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We conduct two group reductions of the Ablowitz—Kaup—Newell-Segur matrix spectral
problems to present a class of novel reduced nonlocal reverse-spacetime integrable modified

Korteweg—de Vries equations. One reduction is local, replacing the spectral parameter with its
negative and the other is nonlocal, replacing the spectral parameter with itself. Then by taking
advantage of distribution of eigenvalues, we generate soliton solutions from the reflectionless

Riemann—Hilbert problems, where eigenvalues could equal adjoint eigenvalues.
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1. Introduction

Group reductions of matrix spectral problems can produce
nonlocal integrable equations and keep the corresponding
integrable structures that the original integrable equations
possess [1-3]. If one group reduction is taken, we can obtain
three kinds of nonlocal nonlinear Schrédinger equations and
two kinds of nonlocal modified Kortweweg-de Vries (mKdV)
equations [1, 4]. Recently, we have shown that a new kind of
nonlocal integrable equations could be generated by con-
ducting two group reductions simultaneously. The inverse
scattering transform, Darboux transformation and the Hirota
bilinear method can be applied to analysis of soliton solutions
to nonlocal integrable equations [5-7].

The Riemann—Hilbert technique has been proved to be
another powerful method to solve integrable equations, and
especially to construct their soliton solutions [8, 9]. Various
kinds of integrable equations have been investigated via
analyzing the associated Riemann—Hilbert problems and we
refer the interested readers to the recent studies [10-12] and
[3, 13-15] for details in the local and nonlocal cases,
respectively. In this paper, we would like to present a kind of

0253-6102/22,/065002+-06$33.00

novel reduced nonlocal integrable mKdV equations by taking
two group reductions and construct their soliton solutions
through the relectionless Riemann—Hilbert problems.

The rest of this paper is structured as follows. In
section 2, we make two group reductions of the Ablowitz—
Kaup—Newell-Segur (AKNS) matrix spectral problems to
generate type (—A\, A\) reduced nonlocal integrable mKdV
equations. Two scalar examples are

Pry = Prae — 6092p1, — 30p,(—x, —)(p\py(—x, —1));,
and
pl,t :pl,xx_x + 6(5[71171(*)6, 7t)p1,x + 35(P1P1(*X’ 7t))xp1,

where 0 = § = 1. In section 3, based on distribution of
eigenvalues, we establish a formulation of solutions to the
corresponding reflectionless Riemann—Hilbert problems,
where eigenvalues could equal adjoint eigenvalues, and
compute soliton solutions to the resulting reduced nonlocal
integrable mKdV equations. In the last section, we gives a
conclusion, together with a few concluding remarks.

iopscience.org/ctp | ctp.itp.ac.cn
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2. Reduced nonlocal integrable mKdV equations

2.1. The matrix AKNS integrable hierarchies revisited

Let us recall the AKNS hierarchies of matrix integrable
equations, which will be used in the subsequent analysis. As
normal, let A denote the spectral parameter, and assume that
m, n > 1 are two given integers and p, g are two matrix
potentials:

)4 :P(xs 1= (pjk)mxnv q = CI(X, 1) = (ij)nxn'r ()

The matrix AKNS spectral problems are defined as follows:

—ig, = Up = U, )¢ = (A + P)o,
—ig, = Vg = VI, N = (XQ + Q"g, r>0.

@)
Here the constant square matrices A and {2 are defined by

A = diag(allm’ 0421}1)7 Q = d]ag(ﬁllm’ ﬁ21n)’ (3)
with [; being the identity matrix of size s, and oy, a; and
01, (> being two arbitrary pairs of distinct real constants. The
other two involved square matrices of size m + n are defined

by
0
P:P(u):[ p], 4)
qg 0
called the potential matrix, and
= [r=s]  plr—s]
=5 [ : 5
0 Sgo [C[VS] d[rs]] )

where al*l, b1, Il and d'*) are defined recursively as follows:

PI—0, =0, a=gL, d=ph, (6a)
Pl = LCipll — pdt 4 allp), s3>0, (6h)
[0
ot = Ll 4 galt — ablg), s3>0, (60
«
at = i(pch! — pblg),  dP! = i(gh — cMp), s =1,
(6d)

with zero constants of integration being taken. Particularly,
we can obtain

ol = ﬁp, orl = B

(&% (0%

g

AP - ;Im,n (P2 + IPx)a

and

ot = Sxop— By P+ iy
(6% 0%
B

— ([P, P] + Py + 2P,
a3

where o = a; — o, 8= B — B2 and I, = diag(l,,, —1,).
The relations in (6) also imply that

[s1  plsl
W:Z)\—“[a ] ©)
530 C[.v] d [s]

solves the stationary zero curvature equation
We = i[U, W], ®)

which is crucial in defining an integrable hierarchy.
The compatibility conditions of the two matrix spectral
problems in (2), i.e. the zero curvature equations

U — vl iu, vl =0, r>0, 9)

generate one so-called matrix AKNS integrable hierarchy
(see, e.g. [16]):

p, = iabl' 1 g = —iac*tH r >0, (10)

which has a bi-Hamiltonian structure. The second (r = 3)
nonlinear integrable equations in the hierarchy give us the
AKNS matrix mKdV equations:

P = —%(pm + 3pgp, + 3p.qp),
B

5(61m + 3q,rq + 349pq,), (11)

9 = —

where the two matrix potentials, p and ¢, are defined by (1).

2.2. Reduced nonlocal integrable mKdV equations

We would like to construct a kind of novel reduced nonlocal
integrable mKdV equations by taking two group reductions
for the matrix AKNS spectral problems in (2). One reduction
is local while the other is nonlocal (see also [17] for the
local case).

Let X, Ay and X5, A, be two pairs of constant invertible
symmetric matrices of sizes m and n, respectively. We con-
sider two group reductions for the spectral matrix U:

UTx, t, =) = U, t, = DI))T = -XU(, t, V2L, (12)
and
UT(—x, —t, \) = (U(—x, —t, )X = AU(x, t, )N,
(13)

where the two constant invertible matrices, ¥ and A, are
defined by

5= [%l 202], A= [%‘ Xz]. (14)
These two group reductions lead equivalently to
PT(x,t) = =XP(x, )X, (15)
and
PT(—x, —t) = AP(x, H X!, (16)

respectively. More precisely, they enable us to make the
reductions for the matrix potentials:

g, 1) = =% 'pT(x, X, (17)
and

qx, ) = A 'pT(—x, =D A, (18)
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respectively. It then follows that to satisfy both group
reductions in (12) and (13), an additional constraint is
required for the matrix potential p:
=3P 0% = AT (—x, —n AL

Moreover, we notice that under the group reductions in (12)
and (13), we have that

WT(x’ f, _A) = (W(x, f, _A))T = ZW(X, f, )\)2717

WT(_X’ —t, )\) = (W(_x, —t, >\))T = AW(X, t, )\)Ail’

19)

(20)
which implies that
V[2s+1]T(x’ f, =) = (V[Zerl](x, t, —)!
=—3VE2sH(x, 1, D,
) @1
VIZ+HUT(_x —f, \) = (V25 H(—x, —¢, M)T
=AVIZH(x 1, M)A,
and
O+ IT (x ¢, —\) = (Q2+1(x, £, —\)T
=2+ (x, 1, )DL,
) 0 (x ) (22)
OBHIT(_x —¢ \) = (Ot (—x, —t, )T
:AQ[2s+l](x’ t9 )\)A_l’
where s > 0.

Consequently, we see that under the potential reductions
(15) and (16), the integrable matrix AKNS equations in (10)
withr =25 + 1, s > 0, reduce to a hierarchy of nonlocal
reverse-spacetime integrable matrix mKdV type equations:

Pr = iab[2S+2J |q:722’]pTEI:A{lpT(fx,ft)Alv s = 0, (23)
where p is an m X n matrix potential which satisfies (19),
Y1, Ay are a pair of arbitrary invertible symmetric matrices of
size m, and ¥, A, are a pair of arbitrary invertible symmetric
matrices of size n. Each reduced equation in the hierarchy
(23) with a fixed integer s > 0 possesses a Lax pair of the
reduced spatial and temporal matrix spectral problems in (2)
with » = 2s 4+ 1, and infinitely many symmetries and con-
servation laws reduced from those for the integrable matrix
AKNS equations in (10) with » = 25 + 1.

If we fix s =1, i.e. r =3, then the reduced matrix
integrable mKdV type equations in (23) give a kind of
reduced nonlocal integrable matrix mKdV equations:

p, = —%(pm — 3pS P Sip, — 30,55 ' PTEip)
B

e
+3p, A PT (—x, =) Ap),

(Pewe + 39D 'pT (—x, —1) Ap,

(24)

where p is an m X n matrix potential satisfying (19).

In what follows, we would like to present a few examples
of these novel reduced nonlocal integrable matrix mKdV
equations, by taking different values for m, n and appropriate
choices for 3, A.

Let us first consider m = 1 and n = 2. We take

1_]o O
==7 0]

_ 06
Ay = ,

? [6 0]
where 0 and § are real constants and satisfy o2 = §2 = 1.
Then the potential constraint (19) requires

=1,

A =1, (25)

py = —0abp,(—x, —1), (26)

where p = (p,, p,), and thus, the corresponding potential
matrix P reads

0 p1 —obp(—x, —1)
P = —op, 0 0 27)
6pl(_x7 _t) O O

Further, the corresponding novel reduced nonlocal integrable
mKdV equations become

B 2
pl,z = _ﬁ[pl,xxx - 6Up1 pl,x

—3op,(=x, =) (pp,(=x, =)l (28)

where o = +1. These two equations are quite different from
the ones studied in [1, 18, 19], in which only one nonlocal
factor appears. Similarly, if we take

_ 0 o
»l= ,
g [0 0]

1_]16 0
AZ‘[O 6]’

where 0 and § are real constants and satisfy o> = §2 = 1
again, then we obtain another pair of novel scalar nonlocal
integrable mKdV equations:

=1,

A =1, (29)

5
Py = —5[171,m + 66p\p(—x, —1)p; ,

+36(pipy (=%, —D)upy], (30)

where § = +1. This pair has a different nonlocality pattern
from the one in (28). Moreover, in each of these two
equations, there are two nonlocal nonlinear terms, but in each
of their counterparts in [1, 18, 19], there is only one nonlocal
nonlinear term.

Let us second consider m = 1 and n = 4. We take

o 0 0 0
_ 0 oo 00
y=1, %=
T 00 a0 0]
00 0 o
06 0 O
6 0 0 0
A=1, Al =] : 31
1 2 00 0 & €29)
0 0 &m O
where o0; and ¢; are real constants and satisfy

05 = 53 =1, j=1,2. Then the potential constraint (19)

generates
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Dy = —o10ip(—x, —1), p = —obaps(—x, —1), (32)

where p = (p,, p,, P3. p4), and so the corresponding poten-
tial matrix P becomes

P
0 Py —0151171(—)6, —1) ps _0252173(_)5, —1)
—oip, 0 0 0 0
=| 6ip)(=x, =) 0 0 0 0
— 025 0 0 0 0
Orps(—x, —t) 0O 0 0 0

(33)

This enables us to obtain a class of two-component reduced
nonlocal integrable mKdV equations:

Jé]
Pru = = 5P = 607 P1c = 301y (=3 =D (pypy (=3 — )
=302p3(P1P3)x — 302p3(—=x, =) (p\p3(—x, —1))],
Py, = —%[pw — 30, (P — 30upy(—x, —0)(py (—x, —D)py)s

—605p; ps — 302p3(—x, —1)(p3p3(—x, —D)],
(34)

where o; are real constants and satisfy a? =1, j=1,2.

Let us third consider m = 2 and n = 2. We take
(35)

where 0 and § are real constants and satisfy o2 = 6% = 1.
Then the potential constraint (19) tells

Py = 00ppp(—=x, —1),  py = obp(—=x, —1),  (36)
and so the corresponding matrix potentials reads
_ P P12
p= o0p, (—x, —t) obp;(—x, =) |’
_|oPu 0p1a(—x, —1) ‘ 37)
apiy Opy(=x, —1)

This enables us to get another class of two-component
reduced nonlocal integrable mKdV equations:

I8
Py = _E[pll,xxx + 60p[Pi1, F 30P1 (PP
+30pyy (=X, =) (py Py (=X, =) + 30p; (=X, =1)(P1aP15 (=%, —1)],

I}

*?[P]z_ﬂx + 3opy (pipiads + 6Up122p12,x
+30P12(*X, 70(17]1[7]](7)@ —1)y + 30'.17”(7)55 7t)(p12p11(7x’ =)l
(38)

where o = 4 1. The pattern of the second nonlocal nonlinear
terms in these two equations is different from the one in (34).

In the second and third cases, we can also take other
similar choices for ¥ and A as did in the first case, and
generate different two-component reduced integrable mKdV
equations.

Pioy =

3. Soliton solutions

3.1. Distribution of eigenvalues

Under the group reduction in (12) (or (13)), we can see that A
is an eigenvalue of the matrix spectral problems in (2) if and
only if A= —X(orA=))isan adjoint eigenvalue, i.e. the
adjoint matrix spectral problems hold:

g, = QU = U, N), ip, = ¢V = ¢V, V), (39)
wherer = 25 + 1, s > 0. Consequently, we can assume to
have eigenvalues A\: pu, —p, and adjoint eigenvalues
N —p,  w, where y e C.

Moreover, under the group reduction in (12) (or (13)), if
¢ () is an eigenfunction of the matrix spectral problems in (2)
associated with an eigenvalue A, then ¢T(—A\)X (or

¢T (—x, —t, A)A) presents an adjoint eigenfunction asso-
ciated with the same eigenvalue \.

3.2. General solutions to reflectionless Riemann—Hilbert
problems

We would like to present a formulation of solutions to the
corresponding reflectionless Riemann—Hilbert problems.

Let N,N, >0 be two integers such that N =
2N, + N, > 1. First, we take N eigenvalues )\; and N adjoint
eigenvalues )\, as follows:

Ak, 1 gng: //(']a T ,uNl7 _Ml’ Ty

_,LLNI, vy, ) VNQ’ (40)

)\k, 1 < k g N: _,u]7 B} _MN]’ ,U/la ) ,uNl7

_VNz» (41)

where 1, € C,1 < k<N, and v, € C, 1 <k <N, and
assume that their corresponding eigenfunctions and adjoint
eigenfunctions are given by

Vi, 1 <k<N,

-y, e

1 <k<N, (42)

respectively. We point out that in the current nonlocal case,
we do not have the property

MIT<kSNY N M 1<kSNY =2,

and 7y,

and thus, we need generalized solutions to reflectionless
Riemann—Hilbert problems. Such solutions are provided by
N _ N

Ve (M Dby

G+()\) = Im+n — Z =~
=1 A= A

N 1\ A
N V(M
(G ) 1()\) = lypyn + T ——
" 3;1 A — M

s

(43)

where M is a square matrix M = (my)yxy With its entries
defined by

kv . N
— i = A
M= A > 1 k>

0, if\; =\

my = where 1 <k, I<N. (44)

As shown in [14], these two matrices GT(\) and G~(\) solve
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the reflectionless Riemann—Hilbert problem:

G NG N) = byyns AER, (45)
when the orthogonal condition:
\?kvl =0if )\1 = j\k, (46)

is satisfied.
As a consequence of the matrix spectral problems in (2)
with zero potentials, we can derive

A AR Q1
b

Ve = (X, £, ) = e 1 <k<N, 47

and based on the preceding analysis, we can take
iR A=A

D= D(r, 1, M) = v (1 = A)D = e

We=wl2, 1<k<N, (48)

where wy, 1 < k < N, are constant column vectors. In this
way, the orthogonal condition (46) becomes

Wl Sw; = 0if A\, = Mg, (49)
where 1 < k, [ < N.
Now, making an asymptotic expansion
1 1
N — +
G"(N) = Lyyn + XG] + O(V) (50)
as A — oo, we obtain
N
G == > wM Yy, (51)
ki=1

and further, substituting this into the matrix spatial spectral
problems, we obtain

P=—[A,G]=_lim [G*()\), Al (52)
A — 00

This give rise to the N-soliton solutions to the matrix AKNS

equation (13):

N N
p=ay Mt q=—a)] M bl (53)
k=1 ki=1
Here for each 1 < k < N, we have made the splittings,
v = (DT, WHHT and ¥ = (9}, ¥?), where v} and ¥} are
column and row vectors of dimension m, respectively, while
v¢ and 97 are column and row vectors of of dimension 7,
respectively.
To present N-soliton solutions for the reduced nonlocal
integrable mKdV equation (23), we need to check if G
defined by (51) satisfies the involution properties:

G =367, (GH'(—x, —1) = —AG"X. (54)

These mean that the resulting potential matrix P given by (52)
will satisfy the two group reduction conditions in (15) and
(16). Therefore, the above N-soliton solutions to the matrix
AKNS equation (10) reduce to the following class of
N-soliton solutions:

N

Loy a2

p=ad (M Y,
Gi=1

(55)

to the reduced nonlocal integrable mKdV equation (23).

3.3. Realization

Let us now check how to realize the involution properties
in (54).

First, following the preceding analysis in section 3.1, all
adjoint eigenfunctions vy, 1 < k < 2N, can be determined

by
D= De(x, 1, ) = v (= )2
= V]’\[7‘1+k(_x, —1, Ak)Av 1 < k < Nl,
(56)
and
Dnek = Dnpk (6 £ Anen) = V(= An) S
= V];r(_x7 _t’ A]()A’ 1 g k g Nl' (57)
These choices in (56) (or (57)) engender the selections on
Wi, 1 < k < N:
CAE -2 TA)w =0, 1<k<N, (58)
we =Y "Awi_n, N+ 1<k < 2N,

We emphasize that all these selections aim to satisfy the
reduction conditions in (15) and (16).

Now, note that when the solutions to the reflectionless
Riemann—Hilbert problems, defined by (43) and (44), possess
the involution properties in (54), the corresponding relevant
matrix G;" will satisfy the involution properties in (54), which
are consequences of the group reductions in (12) and (13).
Therefore, when the selections in (58) are made and the
orthogonal condition for wy in (49) is satisfied, the formula
(55), together with (43), (44), (47) and (48), gives rise to
N-soliton solutions to the reduced nonlocal matrix integrable
mKdV equation (23).

Finally, let us consider the case of m =n/2 =5 =

N=1 Wetake \=v, AN=-v, ve C,andchoose
wi = (Wi, Wi, wia)l, (59)

where wj |, wi,, wy 3 are arbitrary complex numbers and
wlz’3 = wlz’z. Such a situation leads to a class of one-soliton
solutions to the reduced nonlocal integrable mKdV equation (28):

2o0v(ay — a)wy w2

P = - PP : o
1 wl%lel(al—az)uxﬁ»l(dl—ﬂg)u% 4 20.W12’2e—l(al7&2)1/,\‘—1(;51—;32)1/% ’

(60)

where v € C is arbitrary and w, j, w;, € C are arbitrary but
need to satisfy wfl = ﬁ:2w1%2, which is a consequence of the
involution properties in (54).

4, Concluding remarks

Type (— A, \) reduced nonlocal reverse-spacetime integrable
mKdV hierarchies and their soliton solutions were presented.
The analysis is based on two group reductions, one of which
is local while the other is nonlocal. The resulting nonlocal
integrable mKdV hierarchies are different from the existing
ones in the literature.
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We remark that it would also be interesting to search for
other kinds of reduced nonlocal integrable equations from
different kinds of Lax pairs [20], integrable couplings [21]
and variable coefficient integrable equations [22]. In the pair
of the considered two group reductions, we can also take

UTx + xo, t 4 19, =X) = (U + xo, t + 10, =) = =BU(x, 1, , )T},
and
UT(—x + x¢s =t + gy A) = (U(=x + x¢s =1 + 195 )T = AU(x, 1, AL,

with the shifted potentials, where xq, xq, to, fos are arbitrary
constants (see, e.g. [23]). Another interesting topic is to study
dynamical properties of exact solutions, including lump
solutions [24], soliton solutions [25-27], rogue wave solu-
tions [28, 29], solitonless solutions [30] and algebro-geo-
metric solutions [31, 32], from a perspective of Riemann—
Hilbert problems. All this will greatly enrich the mathematical
theory of nonlocal integrable equations.
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