ ( ) ]

[ ( ) ]

( )

sd sg dg sg dg

sd sd sg dg dg

sd sg sd sg dg

= - + + + + +

= - + + + + +

= - + + + + +

p p p q p q p q p p q p p q p

p p p q p p q p q p q p p q p

p p p q p p q p p q p q p q p

2 ,

2 ,

2 ,

3.18

t xxx x x x

t xxx x x x

t xxx x x x

1,
1

2 1,
3

2 1 1 2 2 3 3 1, 1 2 2, 1 3 3,

2,
1

2 2,
3

2 2 1 1, 1 1 2 2 3 3 2, 2 3 3,

3,
1

2 3,
3

2 3 1 1, 3 2 2, 1 1 2 2 3 3 3,

⎧

⎨
⎪

⎩
⎪

[( ) ]

[ ( ) ]

[ ( ) ]

( )

sd sg dg sg dg

sd sd sg dg dg

sd sg sd sg dg

= - + + + + +

= - + + + + +

= - + + + + +

q q p q p q p q q p q q p q q

q q p q q p q p q p q q p q q

q q p q q p q q p q p q p q q

2 ,

2 ,

2 ;

3.19

t xxx x x x

t xxx x x x

t xxx x x x

1,
1

2 1,
3

2 1 1 2 2 3 3 1, 2 1 2, 3 1 3,

2,
1

2 2,
3

2 1 2 1, 1 1 2 2 3 3 2, 3 2 3,

3,
1

2 3,
3

2 1 3 1, 2 3 2, 1 1 2 2 3 3 3,

⎧

⎨
⎪

⎩
⎪

respectively.
Case Study 3.d: For n= 3, let us consider another pair of matrix choices:

( )
g

d
s

s
d

g
D = D =

0 0
0 0

0 0
,

0 0
0 0

0 0
. 3.201 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

In this case, the group reduction or similarity transformation in equation (2.15) generates

( ) ( )l
l

l
dg

sd sg
sd

dg sg
= =

-
= -

- -
= -

- -
U U u

I p
q I

p

p p

p p

p p
q

q q

q q

q q
, with

0

0

0
,

0

0

0
, 3.213

3

2 1

3 1

3 2

2 1

3 1

3 2

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

where ( )=u p p p q q q, , , , ,1 2 3 1 2 3
T. Note that p and q differ slightly from each other due to the distinction between Δ1 and Δ2.

This shows that by choosing a structurally different set of matrices, interesting nonlinear interactions arises in the reduced
AKNS spectral matrix, as well as in the corresponding NLS and mKdV equations. While the overall structure of the equations
is analogous to that of Example 3.c, significant differences appear in the nonlinear interaction terms, attributed to the variations
in the matrices Δ1 and Δ2. The novel reduced matrix integrable models are therefore expressed as follows:

( )
( )
( )

( )
= + + +
= + + +
= + + +

p p p p q p q p q

p p p p q p q p q

p p p p q p q p q

i 2 ,

i 2 ,

i 2 ,

3.22
t xx

t xx

t xx

1, 1, 1 1 3 2 2 3 1

2, 2, 2 1 3 2 2 3 1

3, 3, 3 1 3 2 2 3 1

⎧

⎨
⎩

( )
( )
( )

( )
- = + + +
- = + + +
- = + + +

q q q p q p q p q

q q q p q p q p q

q p q p q p q p q

i 2 ,

i 2 ,

i 2 ;

3.23
t xx

t xx

t xx

1, 1, 1 1 3 2 2 3 1

2, 2, 2 1 3 2 2 3 1

3, 3, 3 1 3 2 2 3 1

⎧

⎨
⎩

and

[( ) ]

[ ( ) ]

[ ( ) ]

( )

= - - + + + +

= - - + + + +

= - - + + + +

p p p q p q p q p p q p p q p

p p p q p p q p q p q p p q p

p p p q p p q p p q p q p q p

2 ,

2 ,

2 ,

3.24

t xxx x x x

t xxx x x x

t xxx x x x

1,
1

2 1,
3

2 1 3 2 2 3 1 1, 1 2 2, 1 1 3,

2,
1

2 2,
3

2 2 3 1, 1 3 2 2 3 1 2, 2 1 3,

3,
1

2 3,
3

2 3 3 1, 3 2 2, 1 3 2 2 3 1 3,

⎧

⎨
⎪

⎩
⎪

[( ) ]

[ ( ) ]

[ ( ) ]

( )

= - - + + + +

= - - + + + +

= - - + + + +

q q p q p q p q q p q q p q q

q q p q q p q p q p q q p q q

q q p q q p q q p q p q p q q

2 ,

2 ,

2 ;

3.25

t xxx x x x

t xxx x x x

t xxx x x x

1,
1

2 1,
3

2 1 3 2 2 3 1 1, 2 1 2, 1 1 3,

2,
1

2 2,
3

2 3 2 1, 1 3 2 2 3 1 2, 1 2 3,

3,
1

2 3,
3

2 3 3 1, 2 3 2, 1 3 2 2 3 1 3,

⎧

⎨
⎪

⎩
⎪

respectively.
In each of the examples presented, incorporating the spectral matrix exposes nonlinear interactions crucial to the integrable

structure of the multiple-component NLS and mKdV models. The varying parameters σ, δ and γ serve as key factors in
modulating the system’s dynamics and controlling the nature of interactions between the components.

These examples demonstrate the applicability and fundamental role of the linear spectral problem formulation in con-
structing integrable models. This newly adopted approach combines multiple group constraints, facilitating the generation of a
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broad family of reduced integrable structures, each exhibiting
distinct characteristics (see, e.g. [29–32]). The combination of
distinct constraints enable the exploration of multiple non-
linear dispersive wave behaviors, with promising applications
in a wide range of scientific disciplines. In addition, these
results contribute valuable insights to the field of integrable
structures, associated with the 4 × 4 matrix spectral problems,
as discussed in [33–37].

4. Concluding remarks

This paper presents a novel local group reduction or similarity
transformation and applies it to a specific sort of linear
spectral problems, which yields reduced hierarchies of matrix
integrable structures. Several model scenarios of these
reduced linear eigenvalue problems and their associated NLS
and mKdV integrable structures are provided. A central
contribution of this work is the introduction of a new group
reduction or similarity transformation that involves off-diag-
onal block matrices. This approach offers a distinct perspec-
tive compared to prior studies [8, 37, 38], where similarity
matrices were restricted to diagonal block forms.

These configurations showcase the adaptability of the
linear spectral problem formulation in investigating integrable
structures, showing how various group constraints can yield
an extensive family of reduced integrable structures, each
characterized by distinct nonlinear interactions. Together with
the choice of parameters, the imposed group constraints
fundamentally shape the symmetry properties of these
integrable structures. The inherent adaptability of linear
spectral problems allows for the development of tailored
models, making it a versatile tool bridging theoretical insights
and practical implementation.

By further pursuing this approach and investigating
various forms of group reductions and similarity transfor-
mations, a broader spectrum of complex structures and special
features inherent to integrable models can be uncovered. Such
explorations may bring to light rich and diverse nonlinear
wave dynamics, including soliton, positon, negaton and
complexiton waves, breathers, lump waves, and rogue waves
(see, e.g. [39–43])—as well as their connections to Bäcklund
and Darboux transformations (see, e.g. [44, 45]). This line of
investigation offers promising prospects for advancing
research on a wide range of integrable structures, with
potential applications across various areas of mathematical
and physical sciences.

Acknowledgments

The work was supported in part by the Ministry of Science and
Technology of China (G2021016032L and G2023016011L)
and the National Natural Science Foundation of China
(12271488 and 11975145).

References

[1] Lax P D 1968 Integrals of nonlinear equations of evolution and
solitary waves Comm. Pure Appl. Math. 21 467

[2] Ablowitz M J and Segur H 1981 Solitons and the Inverse
Scattering Transform (SIAM)

[3] Drazin P G and Johnson R S 1983 Solitons: An Introduction
(Cambridge University Press)

[4] Mikhailov A V 1981 The reduction problem and the inverse
scattering method Physica D 3 73

[5] Gerdjikov V S and Kostov N A 2008 Reductions of
multicomponent mKdV equations on symmetric spaces of
DIII-type SIGMA 4 029

[6] MaW X 2019 Application of the Riemann–Hilbert approach to
the multicomponent AKNS integrable hierarchies Nonlinear
Anal.: Real World Appl. 47 1

[7] MaW X 2023 Sasa–Satsuma type matrix integrable hierarchies
and their Riemann–Hilbert problems and soliton solutions
Physica D 446 133672

[8] Ma W X 2024 Real reduced matrix mKdV integrable
hierarchies under two local group reductions East Asian J.
Appl. Math. 14 281

[9] Ablowitz M J and Musslimani Z H 2017 Integrable nonlocal
nonlinear equations Stud. Appl. Math. 139 7

[10] Gürses M and Pekcan A 2018 Nonlocal nonlinear Schrödinger
equations and their soliton solutions J. Math. Phys. 59
051501

[11] Ma W X 2021 Nonlocal PT-symmetric integrable equations
and related Riemann–Hilbert problems Partial Differ. Equ.
Appl. Math. 4 100190

[12] Ablowitz M J and Musslimani Z H 2016 Inverse scattering
transform for the integrable nonlocal nonlinear Schrödinger
equation Nonlinearity 29 915

[13] Ling L M and Ma W X 2021 Inverse scattering and soliton
solutions of nonlocal complex reverse-spacetime modified
Korteweg–de Vries hierarchies Symmetry 13 512

[14] Ma W X, Huang Y H and Wang F D 2022 Inverse scattering
transforms for non-local reverse-space matrix non-linear
Schrödinger equations Eur. J. Appl. Math. 33 1062

[15] Ji J L and Zhu Z N 2017 On a nonlocal modified Korteweg–de
Vries equation: integrability, Darboux transformation and
soliton solutions Commun. Nonlinear Sci. Numer. Simul.
42 699

[16] Gürses M and Pekcan A 2018 Nonlocal modified KdV
equations and their soliton solutions by Hirota method
Commun. Nonlinear Sci. Numer. Simul. 67 427

[17] Song C Q, Liu D Y and Ma L Y 2024 Soliton solutions of a
novel nonlocal Hirota system and a nonlocal complex
modified Korteweg–de Vries equation Chaos Solitons
Fractals 181 114707

[18] Wang X, Du D L and Wang H 2024 A nonlocal finite-
dimensional integrable system related to the nonlocal mKdV
equation Theor. Math. Phys. 218 370

[19] Zhang J, Zhang C P and Cui Y N 2017 Bi-integrable and tri-
integrable couplings of a soliton hierarchy associated with
SO(3) Adv. Math. Phys. 2017 9743475

[20] Zhao Q L, Zhong Y D and Li X Y 2022 Explicit solutions to a
hierarchy of discrete coupling Korteweg–de Vries equations
J. Appl. Anal. Comput. 12 1353

[21] Ablowitz M J, Kaup D J, Newell A C and Segur H 1974 The
inverse scattering transform-Fourier analysis for nonlinear
problems Stud. Appl. Math. 53 249

[22] Wang H F and Zhang Y F 2021 A kind of generalized
integrable couplings and their bi-Hamiltonian structure Int.
J. Theor. Phys. 60 1797

[23] Liu T S and Xia T C 2022 Multi-component generalized
Gerdjikov–Ivanov integrable hierarchy and its Riemann–Hilbert
problem Nonlinear Anal. Real World Appl. 68 103667

7

Commun. Theor. Phys. 78 (2026) 015001 W-X Ma

https://doi.org/10.1002/cpa.3160210503
https://doi.org/10.1016/0167-2789(81)90120-2
https://doi.org/10.1016/j.nonrwa.2018.09.017
https://doi.org/10.1016/j.physd.2023.133672
https://doi.org/10.4208/eajam.2022-310.300623
https://doi.org/10.1111/sapm.12153
https://doi.org/10.1063/1.4997835
https://doi.org/10.1063/1.4997835
https://doi.org/10.1016/j.padiff.2021.100190
https://doi.org/10.1088/0951-7715/29/3/915
https://doi.org/10.3390/sym13030512
https://doi.org/10.1017/S0956792521000334
https://doi.org/10.1016/j.cnsns.2016.06.015
https://doi.org/10.1016/j.cnsns.2018.07.013
https://doi.org/10.1016/j.chaos.2024.114707
https://doi.org/10.1134/S0040577924030024
https://doi.org/10.1155/2017/9743475
https://doi.org/10.1002/sapm1974534249
https://doi.org/10.1007/s10773-021-04799-9
https://doi.org/10.1016/j.nonrwa.2022.103667


[24] Zhu X M and Zhang J B 2022 The integrability of a new
fractional soliton hierarchy and its application Adv. Math.
Phys. 2022 2200092

[25] Ma W X 2023 Matrix integrable fifth-order mKdV equations
and their soliton solutions Chin. Phys. B 32 020201

[26] Ma W X 1992 The algebraic structures of isospectral Lax
operators and applications to integrable equations J. Phys. A:
Math. Gen. 25 5329

[27] Fordy A P and Kulish P P 1983 Nonlinear Schrödinger equations
and simple Lie algebras Commun. Math. Phys. 89 427

[28] Athorne C and Fordy A 1987 Generalised KdV and MKdV
equations associated with symmetric spaces J. Phys. A:
Math. Gen. 20 1377

[29] Yu F and Li L 2017 Vector dark and bright soliton wave
solutions and collisions for spin-1 Bose–Einstein condensate
Nonlinear Dyn. 87 2697

[30] Sulaiman T A, Younas U, Yusuf A, Younis M, Bilal M and
Shafqat-Ur-Rehman 2021 Extraction of new optical solitons
and MI analysis to three coupled Gross–Pitaevskii system in
the spinor Bose–Einstein condensate Mod. Phys. Lett. B 35
2150109

[31] Ye R S, Zhang Y and Ma W X 2022 Bound states of dark
solitons in N-coupled complex modified Korteweg–de Vries
equations Acta Appl. Math. 178 7

[32] Younas U, Sulaiman T A and Ren J 2023 Diversity of optical
soliton structures in the spinor Bose–Einstein condensate
modeled by three-component Gross–Pitaevskii system Int. J.
Mod. Phys. B 37 2350004

[33] Ma W X 2025 A combined integrable hierarchy with four
potentials and its recursion operator and bi-Hamiltonian
structure Indian J. Phys. 99 1063

[34] Ma W X 2024 A combined generalized Kaup–Newell soliton
hierarchy and its hereditary recursion operator and
bi-Hamiltonian structure Theor. Math. Phys. 221 1603

[35] Geng X G and Zeng X 2023 Algebro-geometric quasi-periodic
solutions to the Satsuma–Hirota hierarchy Physica D 448
133738

[36] Ma W X 2025 A soliton hierarchy derived from a fourth-order
matrix spectral problem possessing four fields Chaos
Solitons Fractals 195 116309

[37] Ma W X 2025 Integrable matrix nonlinear Schrödinger
equations with reduced Lax pairs of AKNS type Appl. Math.
Lett. 168 109574

[38] Ma W X 2025 Matrix mKdV integrable hierarchies via two
identical group reductions Mathematics 13 1438

[39] Akhmediev N, Soto-Crespo J M and Ankiewicz A 2009
Extreme waves that appear from nowhere: on the nature of
rogue waves Phys. Lett. A 373 2137

[40] Wazwaz A-M 2024 Breather wave solutions for an integrable
(3+1)-dimensional combined pKP-BKP equation Chaos
Solitons Fractals 182 114886

[41] Ma H C, Bai Y X and Deng A P 2022 General M-lump, high-
order breather, and localized interaction solutions to (2+1)-
dimensional generalized Bogoyavlensky–Konopelchenko
equation Front. Math. China 17 943

[42] Ma W X 2024 Lump waves and their dynamics of a spatial
symmetric generalized KP model Rom. Rep. Phys. 76 108

[43] Chu J Y, Liu Y Q and Ma W X 2025 Integrability and
multiple-rogue and multi-soliton wave solutions of the 3+1-
dimensional Hirota–Satsuma–Ito equation Mod. Phys. Lett.
B 39 2550060

[44] Gao D, Ma W X and Lü X 2024 Wronskian solution, Bäcklund
transformation and Painlevé analysis to a (2+1)-dimensional
Konopelchenko–Dubrovsky equation Z. Naturforsch 79a 887

[45] Cheng L, Zhang Y and Ma W X 2025 An extended (2+1)-
dimensional modified Korteweg–de Vries–Calogero–
Bogoyavlenskii–Schiff equation: Lax pair and Darboux
transformation Commun. Theor. Phys. 77 035002

8

Commun. Theor. Phys. 78 (2026) 015001 W-X Ma

https://doi.org/10.1155/2022/2200092
https://doi.org/10.1088/1674-1056/ac7dc1
https://doi.org/10.1088/0305-4470/25/20/014
https://doi.org/10.1007/BF01214664
https://doi.org/10.1088/0305-4470/20/6/021
https://doi.org/10.1007/s11071-016-3221-3
https://doi.org/10.1142/S0217984921501098
https://doi.org/10.1142/S0217984921501098
https://doi.org/10.1007/s10440-022-00481-2
https://doi.org/10.1142/S0217979223500042
https://doi.org/10.1007/s12648-024-03364-4
https://doi.org/10.1134/S0040577924100027
https://doi.org/10.1016/j.physd.2023.133738
https://doi.org/10.1016/j.physd.2023.133738
https://doi.org/10.1016/j.chaos.2025.116309
https://doi.org/10.1016/j.aml.2025.109574
https://doi.org/10.3390/math13091438
https://doi.org/10.1016/j.physleta.2009.04.023
https://doi.org/10.1016/j.chaos.2024.114886
https://doi.org/10.1007/s11464-021-0918-5
https://doi.org/10.59277/RomRepPhys.2024.76.108
https://doi.org/10.1142/S0217984925500605
https://doi.org/10.1088/1572-9494/ad84d3

	1. Introduction
	2. Deriving matrix integrable models from group reduction
	2.1. The AKNS integrable hierarchies revisited
	2.2. Integrable reductions via similarity transformations
	2.3. Matrix AKNS integrable hierarchies arising from group reduction

	3. Case studies
	4. Concluding remarks
	Acknowledgments
	References



