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Abstract
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A linear superposition is studied for Wronskian rational solutions to the KdV equation, which
include rogue wave solutions. It is proved that it is equivalent to a polynomial identity that an
arbitrary linear combination of two Wronskian polynomial solutions with a difference two
between the Wronskian orders is again a solution to the bilinear KdV equation. It is also
conjectured that there is no other rational solutions among general linear superpositions of

Wronskian rational solutions.
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1. Introduction

The Wronskian formulation is one of powerful approaches to
soliton solutions [1, 2]. It has been generalized to present
more diverse solutions [3, 4], particularly rational solutions
and complexiton solutions [5, 6]. There are plenty of recent
studies on nonlinear dispersive waves [7-9], including optical
solitons and rogue waves [10—12]. The corresponding soliton
equations and even hierarchies of soliton equations can be
solved through the inverse scattering transform [13-15] and
Riemann—Hilbert problems (see, e.g. [16]).

It is shown [5] that when the functions ¢, 0 < i < N — 1,
satisfy

N—1
i = D Nj$, 0 <i<N— 1, (1)
j=1
and
(Zsi,t = _4¢i,m9 0 g l < N - 19 (2)

where )\; are arbitrary constants, the Wronskian f =
W (dg, @15 Py_y) yields a solution u = —2(Inf),, to the
KdV equation

u; — 6uu, + uy, = 0. 3)
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Particularly, rational, soliton, negaton and complexiton solutions
correspond to the cases of zero, positive, negative and complex
eigenvalues of the coefficient matrix A = (Aj)o<ij<n—1s
respectively [5].

One of the resulting rational solutions is given by u = %,
associated with ¢, = x. Through the x-translational and #-
translational invariance: #i(x, t) = u(x + a, t + b) and the
Galilean invariance: ii(x, t) = u(x + 6ct, t) + ¢, where a, b
and ¢ are arbitrary constants, we can generate rogue wave
solutions from the Wronskian rational solutions for the KdV
equation. Obviously, one such rogue wave solution is

2

i(x, t) = +
(x + 6¢ct + b + ai)?

c, “4)

where a = 0, b and c¢ are arbitrary real constants, and a
special case with a = 1/2, b = 0 and ¢ = —1 leads to the
rogue wave solution presented recently in [17]:

i __ 8
o, 1) = (2x — 12t + i)? I )
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Generally, since the KdV equation is nonlinear, the linear
superposition principle can not be applied to its solutions.
However, a special linear superposition can exist among
Wronskian rational solutions to the KdV equation. This will
be the main topic of our discussion in this paper. More spe-
cifically, we would like to explore a linear superposition
principle for two Wronskian rational solutions to the KdV
equation, which have a difference two between the orders of
the two involved Wronskian determinants.

The rest of the paper is organized as follows. In section 2,
we will set up Wronskian rational solutions. In section 3, we
will present a polynomial identity, originated from a linear
superposition of Wronskian rational solutions, and in
section 4, we will show that it is equivalent to the polynomial
identity that a sum of two Wronskian polynomial solutions
with a difference two between the Wronskian orders is again a
solution to the bilinear KdV equation. A few concluding
remarks will be given in the final section, together with a
conjecture on general linear superpositions of Wronskian
rational solutions.

2. Wronskian rational solutions

Let us recall that the KdV equation (3) is transformed into a
Hirota bilinear form

(D¢ + DD)f - f=2(fuf — f.fe
Hon f — Yo fo + 3f2) =0, (6)

under u = —2(Inf),, [5]. Actually, we have

D} + D.D))f -
u,76uux+um:7M ) @)
f2
Obviously, a polynomial solution f to the bilinear KdV

equation (6) will lead to a rational solution to the KdV
equation (3) by the indicated transformation.

Let N > 0 be an arbitrary integer. Assume that fy is a
polynomial solution, defined by the Wronskian [5]:

fy = (N = 1) = W(dy, b1 Py 1) (8)

where ¢, i > 0, are polynomial functions of x and ¢, deter-
mined by (1) and (2) with
0 0
10
A= (Njpo<ijen-1= 10 . 9)
0 1 0

We only consider the above case of the coefficient matrix A,
since similar transformations of A generate the same
Wronskian solutions to the KdV equation.

Some examples of such Wronskian rational solutions are
determined by [5]:

P(n) = 2sinh(px — 4n’r) = > Pt
i=0

(10)

More examples can be generated from the Adler—Moser
polynomials introduced in [19]. The Wronskian rational

solutions can also yield rogue wave solutions through using
the x-translational and f-translational invariance and the
Galilean invariance of the KdV equation, as illustrated earlier.

3. A polynomial identity

For a sequence of smooth functions of x: ¢, = ¢,(x), i > 0,
we define
o dg, o S
d)z(']) = 'l ) (I)Ej) = (¢E)j)’ d)}])""» (bgi)l)T» l,] 2 O

= (1)

Assume that m, n > 1 are two integers. Note that a Wrons-
kian of order m is denoted by

(m —1) =W (dg, G+ b))

= det(®Y, &), D), (12)
Similarly, let us denote
(m — 1, iy, igy--iy) = det(@2,,, &V ...,
QoD oW @®) . @l (13)

where m < i; < ip <--- < iy, which is called a generalized
Wronskian of order m + n. We point out that a Wronskian of
order m involves a square matrix of size m, and a generalized
Wronskian of order m+n involves a square matrix of
size m + n.

We will discuss about Wronskian rational solutions, and
so let us focus on the sequence of polynomials ¢, i > 0,
determined by

d)O,)oc =0, ¢i+l,xx = ¢i’ i 20, (14)

which follows from the assumption for A in (9).

A polynomial identity: Letr N > 3 be an arbitrary
integer. Then we conjecture [18] that under (14), the fol-
lowing equality holds for generalized Wronskians:

N-=3,N-2,N—1)WN—-1,N+2,N+3)
+(N—-3,N,N+ D(N—1,N,N+ 1)
~N-3,N-2,N)(N—1,N+1,N + 3)
~N-3,N—1,N+ )(N—1,N,N+2)
+(N-3,N-2, N+ )(N-1,N+1,N+2)

+(N—-3,N—1,N)Y(N—1,N, N+ 3) = 0. (15)

More compactly, the identity (15) can be expressed as

N—1(N—-1,N+2,N+3)
+(N—-3,N,N+ DN+ 1)
~N=2,NIN—I,N+ 1,N+3)
~-N=3,N—-1,N+ H(N,N+2)
+N=-2,N+ D(N—1I,N+ 1,N+2)

+(N—=3,N—1,N)(N,N + 3) =0, (16)
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or rewritten in an even more compact form:

2.

a+b+c+d=2
—2<a<b<1,0<c<d<3

N+b{N-1,N+¢,N+d)=0.

(_])a+b+](ﬁ—_\3, N + a,

a7)

By the Laplace expansion around the first N + 2 rows, we
can also put (15) simply in a determinant form:

[IN-3] O 0 0
0 [N—-3 N-2 N-1

N-2
N

without any sign change in the six terms, where
(1) (N—3)
Py Phys),

—-2<i<3,

—

[N —3]= (@),
N+i=o),

and
= T = T
X] - (07 ’ON’ 150) ’ XZ - (Oa ’ONa 0’ 1) .

The identity (15) is very similar to the simplest case of
the Pliicker relations [7], but we do not know what kind of
mathematical property it reflects really. It might be helpful in
proving the identity (15) if we apply the Laplace expansion
for determinants and Jacobi’s identity for Wronskians:

W (@1, Y2, Pm—1, XD W (1, U2y 00m)
=W @, Yo, Pm—1s XIW (1, 2, 0m))x
= W@, Yo, hm— )W (1, Yoy, X)), m 2 1,
where vy, ¥,,---,0,, x are sufficiently differentiable func-
tions and W (¢, -4, —1) = 1 when m = 1.
The identity (15) will be used to show a linear super-

position principle for Wronskian rational solutions, including
rogue wave solutions, to the KdV equation.

19)

4. Linear superposition

It is common sense that there is no linear superposition
principle for nonlinear equations. However, among the
Wronskian rational solutions to the KdV equation, we would
like to explore a special kind of linear superpositions of
solutions.

Let f and g be two Wronskian solutions to the bilinear
KdV equation (6). Then, we have

(D} + DD)(f + cg) - (f + cg)
=2¢[(fy + foon)& + 18y + &)
where ¢ is an arbitrary constant. Therefore, for two Wrons-

kian solutions f and g, we see that an arbitrary linear com-
bination of f and g solves (6) iff so does f+ g.

(20)

It can be readily seen that f; + f; and f, + f, solve the
bilinear KdV equation (3), where f,,’s are the Wronskian
solutions defined by (8). In the general case, we would like to
show that the identity in (15) is equivalent to say that
fv + fy4» 18 again a polynomial solution to the bilinear KdV
equation (6). We refer the reader to [19, 20] for more illus-
trative examples of such solutions generated from linear
combinations.

N—-1 N N+1x x
N+1 N+2 N+3 0 O

=0, (18)

Theorem 4.1. Let N > 3 be an arbitrary integer and the
polynomial functions ¢;, i > 0, determined by (14) and

Gy = 4P 00012 0. 21

Then for the bilinear KdV equation (6), fy + fy,» =

(m) + (m), a sum of two Wronskian solutions,
again presents a solution iff the equality (15) holds.Proof:
Note that A\; = 0, i > 0. By (2.5) of lemma 2.2 in [5], we
have

(N-3,N-1,N)=(N-2,N+ 1), (22)
and computing its derivative with respect to x leads to
N—4,N-2,N-1,N)=N-2,N+2). (23
By (2.7) of lemma 2.2 in [5], we have
(N-5,N—3,N—2,N—1,N)
=-WN-3NN+D+WN-3,N-1,N+2), (24

and combining (2.7) and (2.8) of lemma 2.2 in [5] tells

(N—4,N-2,N—1,N+1)

=N—-3,N,N+ 1)+ (N —2,N+3). (25)
Let f=fy = (N — 1). Then, we can compute that
fi=WN=-2,N), (26)
r =(N—=3,N—1,N)+ (N—2,N+ 1)
=2N-3,N—1,N)=2(N—-2,N+ 1), (@27

- :2§(ﬁ,N+ D=2[(N-3,N—1,N+ 1)
X

+(N = 2,N +2)],
(28)
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for= 2[(N—4,N—2,N—1,N+1)
+(N=3,N,N+1)
+2(N=3,N—1,N+2) + (N —2,N + 3)]
— 4[(N-3,NNN+ 1)+ (N—-3,N—1,N+2)
+ (N =2,N+3),
(29)
where we have used (22) and (25) in (27) and (29),

respectively. Moreover, by using the conditions in (21), we
have

f=—4(N—4,N—2,N—1,N)

~WN-3,N-LN+D)+®WN-2,N+2)] (30
fu=—4N—-5N-3N—2,N-1,N)
~WN-3,NNN+D+N-2,N+3]; 3D

and then, upon using (23) and (24) in (30) and (31),
respectively, we obtain

f=4(N=3,N-1,N+1) —2(N -2, N+ 2)], (32)
fu=42(0N -3,N,N+ 1)
~(N-3,N—1,N+2)— (N—-2,N+3)l.

(33)
Now, it is direct to see that
f+4f, =12N—3,N—1,N+ 1), (34)
and
fu +foe = 120N =3, N. N+ 1). (35)

Further, we take two Wronskian polynomial solutions
== (N — 1) and g =fvir = N+ 1) satisfying the
conditions in (14) and (21). For g = (m\l), we just need to
change N into N + 2 in all computations for f= N =1).
Then, based on (27), (34) and (35), we can see from (20) that
the sum f+ g solves the bilinear KAV equation (6) if and only
if the equality (15) holds. g

It is direct to show that the Boussinesq equation does not
have such a linear superposition for Wronskian rational
solutions, which are given in [6]. We can also directly see that
among more general linear combinations

Iv T afvir +aafyinr +fyis + calfyps + cshygss

there is only one solution f,, + c» fj, 12 where ¢;, 1 < i <5,
are arbitrary constants.

5. Concluding remarks

We have discussed about a specific linear superposition of
Wronskian rational solutions to the KdV equation. It has been
explored that it is equivalent to a polynomial identity that a
linear combination of two Wronskian polynomial solutions
with a difference two between the Wronskian orders is again a
solution to the bilinear KdV equation.

It is easy to see that there is only the linear combination
solution

v +2fyia
among
Iv T afyir +aafyi +fyis + calfyps + cshygss

where f,, is the Wronskian of order m defined by (8) and
¢, 1 < i <5, are arbitrary constants. We conjecture that such
a statement in a general case will be true, i.e. there is no other
solution among the linear combinations

n
v + 2 cifyais
i-1

where n > 1 is an arbitrary integer and ¢;, | < i < n, are
arbitrary constants, besides fy + 2 fy,»-

Recently, there have been various studies on a kind of
simple but important rational solutions, called lump solutions,
to nonlinear dispersive wave equations (see, e.g. [21, 22]) and
different nonlinearities can go together to engender non-
linearity-managed lump solutions [23, 24]. It is known that
for local integrable equations, soliton solutions can be derived
from the 7-function [25] and Hirota bilinear forms (see, e.g.
[26]), and lump solutions can be obtained by taking long-
wave limits of soliton solutions [27]. How about generating
lump solutions for nonlocal integrable equations? Can we
apply the Riemann—Hilbert technique (see, e.g. [28, 29] for
solitons) to exploring their phase interaction characteristics?
Certainly, any investigation in this research area would be
helpful in understanding complex dynamical phenomena (see,
e.g. [30, 31]) in dispersive wave theories.
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